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Towards the end of the previous lecture we started talking about issues related to model
reduction and sub-structuring schemes. So we’ll continue with this discussion now, so we’ll



Model reduction and substructuring techniques

eTreatment of large scale problems

eD¢aling with situations when the results from expenments
need to be discussed in comyunction with predictions from mathemancal models

Mismatch of dof-s in measurement and computational models.

eDfferent parts of a structure are developed by different teams (possibly
by using both expenmental and computational tools) and model for the

built-up structure needs to be developed 1n terms of constitutent ‘substructures’

eHybnd simulations: here we combine both expenmental and computational

rﬁuﬂ;‘ll’[nr the same structure. A part of the structure 15 studied expenmentally and

al f the structure computationally

-

quickly recall where do we need you know, model reduction and sub-structuring’s. Actually,
the need for using model reduction and sub-structuring arises in several context, one is for
example in treating very large scale problems or in dealing with situations when the results
from experiments need to be discussed in congestion with prediction from mathematical
models, that means for a given structure we have made both finite element model as well as we
have done some experimental investigations and we want to now reconcile the two, and this is
an essential step in problems of finite element model updating, and in such situations the
question of model reduction arises, because of mismatched between degrees of freedom in
measurement and computational models, typically in a computational model the size of the, the
number of degrees of freedom can be very large and for every degree of freedom in the
computational model we may not have a sensor for instance it may not be feasible to measure
degrees of freedom at interior nodes in a 3-dimensional structure or measurement of rotations
and so on and so forth. So the number of degrees of freedom that we'll be able to measure in an
experimental work will typically be much less than the degrees of freedom in a finite element
model.

Another situation is when different parts of a structure are developed by different teams,
possibly by using both experimental and computational tools, and based on this we need to
construct the model for built up structures, so this typically happens in applications such as
space applications and automotive applications, and this could also occur in problems of
secondary systems in civil engineering applications. There is a modern testing strategy known
as hybrid simulations, where we combine both experimental and computational models for the
same structure, so what we do is a part of the structure is studied experimentally and a part of



the structure computationally, and we want to in some way couple these two disparate studies
and arrive at certain conclusions on global behavior of the complete structure.

Problem of model reduction

Consider a V' dol FE model for a linear system govemed by

MY +CX + KX =F(1):X(0)=X & X(0)=X

he objective of model reduction 1s to replace the above V' dof system
by an equivalent 2 dof svstem (n< V)

MX +CX_+K X _=F/(r)

W .C K, = Reduced nxn structural matrices

X =nx]vector of dof-s which has been retained in the reduced model

In all the model reduction techmques, the displacement vector X'(r)
A1s taken to be of the form
7
% i X_Ir) X_(1):n=] master dot-5

)

XAl X () AN =n)x] slave dof-s
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So let us start with discussion on problem of model reduction, so we will be limiting our
attention to linear time-invariant vibrating systems, so a typical finite element model for a linear
system will be of this form MX double dot + CX dot + KX = F(t) and certain specified initial
conditions, this is an end product of making finite element model as you have seen in previous
lectures.

The objective of model reduction is to replace this above this end degree of freedom system by
an equivalent lowercase n degree of freedom system where the reduced degree of freedom is
much less than the capital N degrees of freedom here, so for the reduced system the equation
will be again of the form MR XM double dot + CR XM dot + KR XM is FR(t), the subscript R
here refers to reduced model, whereas the subscript M, I will shortly come to that, this is the
vector of degrees of freedom which have been retained in the reduced model, so in the original
model what we do is the degree of freedom is partitioned into two sets, one set is called master
degrees of freedom, the other set is called slave degrees of freedom, so this subscript M here
refers to the master degrees of freedom which have been retained in the reduced model. The
slave degrees of freedom XS(t) have been eliminated from this model and a reduced model of
this type has been arrived at, so the size of the master degree of freedom will be lower case n
cross 1, and slave degrees sorry, master degrees of freedom, slave degrees of freedom will be N
— N cross 1 vector, XS(t) is a N — N cross 1 vector.



We represent
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Now in all, there are several methods for model reduction and in all the alternative method
there is a generic form to the problem of model reduction, so what we do is X(t) is written as
partitioned as already I mentioned as master and slave, and this we take it to the, this X(t) is
taken to be related to XM(t) through a transformation matrix capital Sai, so XM is lowercase n
cross 1, and capital Sai therefore will be M cross N transformation matrix, so we can substitute
this into the governing equation we get the equation at this stage in this form, and if you pre
multiply by sai transpose I get equation of this kind, and I call this MR which is sai transpose M
sai as a reduced mass matrix, clearly if you take transpose of this it will be a since capital M is
symmetric this MR would also be symmetric. Similarly we define reduced damping matrix, and
reduced stiffness matrix, we call this quantity FR(t) as sai transpose F(t) as a reduced force
vector, so once this is achieved we can analyze this equation using any of the tools that we

already developed, but therefore the question now remains how do we select this transformation
matrix?



The onginal model would have V-pairs of natural frequencies and
eigenvectors. The reduced model would have only n=cigenpairs

Should these be equivalem?

Should the FRF-s over a given frequency range of the reduced svstem

Serve as acceptable approximanons to the corresponding FRF-s of the
1 1 i e

onginal system?

Simularly, should transient response to dynamic exctations for the reduced

system serve as acceptable approximation to the response of the onginal system?
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Now there could be different criteria based on which we may like to select this transformation
matrix, for example the original model would have capital N number of natural frequencies and
mode shapes, on the other hand the reduced model will have only lowercase n Eigen pairs, now
suppose I have a 100 degrees of freedom system and I reduce it to a 10 degrees of freedom
system, the 100 degrees of freedom system will have 100 natural frequencies and 100/100
modal matrix whereas the reduced model will have 10 natural frequencies and 10/10 model
matrix, these 10 natural frequencies of the reduced model should they be equal to any of these
100 natural frequencies of the larger model, that could be one of the criteria, or should the
frequency response function over a given frequency range of the reduced system serve as an
acceptable approximation to the corresponding FRF’s of the original system, so here we are
matching response, here we are matching only the natural frequency, so if we match FRF’s the
issue is related to mode shapes as well as damping models would be allowed for.

Similarly should transient response to dynamic excitation for the reduced system serve as an
acceptable approximation to the response of the original system, so we can set forth different
objectives depending on which one is of crucial importance to a given situation, we have to
suitably design this transformation matrix.




Remark: Model expansion and model reduction

Consider a structural system that 1s being studied both expenmentally and
computationally

Let n= number of measured dof=s.

Let V= dofs in the computational model

Iypically, N > n.

While reconciling the predictions from the computational model

with measured responses in the expenmental model, we could either

Reduce the size of the computatonal model so that only the dofss which

are common 1o both the expenimental and computational models are retained
i

E:and the size of the expenmental model so that the dot-s

in¥0th expenimental and computational models match.

" i
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Now before we proceed further we can just as there is a model reduction, there is a counter you
know feature that is model expansion, for example consider a structural system that is being
studied both experimentally and computationally, so this n is a number of major degrees of
freedom, whereas capital N is a degrees of freedom in the computational model, and this
typically far exceeds the measured degrees of freedom in the experimental model. So now when
we reconcile either I can reduce my computational model to match the number of measured
DOF’s, so let me go back to again the example of capital N being 100 and lowercase n being
10, so what I can do is from a 100 degree of freedom computational model I can illuminate 90
degrees of freedom and obtain a model with 10 degrees of freedom and the degrees of freedom
can be chosen to match what exactly I have measured.

On the other hand we could also expand the measurement model, that means I have 10 degrees
of freedom model here I will augment it by additional 90 degrees of freedom, so that
augmentation is essentially a transformation, so if I do that then instead of calling it as model
reduction, it would become model expansion, because a smaller model is now replaced by a
larger model, so the transformation that we discuss can be viewed from both these perspectives.
So that is to say reduce the size of the computational model so that only the degrees of freedom
which are common to both experimental and computational models are retained, or
alternatively expand the size of the experimental model so that the degrees of freedom in both
experimental and computational model match.



Three techniques

« Static condensation (Guyan'’s reduction)
* Dynamic condensation

« System equivalent reduction expansion
process

®

Now we will discuss 3 alternative techniques for model reduction, and the names of these
techniques are static condensation method, dynamic condensation, and there is what is known

as system equivalent reduction expansion process. So [ will just run through the logic of these 3
model reduction schemes and we will discuss the relative merits and demerits.



Guyan's reduction technique

Y ' P X
X(r)= =YX, (1)
( Y R

M. M_ | X C. \ K_ KX F (1)
M, M| X lc, ¢ llx K. K X 0

\ssumption
«Slave dofs carry no nodal forces

Idea: Relate slave dofs to the master dofs through relations which are vahid

under static condions. That 15 use the relation

{Q K. |(x.| [F.(n)
1' K 1 X| | oy

to eliminate slave dots in terms ot master dots ’

So-called static condensation is also called Guyan's reduction technique, so what we are
looking for? We have this global degrees of, the degrees of freedom for the larger system
partitioned as master and slaves, and [ want to now relate X(t) to the masters through this
transformation matrix capital Sai, so this partitioning of states into master and slave induces a
partition on the structural matrices and I can write the equation in this form, so here we assume
that the slave degrees of freedom do not carry any external force, okay, that’s an assumption.
Now the idea in static condensation is to relate the master and slave degrees of freedom through
a relation which is valid only for under static conditions, that means to establish relationship
between XM and XS I will consider the equilibrium equation, this equation I will discard the
inertial and damping terms and write only the static equilibrium equation. So using this
equation now I will be able to establish a relationship between XM and XS, so if this is what
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we are going to accept as a relationship between master and slaves the first of this equation
gives KMM XM + KMS XS is FM(t), that we are not considering.

The second equation is of interest to us KSM into XM + KSS into XS is 0, so by rearranging
the terms I get XS as - KSS inverse KSM XM, so this is a relation between slave and master. So
the transformation matrix therefore can be written as I into, sorry I and - KSSs inverse KSN, so
this will be lowercase n by n, this will be capital N - N across N - N square matrix, so this is the
sai matrix. Now we can also look at now the expression for kinetic energy and potential energy
in the original system, the expression for kinetic energy is 1/2 X dot transpose MX dot, so X
I’m writing it as sai into XM, so if I make that substitution for X dot I will write sai XM dot and
for X dot transpose it will be XM dot transpose sai transpose. So if [ now call this quantity sai
transpose M sai as MR, I get the expression for kinetic energy in the reduced model as shown
here, so this MR is now the reduced mass matrix.

Similarly the potential energy I can write 1/2 X transpose KX so this again 1/2 sai XM here,
and XM transpose, sai transpose here, and I get a reduced stiffness matrix KR which is sai
transpose K sai. Now therefore the governing equation, I can now write for the reduced system
as MR XM double dot + CR XM dot + KR XM = FR(t), so this equation can now be analyzed,
this is the reduced model that we are looking for. So what are the features of this? So we can
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work out the details of the MR and KR matrices in a more explicit manner, so sai transpose M
sai will give me this, this is sai transpose, this is this, and if I expand this I will get now the
reduced mass matrix in this form, you must notice here that the reduced mass matrix is now a
function of the stiffness matrices of the original system, this is unusual because the inertial,
kinetic energy in the reduced system is now function of stiffness characteristics, okay, that's an
artifice induced because of the remodeled reduction that we have done. Similarly the reduced

stiffness matrix is sai transpose K sai and this by rearranging the terms I get this as the reduced
stiffness matrix.

-l\. l.lf"R’l}J

Remarks
¢The slave dofs are related 1o the master dofs through relations that are
stnictly vahd for static situations and hence this method 15 also known
as method of static condensation
#The partitioning of dofs as being masters and slaves has to be done by the analyst
bearing in mind the following pomnts:
Slave dofs must contnbute hitle to kinetic energy
Select slave dofs such that the lowest eigenvalue of the equation K _a = AM _«a
has the highest value t
Select slave dofs in regions of high stiffness and low mass

Ensure that terms of M _ are small and terms of K are large

. . : K
'-(fD‘w dofs which vield the larger values of the ratio y o be selected as slaves
i .
PTEN

M

1"
Okay, now we can make few observations, now the slave degrees of freedom are related to the
master degrees of freedom through relations that are strictly valid for static situations, and



hence this method is known as method of static condensation. The partitioning of degrees of
freedom as being masters and slaves has to be done by analyst bearing in mind this assumption,
that master and slaves are connected to each other through relations which has strictly valid
only under static conditions so what is the consequence of that? The method is likely to perform
better if slave degrees of freedom contribute little to the kinetic energy, so in regions of low
mass and high stiffness, you should identify the slave degrees of freedom. The select slave
degrees of freedom such that the lowest Eigenvalue of the equation KS is alpha = lambda MSS
alpha has the highest Eigenvalue, that means between two competing choices for slave degrees
of freedom you will get two different KSS and MSS, you perform the Eigenvalue analysis for
the two competing choices, and between the two the one which has, the one in which the lowest
Eigenvalue is higher is a better choice, so I will illustrate that with an example, this again is a
consequence of the basic fact that we are only, they’re relating the master and slave only
through static relations. So as I was telling select slave degrees of freedom in regions of high
stiffness and low mass.

Now we to ensure that terms of MSS are small in, and in terms of KSS are last that is I am
reiterating the same statement in a slightly different way, yet another way of saying similar
thing is those degrees of freedom which yield the larger value for this ratio can be selected as
slaves, so you can alter the all the degrees of freedom based on this ratio and select as many
slaves as this you needed by assessing, by comparing this ratio.

Remarks (continued)

* [ he emror due to model reduction increases with increases m driving frequencies
of mterest

¢Anv mitial conditions specified on slave dofs would not be satisfied

* [he static condensation does not reproduce any of the ongmal natural frequencies

of the onginal analyuical model and all the natural frequencies of the reduced models

would be higher than those of the full model

i
{
"

Now it's clear that the error due to model reduction increases with increases in driving
frequencies of interest, that is because with increase in driving frequencies the kinetic energy
goes on increasing and we can't ignore mass, a mass which is small at low frequency will
contribute significantly to kinetic energy at a higher frequency therefore the assumption will
start breaking down. Now any initial condition specified on slave degrees of freedom would not
be satisfied, especially the velocity degrees of freedom and things like, even displacement
degrees of freedom because we're even slave is made to you know forcefully related to the
master and the initial condition of slave cannot be accommodated in the further modeling work.
The static condensation does not reproduce any of the original natural frequencies of the

L]
i



original analytical model, and all the natural frequencies of the reduced models would be higher
than those of the full model.

Now again let me go back to the example of a bigger model with 100 degrees of freedom and a
reduced model of 10 degrees of freedom. The reduced model if you compute the 10 natural
frequencies for the reduced model, these frequencies need not agree with any of the 100 natural
frequencies of the original system, there is no guarantee that is bound to happen if you follow
this procedure.

Numerical example

I

So we can try to understand this through a numerical example, so let’s consider a simple
example having 6 degrees of freedom with springs as shown here, and we'll assume stiffness is
1000 newton per meter, and mass is 10 kg, so this is simple you know vibrating system, there
was the only thing of interest is this X1 and X6 are coupled so the stiffness matrix will have
certain you know of diagonal terms to reflect that, so this stiffness matrix, this is a stiffness
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matrix for the system as you can see there is a term here which reflects coupling between first
and this, the sixth mass, this mass and this mass, this is a mass matrix as one could expect, this
is a diagonal matrix since we are using lumped mass matrix, modeling, and you can do the
Eigenvalue analysis, you can find the, if you perform that the modal matrix comes out to be this
and this is the vector of natural frequencies expressed in radian per second, so let us say that
this is my larger model.



Statle condensation
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Now I want to achieve model reduction, okay by using static condensation, so to begin with I
can compute this ratio K(I,I)/M(L,I), now the ratios are shown here so let us consider for
purpose of illustration, two alternative choices for master and slave degrees of freedom, in each
case we will have, we will try to reduce the model to a 3 degree of freedom system, so in the
first case what I will take the master degrees as 1, 2, 3 and slave degrees as 4, 5, 6, now is ita
good choice, is it a deliberately bad choice because we want this ratio to be large for slaves, but
I’m forcing it do you know what should be ideally slave degrees of freedom, I am making them
as masters just to emphasize what would happen. Then I will perform this Eigenvalue analysis
KSS alpha = lambda into alpha, and these are the Eigenvalues.

Now the sai matrix turns out to be this and I can get the reduced mass and stiffness matrices and
get the Eigenvalue, Eigenvector matrix for the reduced system, and the 3 natural frequencies.
Now the 3 natural frequencies we are getting as 5.5, 19.7, and 22.07, so if you go here and see
this is 4.6, 13, 13, 19, 22, and 29, so we don't seem to be, we seem to be getting 2 frequencies in
this, for these 2 frequencies seem to be giving reasonable answers but the first 3 modes are not
captured well.



Static condensation
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Now let us know switch the options and I will make now 4, 5, 6 as masters and 1, 2, 3 as slaves,
this is what our recommendation you know suggests, that this is what we should be doing if you
are interested in producing a 3 degree of freedom model. Now let's again do this Eigenvalue
analysis and I get 290, 419 and 91, now the point I was making was the lowest Eigenvalue here
is 53.89, the lowest Eigenvalue here is 290 so between the two model the one which has higher
lowest Eigenvalue is the second model, because it is 290, this 290 is much larger than 53 so we
could expect that this will perform better. And in static condensation the reduced model should
typically represent the behavior of the system in low frequencies well, okay. Now the reduced
model looks like this and I get the 3 natural frequencies to be this, so we see here 4.6, 13.1,
15.14 so relatively speaking they seems to be you know a better, you know reduction has been
you know obtained through this choice of master and slaves. So at this stage we should notice
that in the reduced model the frequencies that I obtain do not match with any of the natural
frequencies of the global model.

Now the next question I should ask is suppose I demand, okay some frequency should match,
okay how to achieve that? So that takes us to the discussion on what is known as dynamic



Dynamic condensation technique
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condensation technique, so let’s consider for sake of discussion a harmonically driven
undamped system and this is our equation, and this we call it as dynamic stiffness matrix, this is
- omega square M + K this we encountered earlier, so the equilibrium equation in the frequency
domain is DX into F. So now what I do is I will again partition X into XM and XS and related
to, X is related to XM through this matrix. Now this partitioning induces this partitioning of the
dynamic stiffness matrix also as shown here. Now what I do here is, I will again assume the
slave degrees of freedom are not driven, so I can use the second equation here which is DSM
XM + DSS XS = 0 from which I get XS to be this, there is no approximation here, okay I am
not throwing out any term, so the transformation matrix that I am looking for is given by this.
Now this omega, okay is now a parameter in your model reduction, okay, so you’ve to make a
choice for this omega, that is in addition to making choices on which of the degrees of freedom
should be master and which should be slaves this reduction scheme also demands that you
should make a choice on omega, okay.
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Remarks

eln addimon to choosing slave and master dofs, here one also needs to

specifv the frequency @ at which the condensation has to be done.

r‘igh;thml Tl;l..ﬁ.l.] res the determination of inverse of the matnx | A - " M
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Now again we can do the same steps and obtain the reduced mass and stiffness matrices as
shown here, this is what I was saying in addition to choosing slave and master DOF’s here one
also need to specify the frequency omega at which the condensation has to be done. The
method requires the determination of inverse of this matrix see here this matrix needs to be
inverted. Again let me point out one more thing, the reduced mass matrix here, and the reduced
stiffness matrix here now depend on the mass stiffness and the driving frequency in the original
system, so these reduced matrices MR and KR you have to, they are not amenable for a direct
physical interpretation, okay, this inversion of the matrix can be computationally demanding so
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we could adopt some simplifications if they’re necessary, and while doing so we will also see
what is the relationship between dynamic condensation and static condensation. So if we
consider the inverse of this I will pull this KSS term outside, and I can write in this form, and
the inverse of product is, product of inverse in the reversed order, so this becomes this, and if
you use what is known as Neumann expansion, I can expand this matrix in this form, it's a
expansion with infinite number of terms, only few terms are shown here.
So if I now omit this higher order terms in omega and retain only the two terms, I get this as my
matrix, and if I instead of inverting the matrix now I can use this you know matrix, and this
method is called the improved reduction scheme, it's an improvement over static condensation
method , and it avoids the inversion of this matrix. If you are going to repeat this
calculation for different values of omega then this is a simpler approach, we can also of course
do something



Altematively | K - M can also be evaluated in terms

of the solution of the eigenvalue problem
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else we can formulate a Eigenvalue problem associated with KSS and MSS, and suppose if |
consider KSS alpha as lambda MSS alpha, and if phi is a matrix of eigenvectors and capital
Lambda be the diagonal matrix of Eigenvalues such that phi transpose MSS is phi, and this is
lambda, then if I consider the problem of inverting this I can consider the set of these equations,
and if [ make a transformation Y = phi U, where phi is this matrix of Eigenvectors and
substitute here, and use these orthogonality relations I will be able to show that this inverse is
nothing but this, and this is a diagonal matrix so it does not require inversion. So this phi can be
computed, see this I am computing phi there is no omega here, so the same phi can be used for
different omegas so that is the idea which affords simplification here.

A f-l'f-l.'.' Opos>v=0lA-o]| Op

K ~oM_ | =®|A-0]| O

20




Numerical example: dynamic condensation
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Now we will return to the example that we considered here the same example, I will again
follow the same choices of degrees of, master and slave degrees of freedom, but now what I
will do is I have no additional choice to make on driving frequencies, so I have made several
choices, so I have made 7 choices, in the first choice I take omega to be 4.61 which happens to
be the first natural frequency of the system, and I make from a 7 degree of freedom system I get
a 3 degree freedom system, so that 4.61 turns out to be the one of the Eigenvalues of the reduce
system, and there are two more frequencies. If omega has taken a 13, 13 happens to be, 13.09
happens to be one of the frequencies, the other two of course are not the natural frequency of
the system, so by selecting 13.71, I ensure that 13.71 is one of the natural frequencies of my
reduced model and so on and so forth. So in choice 1 this is what I get. In choice 2 that means



Numerical example : dynamic condensation
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f-" i o hoice of @ matters
. )mce 2 o Those natural frequencies which are close to @

All frequencies in rad/s are predicted well 2n

choice of master and slave degrees of freedom the same thing happens, but of course now the
frequencies other than the one that are in proximity of these numbers will be different from
what was there in model one, so the choice of omega do matter, and those natural frequencies
which are close to omega are predicted well that is the observation that we make here, so this
4.6, 13 these are the frequencies they are captured here, the 6 degree of freedom not 7 degree of
freedom, so there are 6 alternative models and each one works well in the neighborhood of the
frequency chosen, and that fact is independent of choice of master and slave degrees of
freedom, no matter which is master which is slave the fact that at omega, if you select omega =
19.93 the reduced model will have that as one of the frequencies in both the cases.



Remarks

en addition to chorce of master and slave dots, the chowce of @ also matters
¢ [hose natural frequencies which are close to @ are predicted well

eln a harmonic response analysis, @ can be chosen to be equal to the
dnving frequency

olf the FRF-s need to be traced over a frequency range, for every value

of dnving frequency, the condensation needs to be made separately
eExpected to lead 1o acceptable results 1f modes are well separated and

damping 1s light

O

So we can make few comments now, so in dynamic condensation, in addition to choice of
master slave DOF’s the choice of omega also matters, those natural frequencies which are close
to omega are predicted well. In a harmonic response analysis omega can be chosen to be equal
to the driving frequency, so if you are varying omega then computationally this form of, you
know the writing the transformation matrix in this form is advantageous, because you have to
do only one Eigenvalue analysis, and you need not have to invert the matrix, this matrix for
every omega.

If the FRF’s need to be traced over a frequency range, for every value of driving frequency the
condensation needs to be made separately. If omega is taken to match with the driving
frequency, that is the best option that you would have, because at least at the frequency where
you are driving that nearby natural frequencies are captured correctly in the reduced model, this
is expected to lead an acceptable results if modes are well separated and damping is light, okay,
that's very clear, because once you make a choice of omega, and you are driving a system
harmonically at that frequency the response contribution is dominated by a single mode, then
the method is likely to work well even for first response analysis.
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System equivalent reduction expansion process (SEREP)

ePreserves a collection of normal modes dunng the reduction process
eConsider a V' dof FE model for a inear vibranng systems.
eLet @ denote the V = p modal matnx that includes the first p modes

oAs before we partiion X into master and slave dofs

s induces the following partition on @

O
i
i
Sizes: P Nxp, @ _nup&O (N-n)xp
Assume: n > p.
g{Introduce a nx | vector of generahized coordinates Z(r)
'
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" ) X.(n)] |o
X(r) Zi(r)

LX (1) P

Now we can ask this question in dynamic condensation in the reduced model we are able to
capture only one mode correctly, so the next logical question that we can ask is can we retain a
subset of the natural the frequencies of the original system in the reduced model in an exact
manner, okay, suppose in 100 degree freedom system there will be 100 natural frequencies and
if I am looking at reduced model with 10 degrees of freedom, the reduced model will have 10
natural frequencies, the question I'm asking is can we select this 10, all these 10 natural
frequencies, can they be the natural frequencies of the original system, need not be the first 10,
it can be any 10 that you can arbitrarily specify, so if you can do that then you are achieving
something substantial, but then you have to input lot of details into the reduction scheme, so
such a scheme indeed exist and that is known as system equivalent reduction expansion
process, and abbreviated as a SEREP, so [ will be using the term SEREP, so the main features of
this reduction scheme, and also as the name indicates it's an expansion scheme as well, but we
will focus on reduction aspect of it, so it preserves a collection of normal modes during the
reduction process.

Suppose we consider N degree of freedom model for a linear vibrating system, and let capital
Phi denote the N cross P modal matrix that include the first P modes, okay as before we
partition X into master and slave degrees of freedom, this partitioning on X induces a
partitioning on the partially known modal matrix as phi M and phi S, so what are the different
sizes here? This phi is N cross P, phi M will be lowercase n cross p, where this n is the size of
the master degrees of freedom, and p is the number of modes retained, so in dynamic
condensation P was 1, now P can be more. Phi S is N - N cross P, and also when I say P it is not
just the first P, by selecting the appropriate vectors in the modal matrix I am also specifying
which of the P modes I am looking at. Now we will assume that N is greater than P that means



the size of the reduced model is larger than the number of modes that you have in the global
model.

Now we want to introduce an N cross 1 vector of generalized coordinates Z(t) through this
relation, okay, this is X is equal to some modal matrix into Z, that part is fine, so this is the

X v o 'Z(r)!
X(r) \Z(1)!
XAr)| |
X_(t)=D_ Z(1)
X (t)=® Z(t),
YA} [f[l ] X (1) where ['I‘ P P P
(@, ] § Pscudoinverse of @
) Y (r)] ) O
Xir) ) YA O D
X r)] | &
i
g s W ' D h i)
f :) {
> M =WY'MY
K =¥YKY

relation. Now XM(t) is we can put it in the, you can expand this I get this, so from which I can,
we can solve for Z(t) using this equation. Now the number of unknowns and number of
equations in this case would not match, therefore I cannot use inverse directly I will have to use
what is known as pseudo inverse, I will just shortly explain what should of inverse is, but if
you, right now we will accept that there is an operation known as pseudo inverse as indicated
here, and this is this, that is phi M + is this, where plus indicates pseudo inverse.

Now if this is acceptable then X(t) can be written in this form, that is phi M, phi S into this this,
so the sai matrix which relates X to XM is now given by this. Mind you this capital Phi here is
the modal matrix of the complete system, so before you do model reduction you should perform
the Eigenvalue analysis in the large system, okay otherwise you cannot use this method so the
reduced mass matrix and reduced stiffness matrix are obtained as shown here.



Concept of Pseudo-inverse

Pseudo-inverse
VMotivation

Consider a linear algebraic equation v, + 5v, = 1. Since we have two vanables

and onlv one equation. no unique solution 1s possible. However if we decide
to pick the point that 1s closest to the ongin, then the “solution” 1s umque

Consider the matnx equation
AV = B
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Now let me quickly describe what is pseudo inverse, it is not a thorough discussion but it tells
you what the idea is, so the motivation is suppose if you consider a linear algebraic equation X1
+ 5X2 =1, so we have 1 equation and 2 unknowns, so there will be an infinity of solutions, you
draw this line any point lying on that line is a solution to this equation, however if we decide to
pick the point that is closest to the origin as the solution, by that I mean so all points lying on
this straight line is a solution, but if I decide that I will take this point which is closest to the
origin as the solution, this one, right? Then I get a unique solution, okay.



Case 1: m>n (Number of unknowns greater than munber of
equations) ]

[he soluton that nunmuzes the norm | X | 15 given by
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[he “solunon”™ v* that numnuzes the norm |AX-B/| 15 given by
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So let's consider what that means. So let us consider AX = B, where A is N cross M, and X is M
cross 1, and B is N cross 1, okay, so this is a question. Now let us consider the KS where M is
greater than N that is number of unknowns is greater than number of equations. Now what we
do is the solution that minimizes the norm X that is a distance from the origin to the line, this is
given by this, this distance, so we can show that this is given by what is known as ARM, ARM
is A transpose, AA transpose inverse, so ARM is known as right pseudo inverse of A.

Now on the other hand if number of unknowns is less than number of equations then I can find
A solution X naught that minimizes this norm, the error in satisfying this equation is minimized,
and we can do the simple calculation and show that X naught that is the solution in this case is
given by ALM into B, where ALM is given by this, and this is known as left pseudo inverse of
A. So what does these things mean, what do these things mean? A simple example

-



0.6787 065535 02769 0.6948 04387 0.1869
0.7577 01712 00462 03171 03816 04898
- 0.7431 07060 0.09%1 09302 0.7635 04456
0.3922 00318 08235 0034 07952 06463
B = pseudo inverse of A
12713 1.6368 -14333 03097
10286 “0.6138 -0.1202 -0.1329
16711 0.6109 12445 0.7315
02419 05423 09348 02292
1.3539 06393 14178 04807
12726 0.6308 06671 02308
10000 <0.0000 «0.0000 «0.0000
- 0.0000 1.0000 -0.0000 0.0000
fﬂ) A8 0.0000  0.0000 10000 -0,0000
H0000 0.0000 0.0000 1.0000

suppose I consider a 4 cross 6 matrix A and define B as pseudo inverse of A, so I will use these
definitions and compute the pseudo inverse, B is computed like this. Now if [ multiply A and B
I get an identity matrix, so in that sense B is a pseudo inverse of A, although this matrix is not a
square matrix I am able to define another B matrix so that AB is an identity matrix, that is why

it is called a pseudo inverse.



0.8143 06160 09172 00759
0.2435 04733 02838 0.0540
09293 03517 0.7572 05308
0.3500 08308 0.7537 0.7792
0.1966 05853 03804 09340
02511 05497 0.5678 0.1299
B = pseudo inverse of A
00722 24626 1.1602 -1.37533 0.5401 -1.4398
L0340 32002 06433 058762 07234 04634
06329 41668 -03440 16690 -1.276% 19349

2038 A.780 04489 03370 06602 03080 |

1.0000 0.0000 -0.0000 <0.0000 |
Tr"'" 0.0000  1.0000 0.0000 0.0000
B AB

00000 00000 1.0000 0,0000
0000 0.0000 00000 1.0000

Now if this is 6 cross 4, instead of 4 cross 6 the pseudo inverse will be 4 cross 6, so AB in that
case is again a diagonal matrix, okay, so this is a notion of pseudo inverse that we are using in
developing this SEREP transformation.



TYPICAL RESPONSE ANALYSIS LOOP FOR LINEAR SYSTEMS
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Now I have been mentioning, I am referring to experimental you know models so it is better at
this stage to you know understand what is the difference between modeling in an experimental
work and in a computational work, so in a typical computational loop we start with the
continuum, we discretize, and suppose we are dealing with time invariant linear systems, we
discretize and form the structural matrices MCK and the load vector F and write this
equilibrium equation with these specified initial conditions. Then I will perform the Eigenvalue
analysis and determine the natural frequencies, mode shapes, modal participation factors, and
modal damping ratios, so this analysis is known as modal analysis, that is given the structural
matrices how to find the natural frequencies, modal matrix, damping ratios, and the
participation factors, so this is the modal analysis in a computational modeling approach, where
we solve an Eigenvalue problem, once this is known we have seen already how to compute the
frequency response function or impulse response function, and either use this algebraic relation
or this convolution relation and obtain the response either in time or in frequency domain, this
we have seen, so here it is a 10 time it is a convolution, in frequency it is a multiplication, this
is what we do in a computational modeling.
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In an experimental work this loop is reversed, we start by measuring the response, okay so the
story is here we apply known excitation to a test structure and measure the response, and what
we measure we process and get the matrix of impulse response function and frequency response
function, from this we extract natural frequencies, mode shapes, damping ratios and
participation factor, this process of obtaining the modal information from measured responses is
known as experimental modal analysis, this is in contrast to the modal analysis in
computational modeling where we knowing the structural matrices we perform an Eigenvalue
analysis and find these quantities, and that we use to compute the response, here we measure
the response and we extract this information from these measured responses, and from this we
would like to construct models for the structure that means mass, stiffness, damping matrices,
and so on and so forth. So the loop is you know the directions are reversed here, so there will be
fundamental difficulty whenever we use these two alternative approach to the same problem,
and that is where this question of modal reduction and expansion become crucial.



Numerical example: SEREP

Case -1 Master dofs : 1.2, and 3; slave dofs : 4.5, and 6

Retain the first three modes (n=3)
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Now let me return to the example of that 6 degree of freedom system, and now apply SEREP,
so let us retain now first 3 modes, so to implement SEREP I have to again declare certain
degrees of freedom as masters, and certain degrees of freedom as slaves, additionally I should
specify which are the modes that I want to replicate in my reduced model, how many of them?
So what I am selecting is I am taking 3 modes, and I am taking the first 3 modes so I can get
phi M and phi S by partitioning the modal matrix of the 6 degree of freedom system that's what
I have done, and this is a transformation matrix, okay, using this I will construct the reduced
mass matrix and reduce stiffness matrix and perform the Eigenvalue analysis on the reduced
system, it is a 3/3 system, so that system now has these 3 natural frequencies 4.60, 13 point this
and this. Now if you look back these are exactly the 3 frequencies of the larger model, okay, so
there is no, precisely mathematically exactly this, this is the reduced modal matrix, and I get the



Reduced system natural frequencies
o =[46090 130911 137122 rad's

Reduced modal mainx
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reduced structural matrices as shown here, actually this is nothing but this is sai transpose M
sai, this is reduced, this is sai transpose K sai.



Case -2 Master dols : 4,5, and 6 slave dols : 1,2, and 3
Retain the first three modes (n=3)
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Similarly if I now declare 4, 5, 6 as master and 1, 2, 3 as slaves, there will be certain changes in
my features of the reduced model, but the 3 natural frequencies will be identical again, so this is
phi M and phi S, this is a transformation matrix, this is slightly now different from this
transformation matrix. So again I will perform the Eigenvalue analysis, no surprises, the first 3
natural frequency is exactly matched, the reduced modal matrix of course is now different,

k¥ |



Reduced system natural frequencies
@ =[4609 130911 137122 rad s

Reduced modal mainx
05340 03164 -y/901
(1] 06539 04004 05530
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Reduced structural matnices

47019 -3.0944 -0.2786
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333619 T AT45 55088

{’9 M = -15745 331687 24713

\._ 35088 -24713 226358 ‘
okay, and reduce structural matrices are obtained here and the interesting thing is this pair of

KR and MR, and this pair of KR and MR although they are different they share the same
Eigenvalues, okay, so that is the achievement of this method.



SEREP

oThe user needs to specify the number of modes to be retained, the mode indices,
and the slave and master dols.

o [he choice of normal modes to be ncluded in the reduced model 1s arbitrary.

o The scheme preserves collection of normal modes during reduction

o The¢ transformation matnx 1s deduced from the modal matnx. The modal
matnx can be incomplete. Knowledge of K and M 1s needed. This could be

of value 1 modal matrix 1s obtamed expenimentally.

o The natural frequencies of the reduced system matches with the full system
natural frequencies imespective of choice of master and slave dofs

o [he method can be used for model reduction or for model expansion
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So what are the features of this? To implement SEREP the user need to specify the number of
modes to be retained, the more indices which modes, and also the slaves and master DOF’s.
The choice of normal modes to be included in the reduced model is arbitrary, for example in a
100 degree freedom system you want to select 10 modes, you can select 1, 18, 32, and 76 and
so on and so forth, you need not be first 10 nor they need to be in a cluster. The scheme
preserves the collection of normal modes during reduction, whatever you are identified as the
natural frequencies you should be retained in the reduced model they will be faithfully retained.
The transformation matrix is deduced from the modal matrix here, the modal matrix can be
incomplete, you need not have a square modal matrix even you can work with rectangular
modal matrix, this is what would happen if you do experimental modal analysis, in an
experimental model analysis the modal matrix is seldom square, it will be always you know a
rectangular matrix, so it will be incomplete.

So knowledge of K of course is needed, if you are doing computationally because you need to
find the modal matrix, this could be of value if modal matrix is obtained experimentally that in
which case K and M need not be known, phi can be directly measured experimental. The
natural frequencies of the reduced system matches with the full system, natural frequency is
irrespective of choice of master and slave degree of freedom. The method can be used for
model reduction or for modal expansion, so I have not discussed what exactly happens if you
use it for modal expansion, but in principle it can be done.




Coupling techniques
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Now we have now talked about modal reduction, the next topic that is related to this type of
questions is, questions or what are known as coupling techniques. Again here this is a device to
treat large complex structures, and the problem is large complex structure require handling of
large size matrices so can we do something about that, and similarly in a manufactured product,
parts of this structure could be modeled experimentally in parts computationally.

Now the question is how to develop model for built up structures based on models for these sub
structures. Now the coupling techniques answer these questions, a good coupling technique
needs to process some desirable features, it must be versatile enough to accept data either from
experiments or from FE model, say part of a structure can be modeled experimentally and part
of the structure computationally, the computational modeler will be able to give structural
matrices, mode shapes, natural frequencies, and so on and so forth. An experimental is typically
would be able to give FRF’s impulse response function and if model information is extracted
you will be able to give the natural frequencies mode shapes, damping ratios, participation
factors which is experimentally measured, but the experimentalist will have difficulty in
specifying the structural matrices.

Now each component can be treated by an accurate and refined model, you can use each
component, each sub-structure can be modeled with any level of refinement and you know
detailed modeling, any level of detail can be included in a model, components may have to be
broken into small enough subsystems which permit suitable experimental test or analytical
modeling to be carried out, that means the substructure a scheme should not constrain the user
in terms of you know, if user wishes to do this it should not be a constrained, any structural
modification which has to be applied at any time only involves the reanalysis of the affected
part, suppose there are A, B, C are three substructures, and if A is modified then we should not
end up analyzing B and C, okay, then the technique must permit analysis of different
components at different times and by different teams, this is what typically happens in a you



know space structures, or automotive systems, and so on and so forth, and even you know
mechanical systems in civil engineering applications like a turbine, or piping, in an industrial
structure, okay, so the different people will be doing different products.

Steps

ePartition the physical system into number of substructures with a proper
choice of connection and intenor coordinates.

*Decide upon the method of analysis for cach of the substructres
(analytical ‘expenimental)

eDenve the respective subsystem models either by a theoretical or
experimental approach

*Carry out condensation of dofs at the subsystem level. Assess the effect
of neglect of certain modes coordinates.

eFormulate the subsystem equation of motion either using spatial coordinates
or modal coordinates. Analysis of one substructure should not require the
kpowledge of dynamic properties of remaining components.

: AtF1\® at the reduced order equations for the global structure by mvoking

meerface displacement established for different component models

-
Now typically what are the steps involved in this? The steps involved are, we partition the
physical system into number of sub-structures with a proper choice of connection and interior
coordinates, we need to decide upon the method of analysis for each of the sub-structure that
means the analytical or experimental, we have to derive the respective subsystem models either
by a theoretical or experimental approach, then we need to carry out condensation of degrees of
freedom at the subsystem level, and we need to assess the effect of neglect of certain modes and
coordinates.

Next, we need to formulate the subsystem equation of motion either using spatial coordinates or
modal coordinates, analysis of one substructure should not require the knowledge of dynamical
properties of remaining components, then we arrive at the reduced order equations for the
global structure by invoking interface displacement established for different component models,
okay, so this is what will lead to the coupled system. So the coupling techniques can be




Classification

Models tor the subsystems

en terms of structural matnees and spatial coordinates

eIn terms of modal parameters (natural frequencies, mode shapes,

modal damping ratios. and participation factors)

=

1. Impedance coupling techniques
Reduction within the substructure 1s performed in terms of spatial
coordinates or wath the help of FRF-s of the subsystems

2. Modal coupling techmques

L. Reduced models for the subsystems are obtained 1n terms of

{ =0 8 subsystem normal modes

k-]

classified based on how you model the subsystems, for example for modeling the subsystems
we could use structural matrices that is mass, stiffness, and damping, and special coordinate
like displacement degrees of freedom and so on and so forth, or you can model each subsystem
in terms of a set of natural frequencies, mode shapes, damping ratios, and participation factors,
both are equivalent, so depending on how you choose we can have different types of coupling
techniques, in one of the scheme of classification, we classify this coupling techniques as the
impedance complete techniques and modal coupling techniques.

In impedance coupling techniques reduction within the substructure is performed in terms of
spatial coordinates or with the help of frequency response functions of the subsystems, we don't
use modal information. In modal coupling techniques reduced model for the subsystems are
obtained in terms of subsystem normal modes, so we need to develop the formulary for dealing
with you know these coupling techniques and will take up these questions in the next class, and
specifically we will be talking about method known as component mode synthesis which is
widely used in practice. So with this will conclude the present lecture.
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