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We have been discussing issues related to model reduction and substructuring, so we will 
continue with this topic in this lecture. So we can quickly recall what we have been discussing, 



we are considering a large finite element model governed by equation of this kind, we are 
restricting our attention to linear time-invariant systems, the idea is that we want to reduce this 
model to a lower order model, R is for reduced here through a transformation X(t) is some sai 
into XM(t), that means we will partition this degree of freedom X(t) into a set of master degrees
of freedom, and slave degrees of freedom and the state vector X(t) is related to the master 
degrees of freedom through this sai matrix. So once we find that we can substitute this into the 
governing equation, and we get this reduced, mass, damping and stiffness matrices and the 
reduce forces governing the master degrees of freedom. 
There are different model reduction schemes they differ in their definition of this matrix sai. In 
static condensation technique the slave degrees of freedom are taken to be related to the master 
degrees of freedom through relations which are strictly valid only for static, under static 
conditions, so we derived the relation between X and XM using static equilibrium equations 
and this is a sai matrix. In dynamic condensation we again partition the degrees of freedom into 
master and slave, in addition we specify frequency at which the condensation is done, so the sai
matrix is given as here. Now if one computes the natural frequencies and mode shapes of the 
reduced system the set of, you know, natural frequencies from this model need not agree with 
any of the natural frequencies of the larger model, that is certainly true in case of static 
condensation method. In dynamic condensation method if this omega is chosen such that it 
coincides with one of the natural frequencies of the larger system then one of the frequencies in 
the reduced model will match with that frequency. 
Now in a third method that is system equivalent reduction expansion process the sai matrix is 
constructed from the modal matrix of the larger system, so the modal matrix can be, I mean not 
all modes need to be evaluated first P modes, suppose if we include the modal matrix will be a 



rectangular matrix, now the transformation matrix there is synthesized from the partitioning of 
the available modal information and this is the sai matrix that is obtained here. Here again we 
need to partition the degrees of freedom to master and slave, in addition we need to also specify
the modes of the larger model which needs to be replicated in the reduced model, SEREP has 
the feature that it exactly reproduces Eigen solutions of the larger model, a set of Eigen 
solutions of a larger model are retained in the smaller model, so these are the 3 techniques that 
we discussed.

Now we move on to the next topic in this that is known as coupling techniques or the 
substructuring techniques. The basic idea here is again we deal with large FE models and we 
want to devise some way of reducing the size of the problem while an computing the response, 
the idea here is that often a large finite element model may be needed to take into account 
geometric complexities of the structure, and a very detailed modeling may perhaps be not 
needed if one is interested in capturing the behavior of the system, a simpler model can capture 
the spatial variation of the system behavior, but a finer model is needed to capture all the 
geometric details, so in which case there is no point in working with a very large model, a 
smaller model would suffice. 
The other situation where coupling techniques would be needed is when a built up structure is 
made up of different components and different engineers are involved in development of 
different components, so every engineer therefore if possible would develop a computational 
model as well as a experimental model for each of these substructures, so we need to synthesize
the models developed by individuals to predict the behavior of the global structure, the testing 
on a global structure may or may not be possible, but finite element model indeed can be 



constructed, so how to, what in such situation, so there are basically the coupling techniques 
can be classified into two categories spatial coupling method and modal coupling method. 
In modal coupling method there are two further classification fixed interface and free interface, 
the main distinguishing feature of these two methods is that in modal coupling method the 
coupling matrices are derived in terms of Eigen solutions of the substructures, where as in 
spatial coupling method the coupling matrices are derived in terms of the substructure structural
matrices, mass, stiffness, damping matrices, so there is no Eigen solutions that one need to 
compute if one is working with spatial coupling method. So we will see some of these details 
and a good reference for a discussion on this is a volume edited by Maia and Silva, the details 
are given here. 

So we'll start with the discussion on spatial coupling method, will restrict our discussion by 
enlarge to free vibration analysis, suppose this is a built-up structure and I assume that this 
built-up structure is made up of 2 substructures A and B, so this built up structure is made up of 
A+ so called, I mean so this plus operation is combining these 2 systems. Now if we consider 
substructure A, the degrees of freedom in this model can further be classified as interior degrees
of freedom and coupling degrees of freedom, coupling degrees of freedom occurs here where 
this node and this node are to be coupled to produce a built up structure, so the degrees of 
freedom at this node constitute UC of A, and other degrees of freedom in the interior are the 
interior degrees of freedom. Similarly for system B, I have UI of B and UC of B, clearly you 
can see that UC of A and UC of B need to be equal for compatibility relations to be you know 
obeyed. 



Now let’s consider the equation for subsystem A, so this subsystem A, the other degrees of 
freedom as I already said are partitioned into interior degrees of freedom and coupling degrees 
of freedom, so this partitioning of degrees of freedom induces a partition on structural matrices 
and this is depicted here KIIA, I stands for interior, C stands for coupling, it's not the I-th 
element of mass matrix that is not what is meant here, so the equation of motion is obtained in 
this form, we assume as I already said there are no external forces but nevertheless I should 
write FCA because these are the coupling forces that we need to consider later on. 
Now if NC is the size of UC that is coupling degrees of freedom, then UIA will have NA – NC 
degrees of freedom, the size of this vector will be that. Similar equation for subsystem B with 
NB degrees of freedom can also be written which is as shown here. Now the interior degrees of 
freedom include all the unknown degrees of freedom or could be the master DOF’s obtained 
after a model reduction, so that also could be that means while arriving at this one may use a 
condensation technique inbuilt into that if needed to be. 



Now how do we get the equation for the coupled system? So the coupled system equation is 
obtained by considering the compatibility of displacements at the interface which demanded 
UCA must be equal to UCB, and similarly equilibrium of forces at the interface requires that 
some this FCA + FCB must be equal to 0, so if we use these conditions I get this method, so 
this is the built-up structural matrix, I mean for the built-up structure, this is a mass matrix, and 
the stiffness matrix. Now the built-up structure can now be analyzed using these assembled 
matrices, the size of assembled structural matrices will be NA + NB – NC, that is cross this, I 
mean this is the size of a vector displacement vector, now this method is well suited if 
subsystems are studied using a finite element analysis if you have access to all these matrices 
you can easily construct this matrices for the built-up structure.
Now I have illustrated this with respect to 2 subsystems, but it can be extended to a built-up 
structure having more than two subsystems then the extension is fairly straightforward. 



Now I come to the other class of methods that is the so called modal coupling method, we will 
start with fixed interface method that is also known as component mode synthesis is one of the 
well-known methods, so we will again start with the equation for subsystem A, and we will 
partition the degrees of freedom as interior and coupling degrees of freedom and this equation 
is obtained. 
Now I will denote this NA – NC as NIA, NI superscript A, now we begin by assuming that at 
the interfaces the degrees of freedom are made 0 that means the structure is fixed at the 
coupling point, okay. Then the governing equation therefore UC will be 0, so the governing 
equation will be UIA double dot + this KIIA UIA = 0, so this is 0 and this is 0 and this force is 
0. Now we can do Eigen solution, Eigenvalue analysis associated with this equation and 
determine the system natural frequencies and mode shapes, okay. Now how do we, at the 
interface structure of course is not fixed so we need to correct for that, so in any case the using 



the modal matrix of the fixed interface system I obtained this representation in terms of these 
modal coordinates denoted as PKA(t), the subscript K here denotes that I am not retaining all 
the modes, I am retaining only K modes, so thereby I am already achieving a model reduction, 
okay. 
Now we release the degrees of freedom at the interface, this analysis has been done with 
degrees of freedom fixed, now once I release that UC of A(t) is not equal to 0, now we make an 
assumption now that UC of A(t) is related to interior degrees of freedom through relations that 
are strictly valid under static condensation, that is we use static condensation to eliminate 
integral degrees of freedom in terms of coupling degrees of freedom, so by that I get this is the 
equation, I get integral degrees of freedom in terms of coupling degrees of freedom using this 
relation. 
Now what I suggest, what we do is the solution is taken to be the sum of, this is a solution that 
we assume, the unknowns that we take are the modes corresponding to the fixed interface 
degrees of freedom, a fixed interface system and the coupling degrees of freedom obtained 
through a condensation, and this is a transformation matrix, is that okay? Now this is how we 
represent the assumed displacement, now we return to the governing equation and make this 



substitution, so once I substitute this I will pre multiply by sai KA transpose and I get this 
equation, and this leads to the definition of reduced, mass, and reduced structural matrices, so if
we now consider this matrix transpose M into this and analyze this a bit we get terms involving 
phi IKA transpose into MIIA into phi IKA which I know is a diagonal matrix, because this is a 
modal matrix of fixed interface system whose mass matrix is MII of A, so making some of 
these simplifications we get the mass matrix for the substructure to be this. 



Similarly this is the mass matrix, if we can work through this I get I mean if we multiply all this
and work through this I get the elements of the mass matrix for subsystem A in this form. Now 
similarly the stiffness matrix we can work through, and here if we see here the Eigenvectors 
here this phi is the Eigenvector and it is orthogonal, and it is mass normalized, therefore phi 
transpose K phi is the square of the natural frequency, so at the matrix level we get phi IKA 



transpose KIIA into phi IKA to be a this lambda matrix, which is the diagonal matrix of natural 
frequencies of subsystem A in that fixed interface form, so these are the matrices that I get for 
substructure A, so this is the equation for substructure A at this stage in terms of, let me recall 



once again the coupling degrees of freedom and PKA(t) are the modes emerging from fixed 
interface model for the substructure, so these together constitute the state vector.
Similarly for system B, subsystem B I can derive a similar equation, okay. Now I have to 
generate the equation for the coupled system these are equations for subsystem A and B derived
independent of each other. Now I will impose this compatibility relations and this equilibrium 
equation, and I get the combined equation to be of this form where, for the combined system 
the state vector consists of normal modes of subsystem A, normal modes of subsystem B in the 
fixed interface format and the coupling degrees of freedom. The coupling degrees of freedom 
are equal by this compatibility requirement, so this is the state vector, and this is the mass 
matrix, and this is the stiffness matrix, stiffness matrix itself is in terms of the subsystem natural
frequencies in the fixed interface form and the matrix at the, these matrices which we have 
derived. Now this is an equation that we need to analyze to produce the Eigen solutions for the 
built-up structure. 



Now we can make some observations, this method requires a knowledge of structural matrices 
of substructures, it is not suited for experimental studies since in experimental studies such 
matrices would not be easily available, what would be available will be a set of natural 
frequencies and mode shapes if you do an experiment. Now also creating fixed interfaces may 
not be feasible in an experimental substructure, okay so you can't weld a member and so on and
so forth, so this method is suited for studies where substructures are studied using finite element
method, but as I said one of the motivations for studying substructuring methods at least in the 
current scenario where computational power is fairly generously available, the reduction of the 
model in terms of degrees of freedom may or may not be that crucial but it becomes indeed 
crucial if some of the substructures are studied experimentally and they need to be combined 
with other substructures which may be modeled mathematically, okay and also this kind of 
reduction in computational efforts become relevant if you are doing uncertainty analysis where 
this, running of these programs forms a part of a Monte Carlo simulation run, where you need 
to repeatedly run this programs for, you know, nominally identical values of model parameters, 
so these methods remain relevant in such situations. 



Now we'll move on to the next method known as free interface modal coupling method, here 
the objective is to produce a solution strategy where we bank on the Eigen solutions of 
substructures to construct the coupling matrices and the modal for the coupled system, so how 
does that work? So here again let us consider the equation for subsystem A, I write it in this 
form, and as before we will partition the degrees of freedom and to interior and coupling 
degrees of freedom and that induces partitioning of structural matrices and the forcing vector as
shown here. Now the sizes are as shown here, we can perform now the Eigenvalue analysis 
corresponding to this system, I am not putting UCA to be 0 now, I am including it in the model. 
Now I will perform the Eigenvalue analysis and determine NA x NA modal matrix and diagonal
matrix of Eigenvalues, okay, and I will make this modal matrix to be mass normalized so that 
phi transpose M phi is I, and phi transpose K phi becomes lambda for the subsystem A. 
Now if I were to consider KA term expansion for the response, this is a full NA by NA matrix, 
but I may not include all the modes in a given calculation so out of capital N modes that are 
available I may retain K modes, so I will say that I am going to write UA(t) as phi KA PKA(t), 
where PKA(t) are the generalized coordinates. The subscript K here denotes the fact that I am 
retaining only K terms in the expansion, and KA means I'm talking about subsystem A. 
Now I will now partition, U has been partitioned as interior and coupling degrees of freedom, 
and just as it has induced partitioning of stiffness and mass matrices it also induces a 
partitioning of modal matrix that is written here. Now we substitute this in, this equation and 
use the orthogonality relation I get the equation for subsystem A in this form. 



Similarly for subsystem B using the same logic I will get this equation, so just to recall I mean 
just to emphasize this capital Lambda is the natural frequencies of subsystem B, and the 
interface is kept free, and this is the corresponding modal matrix. Now the combined equation 
for the 2 systems is written in this form. Now we need to now impose the conditions that 
UCA(t) is UCB(t), so how do I get that? That is not implicit here, so this PKA and PKB contain
information on coupling degrees of freedom, in some sense this equation need to be now 
constrained by this additional requirement, how do we do that? So UCA(t) is given by this in 
terms of degrees of freedom, generalized degrees of freedom PKA(t) and the modal matrix, so 
these should be equal, so this produces a constraint equation as shown here SP = 0, where S is 
the modal matrix corresponding to the coupling degrees of freedom for subsystem A and similar
entity for subsystem B. 
Now what I will do is, this combined vector P, I will now partition into PD and PI, this 
partitioning is done from a mathematical perspective, and I will select D degrees of freedom so 
that S, this matrix S gets partitioned into SD and SI, and SD remains as a matrix that can be 
inverted, it is a nonsingular matrix that can be inverted, consequently I can retain, I mean write 
PD as in terms of PI as – SD inverse SI PI, so this is a crucial step here. Now once I do this I



 can write the vector P which is PD PI in this form retaining only PI, and this matrix I denote as 
sai, that is sai is - SD inverse SI by I. Now noting that this equation is satisfied I get now the 
coupled equation in this form, this is purely in terms of PI which degrees of freedom which I 
am retaining, so I will pre multiply by sai transpose and carry out this operation, and I get the 
equation for the built up system M is sai transpose sai, K is sai transpose this into sai, Q is PI, 
FQ is this. 



Now since no forces are taken to act at the interface I take the equation to be MQ double dot + 



KQ = 0, so to summarize I got the mass matrix as sai transpose sai, K as sai transpose this, and 
sai itself as this, and this S etcetera is as shown here. Now what needs to be noted here is that 
these matrices M and K are now derived purely in terms of the Eigen solutions of substructure 
A and B in the free interface form, you don't need the structural matrices for A and B while 
implementing this method, the Eigen solutions for one or more of the substructure can be 
experimentally established suppose A can be an finite element model, B can be an experimental 
model, or both the A and B can be experimental models, of course A and B can also be finite 
element models, so the knowledge of structural matrices for the substructures is not directly 
needed, if you have it so well and good, but it is not needed, so this is the method known as 
component mode synthesis. 



Now suppose we are considering a situation where 2 substructures are coupled elastically, that 
means there is one more coupling element, the equation for coupled system needs to be 
modified now to take into account this feature, so if you do free interface method the coupling 
element will not be easily represented. Now the compatibility condition in this case is no longer
applicable, by this what I mean, suppose I have a system, this is one substructure, and this is 
another substructure, and this is a coupling element, this is A, and this is B, so I am talking 
about how to deal with this elastic coupling, this UCA(t) will not be equal to UB(t) because 
there is an elastic coupling between the two, okay, so it's not rigidly connected, so this 
displacement can be different from this. 
Now on the other hand this equation remains valid, so what I do now is I will define a coupling 
matrix KCPL, let that represent the stiffness matrix such that at the coupling the displacements 
and the forces are related through this coupling matrix, with KCPL being this equal to this. 
Now the equation for coupled system needs to be modified to take into account this coupling, 



the compatibility condition is no longer applicable. Now you consider this and we get this, now 
UA(t) as before I will express in terms of this, and UB(t) in terms of this, so this is a 
representation I have. Now this forcing is related through to these degrees of freedom, through 
this relation, now consequently if you substitute these relations into the governing equation, I 



get equation of this form, and the final equation of motion, this is for system A and B together, 
and the final equation for the built-up system is obtained like this where the stiffness matrix for 
the coupled system is modified through these additional matrices, so this helps in dealing with 
situations where there is a elastic coupling between subsystems. 



Now there are few other strategies where, I mean strategies become possible when in certain 
class of problems, for example if the structure has certain planes of symmetry, for example if 
you have a 1 span beam like this, can I construct the solution of this structure by analyzing a 
smaller problem, okay, so instead of solving the larger problem A, we will solve 2 problems B 
and C, and synthesize the solution of this problem, so what I do is I cut the structure here and I 
introduce this boundary condition, this is a roller and a hinge. So now if you look at mode 



shapes of this simply supported beam all the modes 1, 3, 5 etcetera are symmetric about X = 
L/2, so these modes can be simulated by considering this situation. The displacement here you 
can see this is 0 is not 0, okay you followed I mean, right this is first mode, this is third mode, 
this is for fifth mode, and so on and so forth. So this can be simulated this, symmetric modes 
can be simulated like this, the even modes that is 2, 4, 6 etcetera are anti-symmetric, this is L/2 



you can see here this mode shape is this and this is anti-symmetric, these anti-symmetric modes
can be synthesized by considering this problem, so what I can do is I can analyze 2 small 
problems okay and find out mode shapes in for this and this, and by suitably using planes of 
symmetry I can construct the mode shape for this built up system, all the symmetric modes can 
be obtained from this, anti-symmetric modes can be obtained from this, and complete system 
modes can be thus constructed without solving a larger problem. 



Now this is again illustrated here, suppose you have a multi-story building frame, this frame 
may require say 500 degrees of freedom to analyze the problem, so what I will do is, I will 
utilize the plane of symmetry which is this red line, and analyze 2 problems okay, so this will 
have 250 degrees of freedom, this is 250 degrees of freedom, so 2 such smaller problems will 
be solved and I will synthesize the solution for the built up system, okay that means instead of 
solving a larger problem A we solve 2 smaller problems B and C, and synthesize a solution for 
the larger problem, so this is another way of utilizing certain problem features to achieve model
reduction, of course this is clearly possible only when such symmetries exist in the given 
structure. 



Now suppose the symmetric structure is loaded asymmetrically, what happens, okay so that is 
not a problem, for example if you consider a simply supported beam loaded symmetrically by a 
force P(t), I will now consider 2 problems and this plus, so if you add these 2 you get solution 
for this problem. Now each of these problems can be handled by solving these 2 problems, 
okay, so this is you know advantage of using symmetric, so in principle can be used even when 
if structure is of course symmetric about X = L/2 in terms of boundary condition, geometry 
etcetera, but it is asymmetrically loaded, okay, so still we can utilize symmetry by following 
these arguments/ 



We will now return to the earlier, one of the themes that we have been pursuing that is 
development of structural matrices, so we considered a few lectures before, what we achieved 



was we developed the mass and stiffness matrices for this 3D generalized, 3-dimensional beam 
with the 2 nodes and 6 degrees of freedom per mode, okay, so how did we do that? We 
considered this structure to you know the displacement fields that we assumed was axial 
deformation, deformation in plane, deformation out of plane, and the rotation about the 
longitudinal axis, so we accounted for all the energies, so this is energy due to axial 



deformation, due to twisting, this is bending about Z, bending about Y, and similarly we 
computed the kinetic energy due to axial deformation, twisting, bending about Z, and bending 
about Y, and using this we constructed the Lagrangian and we interpolated these field variable 
in terms of their nodal values for U and theta we use linear interpolation functions, and for V 
and W use cubic interpolation functions, and we derived the 12/12 structural matrices. 
Now we wish to now carry this exercise further, beyond 3D element now we can think of 
continuum problems, so in continuum problems we can think of plane, 2 dimensional problems 
first of all, so in 2 dimensional problems we have plane stress, plane strain, and axisymmetric 
problems, so then we can consider 3 dimensional solids and then plate bending elements, and 
some discussion on shell elements, so the general template for achieving this is basically to 
write the appropriate equations for strain energy and kinetic energy, identify the field variables 
interpolate, and you know take an element, identify the nodes, and degrees of freedom, and 
develop the, represent the field variables using polynomials in terms of the nodal degrees of 
freedom, substitute into the Lagrange’s equation and derive the equation for the nodal degrees 
of freedom, and then question of coordinate transformation, assembling, imposition of 
boundary conditions, calculating external nodal forces, and thus deriving the final equilibrium 
equation will have to be done. Many of these steps we have already covered, the step beyond 
formulation of element level structural matrices has already been covered, okay, the problem of 
coordinate transformation, assembling of matrices, imposition of boundary conditions, 
computation of nodal forces and assembling all that has been earlier done, so to be able to 
extend that framework to more complicated problems we need to now expand our repertory of 
elements, so with that in mind in the next few lectures we will start discussing about some of 



these elements, and we'll begin by talking about 2-dimensional element, namely plane stress 
and plane strain elements.

Now in all this I'm assuming the structure behaves linearly, and material is isotropic and elastic,
elastic, isotropic we are also going to assume homogeneity within an element, so the governing 
equations we will quickly recall from 3 dimensional linear elasticity, the state of stress at any 
point X1, X2, X3 is at given by this tensor, and the state of strain is given by this tensor, and the
displacement fields U1, U2, U3 all these quantities are functions of X1, X2, X3, and time, so a 
number of independent variables is 4, that is X1, X2, X3 and T, and number of dependent 
variables is 15, there are 6 stress components, 6 strain components, and 3 displacements, so 
how do we tackle this problem. So upon coordinate transformation the stresses obey this rule of
transformation, therefore second order tensors the displacement is a vector it follows this rule of
transformation, where T is the coordinate transformation matrix. 



Now we have 3 equilibrium equations which are given here, and this symmetry rho IJ = rho JI 
is assumed, that means we assume that there are no body moments acting on the system, so 
these are the 3 equilibrium equations. Similarly we have the 6 strain displacement relations as 
shown here, and as I said we are using basically linear models, so the strain displacement 



relation would be linear and we assume material is hookean and also isotropic, therefore the 
relationship between stress and strain there will be 6 constitutive laws relating stress and 
strains, and they are given here, there are 2 elastic constants E and nu which is Young’s 
modulus and person's ratio or lemma is constant and shear modulus, either we can express 
stress in terms of strains, or strain in terms of stresses. We can also use index notations, this I'm 
not going to do in this discussion, so for completeness I have mentioned here all these equations
can be written in short form in this way. There is an alternative notation where the stress instead



of being written as a matrix we write it as a vector 6 x 1 vector, this is the representation for 
stress, this is a representation for strain, and this is the matrix D that I will be needing in the 
formulation, and this 6 x 1 stress and strain matrices are related, for example stress is related to 
strain through this 6/6 matrix or strain is related to stress through this C tilde which is this, 
okay, so this is as I said material that obeys Hooke's law and which is isotropic. 



Now in terms of this matrix D the equilibrium equation can be written in this form, and this is 
the strain displacement relations, this is the constitutive law either these 2 represent constitutive
law, and by eliminating using these relations I can write for sigma C into epsilon I get this 
equation, and for epsilon I can write in terms of DU so I will get this equation, and this is the 
governing equation for displacement in terms of operator D and matrix C, so this is the equation
that we'll be solving. 



We also need to discuss about the energies in a 3 dimensional situation, what is the expression 
for energy? Now this can be explained by considering an infinitesimal element as shown here, 
and suppose if it is loaded you know if you consider this and only the axial stresses, the force 
on this phase is sigma XX into DY into DZ, and this force will deform the object, and therefore 
this force would have done some work on that deformation, and the question is what happens to
that work done? It is stored as strain energy in the system, so this is given by this integral sigma
XX into epsilon XX DX, this is the force and the elongation will be epsilon XX into DX, 
therefore this into this integrated or the entire volume will give us the total strain energy, so this
is total strain energy. Kinetic energy is given in terms of displacement U, velocity U dot V dot 
and W dot as shown here. 



Now we would like to simplify the problem of 3-dimensional elasticity, so as I said here we 
have 15 dependent variables, and we have 15 equations that is 3 equilibrium equations, 6 strain 
displacement relations, and 6 constitutive laws, so there are 15 equations, and 15 unknowns, 
now not all these 15 equations need to be solved for all situations, in some situations we can 
simplify. There are 2 aspects to this simplification, there are 4 independent variables X, Y, Z, 
and T, and there are 15 dependent variables, we can cut down on number of dependent variables
and also we can cut down on the dependence of this variables on X, Y, Z, and T by you know 
suitable simplification, if there is no dynamics the T becomes irrelevant so it will be 
independent variables will be, 3 instead of 4, but can we use certain features of the problem and
reduce these quantities further, so one such approach is the so-called plane stress model. So to 
consider a plane stress model in XY plane, we consider a continuum as shown here and the 
basic problem is, the red lines show the surface traction, there is a body force acting on this, and
we want to analyze this continuum would be supported in some manner, and all that will be 
specified given the geometry of this continuum the way it is supported, and the surface 
tractions, and the body forces, and the constitutive law of the material which makes this 
continuum, what are the stresses, strains, and displacements, that is a problem we need to solve.
Now the specification of geometry for plane stress model we restrict our attention to prismatic 
body, okay, so this is what is meant prismatic body along the Z axis the cross sectional area, the 
cross sectional property do not change, and lateral dimensions are much greater than thickness, 
so this thickness is smaller compared to the lateral dimensions, this is the restriction on 
geometry. 



How about loads? The loads are only in the XY plane, and there is no body force in the Z 
direction, the loads can be surface tractions and body forces but they are restricted only to lie in 
the XY plane, so the surface Z equal to this thickness I have taken it as 2H, so Z = H, and Z = 
-H is free from surface tractions, so this top surface is free from surface tractions, so for these 
class of problems we can make a simplification to the 3-dimensional elasticity problem and that
simplification is known as plane stress approximation. How does it work? Now let’s consider 

the surface Z = +H and – H and as we said there are no surface tractions on that, therefore the 
stresses acting on those planes namely sigma ZZ, sigma ZX, and sigma ZY must be 0, at Z = 
plus minus H, for in for all X and Y. And on omega that means on this surface sigma XX, sigma
YY and Sigma XY are independent of Z, because loading doesn't change with respect to Z, the 
loading is uniform across thickness, so that is independent of Z, in developing plane stress 
model what we do is we assume that these conditions prevail not just at the surface but in the 
interior also that means we interpolate these features into the interior by that what I mean 
strictly speaking sigma ZZ is 0 only on Z = plus minus H, but I assume that sigma ZZ is 0 
throughout, and sigma ZX similarly is 0 only on these 2 outer surfaces, but I assume that it is 0 
for all X, Y, Z. Similarly sigma XX and sigma YY and sigma XY these forces do not change 
with respect to Z on omega, but what I assume is they don't change anywhere in the interior as 
well, so this is the approximation. 



Now therefore at the end of this I have now certain quantities have become 0, and certain 
quantities have become independent of Z. Now let's see whether equilibrium equation is 
satisfied, so you go to the equilibrium equation right there 3 equilibrium equations you can see 
here the quantities that are written in the red are zeros as per our model, this is 0, so this drops 
off, this drops off, sigma XZ is 0 this drops off, YZ is 0 this drops off, ZZ is 0 this drops off, 



and Z is 0 there is no body force that drops off so that is 0, so the remaining equations are the 
equilibrium equations which I need to consider further.
In the constitutive law again I have assumed stresses now I have to figure out what these strains
are, so this is a relation between stress and strain but these quantities shown in red are 0, so 
once I expand I get epsilon XX and epsilon ZZ to be this, and epsilon XY is given this, but 
epsilon YZ and XZ become 0, so 2 of the strain components becomes 0, because certain 
stresses are 0. So at the end of it the stress matrix with all nonzero elements and dependencies is



shown here, the original stress matrix is function of X, Y, Z it has 6 independent components, 
now this is 0 and these two are 0, so these are 0 as per our model, and these quantities are 
independent of Z, the nonzero strain components are shown here, so epsilon XZ is 0, YZ is 0, 
but epsilon ZZ will be 0. So now how many, come from stress to strain, now how do I get 
displacement? I have to use strain displacement relation, so the strain displacement relation 
epsilon XX is this, epsilon YY is this, epsilon ZZ is this, and epsilon XY is related to this. Now 
epsilon YZ I have got it to be 0, and epsilon XZ I have got it to be 0, therefore these quantities 
need to be equal to 0, but these will not be able to honor and we simply ignore these relations in
further development, and that is where the approximations coming.



So now there are 10 unknowns that we are considering sigma XX, sigma YY, sigma XY and 
epsilon XX, epsilon YY, epsilon ZZ, and the U, V, W are the unknown displacement, so what 
are the equations? I have 2 equilibrium equations, 4 stress-strain relations, and 4 strain 
displacement relations there are 10 equations, so this is the simplification that we have 
achieved. What has happened? We have achieved a reduction in number of unknowns from 15 
to 10, reduction in number of independent spatial coordinates so this X ,Y, Z becomes only XY 
and this because of the approximations in treatment of strain displacement relations is not an 
exact model, suppose if you substitute this into 3 dimensional equations of elasticity by that I 
mean suppose if you analyze the plane stress problem, and the solution that you obtain you 
substitute into the 3 dimensional equations of elasticity you will be able to satisfy equilibrium 
equations, constitutive laws, but you will have difficulty in satisfying certain compatibility 
relation, not all 6 compatibility equations will be satisfied, so that is one of the limitations of 
plane stress model.
Now in the next lecture what we will do is, we will consider another form of simplification that 
is known as plane strain mode, here the objective is again prismatic one of the example that we 
can give is that of a you know gravity dam subjected to hydrostatic force, so if this dam is in a 
valley like this we can assume that in this portion the dam cross section is prismatic, and the 
load doesn't change suppose this is the Z direction the load does not change in the Z direction. 
Now if at Z = 0, and Z = L if we assume that the dam is, the displacement W is 0 that means it 
is held fixed, then in plane strain model we deal with this type of situations where we again 
consider prismatic objects where the thickness, this is much larger than the lateral dimension it 
is the opposite of plane stress model, where in the plane stress model thickness was small in 
relation to the lateral dimension, whereas here it will be the opposite. Now the way we proceed 



is as follows now Z is 0 at W is 0 at Z = 0, and W is 0 at Z = L, now if you consider a mid plane
the object is prismatic therefore it is symmetric about this mid plane, and the way the boundary 
conditions are applied on displacement that is also symmetric therefore if W is 0 here and W is 
0 here, W must be 0 here, because load hasn't changed, geometry has not changed, boundary 
conditions have not changed, so this is 0.
Now next what I do is I consider a subsection which is half of this dam so I’ll consider the 
quarter point. Now again the same logic at Z = 0 and Z = L/2, W is 0. Now the object is again 
symmetric about X = L/4, Z = L/4, boundary conditions are the same but loading is the same 
etcetera, etcetera, I get W = 0, so what happens is in this model by repeatedly using this 
argument we postulate that W(X,Y,Z) is 0. And next we assume that U(X,Y,Z) is function of 
U(X,Y) and similarly V(X,Y,Z) is V(XY) so this is a displacement field we will assume, W is 0 
U is function of X and Y, V is a function of X and Y, we develop this model by considering 

from this we’ll go to now from displacement we go to strain, by using strain displacement 
relations and from this I use constitutive relations and come to stresses, so this model is known 
as plane strain model. 
So in the next lecture we will consider the mathematical theory behind plane strain model and 
after having covered the two back ground to the theory of these two models, we will start 
developing finite element models for plane stress and plane strain continue, so we will take up 
that problem in the next class. 
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