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We'll continue with our discussion on methods for integrating equations of equilibrium in 
dynamics. In today's lecture we will talk about the concept of energy conservation and also 
address few issues related to nonlinear systems, so what we have been discussing we have 



developed, discussed this Newmark's method which is a second-order implicit method, the 
three stage formulary for this is displayed here, we have shown that the method is conditionally 
stable if we select this parameter delta and alpha to satisfy this requirement, and these 
requirements are independent of system natural frequency and damping. So Newmark’s method
is implicit, self-starting, and it is a single step method. 

Now we can also obtain the other methods like average acceleration method, linear acceleration
method, as special cases of Newmark's method by assigning the parameters alpha and delta 
values as shown here, this also we have seen. Now for delta greater than half the method 
displays high frequency dissipation characteristic which are desirable, but the global error 
would be of order delta T which is not desirable. 



We have also seen questions about error estimates and convergence of forward Euler method, 
we have shown that the error is of the, is bounded by this quantity, so we saw that local, 
although the local error is order delta T square the global error is order delta T, this is a common
feature in these algorithms intuitively the explanation for this can be this, global error at nth 
step, if we write it as, if EN is a local error the global error at the end of nth step will be N into 
EN, so N can be written as TN/delta T, so if EN is of order delta T square as it is here when 
divided by delta T it becomes order delta T, that means you have to sum up to all the errors up 
to that time instant that reduces the order of accuracy, so global error typically would be an 
order less than the local error. 



The HHT alpha method and generalizations overcome one weakness of Newmark's method that
to be, to possess high frequency numerical dissipation the method would become only order 
delta T accurate, so what this HHT alpha method does is, it introduces additional algorithmic 
parameters, for example in a generalized version we have alpha M, alpha F, which are 
additional parameters, in addition to delta and alpha that are used in Newmark’s method, so we 
have now 4 parameters, so we have greater flexibility to you know design the algorithm to 
display desired properties, so it can be, we have seen that the method possesses desirable high 
frequency dissipation characteristics it is unconditionally stable and it has second-order 
accuracy. 



So we can summarize what are the desirable features of a numerical integration scheme, so it 
should at least have second-order accuracy and it should be unconditionally stable when applied
to linear time-invariant systems, and we want to have controllable algorithmic damping in 
higher modes that means by changing parameter other than the step size, that means these 
parameters are algorithmic parameter not the system parameters we should be able to ensure 
that the numerical damping that will be present in the system you know does not distort the  
lower order contributing modes, and it suppresses the spurious higher-order modes, so again 
this requires investigation into spectral radius of the amplification matrix as frequency tends to 
infinity, for large frequency the spectral radius should go to zero so that higher order, high-
frequency components are dissipated and the spectral radius should be as close to 1 for low 
frequency region where there will be participating modes which are contributing significantly to
the response, and also there should be no overshoot that means excessive oscillations during the
first few steps should not be present ideally the scheme should be self-starting and when we 
deal with nonlinear systems as we will do today later, no more than one set of implicit 
equations need to be solved at each step, so the concerns here are let me summarize if you are 
carrying out a dynamic analysis of a structure you make a finite element model while selecting 
the size of the model you have to keep in mind the highest frequency that is participating, 
highest frequency that is present in the excitation then suppose that highest frequency is say 20 
hertz as perhaps in the case of an earthquake engineering problem then we should ensure that 
the finite element model that we make should have acceptable accuracies on Eigen 
characteristics maybe up to say 50 hertz or 80 hertz 3 to 4 times the highest frequency present 
in the excitation, over that frequency range we should capture all the modes that are present in 



the structure with good accuracy, suppose between say 0 to 50 hertz there are say 12 modes in a
structure which contributes, whose natural frequency lie in 0 to 50 hertz say for example, then 
our model should have at least, the degrees of freedom in our model should be at least 10 times 
the number of modes that you would like to retain in the model expansion. 

So in order that we get acceptable accuracy on the lower order model characteristics, our model
size need to be large, consequently there will be higher order spurious modes which are 
numerically not accurate and in a physical sense they don't really contribute to the response, so 
the algorithm that we use should ensure that those spurious modes are dissipated through 
numerical dissipation, and the contributing lower order modes are not distorted, so that is the 
main issue when it comes to discussion on algorithmic dissipation.

Now, we will now consider what is the relationship between stability and energy conservation? 
We have talked about the so-called spectral stability, you know the integration schemes 
unapplied to linear time-invariant systems, let’s ask the question now, those concerns are related
to conservation of energy. 

So let's focus our discussion on Newmark's method, so in the Newmark method we have this 
set of 3 formulae, this is for velocity, this is for displacement, and this is the equilibrium 
equation at time TN+1, now for purpose of discussion let us take delta to be 0.5, and alpha to be
0.25, we can do a general discussion but let us simplify our study a bit, we will use this 
representation, so in which case UN, velocity is given by this, and displacement would be given
by this. Now we can reorganize some of these terms, suppose I write UN+ 1 dot – UN dot, this 



is given by this. Similarly UN + 1 - UN is given by this. Now, this we can simplify and we can 
show that UN+1 - UN is given by this. 

Now we have the equilibrium equation at time T, now what I will do is I will multiply by U dot 
transpose, pre multiply by U dot transpose so this equation is what we get. Now if U dot 
transpose into F(t) is actually the work done by external force per unit time, for example in a 
single degree freedom system velocity into force will be work done per unit time, force into 
displacement is a work done, therefore force into velocity will be work done per unit time 
which is the power input, so this is basically the power balance equation where we are equating 
the power input to the system to the contributions from inertial forces, stiffness and damping 
forces. Now that sum of kinetic energy and potential energy will now consider that it will be 
T+V, and T is 1/2 U dot transpose MU dot, V is 1/2 U transpose KU this we have seen. Now the
time variation of the total energy that D/DT (T+V) if you are interested we can differentiate 
this, so we will get U double dot transpose MU dot + 1/2 U dot transpose MU double dot, 
similarly the other two terms. 

Now this is a scalar quantity U dot transpose KU is a scalar quantity, so is U transpose KU dot, 
U is N cross 1, K is N cross N, this is N cross 1,. so U transpose will be 1 cross N, so this will 
be a scalar quantity, so for this we can as well write U dot transpose KU, you can't replace it by 
this transpose, so we can or in other words these two can be added and these two can be added 
and we can write in this form. So the time variation of total energy is therefore given by this. 



Now we will now see if I now integrate this you know T+V from TN to TN+1 we will get this 
integral. Now at N+1 the kinetic energy will be given by this, and at TN I have this expression 
with you replace N+1/N, I get this. So if I now consider the increment in kinetic energy this is 
the increment in kinetic, so now I will simplify this, I am adding and subtracting some terms 
and rearranging these terms to show that this incrementing kinetic energy can be given by this 
quantity. 



Now similarly we get VN+1 – VN as this quantity, so we have TN+1 -TN as this, VN+1 - VN 
as this, and increments in velocity and displacements are given by this, so these terms are here 
now this is according to Newmark’s method, so now I will substitute these terms into the 
expression for increment in kinetic energy and potential energy, there is a Newmark beta, 
Newmark's approximation, so upon doing that I get this as the increment in kinetic energy, this 
is the increment in strain energy, so consequently the D/DT of total energy is given by this.

Now therefore if we now recall MU double dot + U dot + K = F from this we can write this 
expression, okay that means I am looking for T+V at TN+1 and TN, I get this, so this is the 



expression we have got, and now this is again Newmark beta approximation for displacement if
I now substitute that I get the change in total energy from time step TN to TN+1 is given by 
this. 

Now if we talk about free vibration F will be 0, and C will be 0, undamped free vibration, then I
see that the change in total energy is 0, which is what we expect from a conservative system, so 
for free vibration of undamped system that is C = 0 and F = 0 we get T + V, the change in T+V 
from TN to TN+1 is 0, that is the Newmark algorithm conserves the total energy, this is true for 
any time step size. 

Now we have seen that the method is unconditionally stable if this condition is satisfied, these 
requirements are independent of system natural frequency and damping that also we have seen, 
we can show that for this case the energy balance or one time steps is negative, okay in general 
when there is a damping as well as forcing, in regions in the alpha delta space where the 
method is not stable the energy balance or a time step turns out to be positive, please bear in 
mind that the formulary I have derived is for specific choice of delta and alpha, so you could re-
derive the whole story by keeping delta and alpha as it is and you can see how the question 
about change in energy can be tackled. 



So some quick illustrations a single degree freedom system with natural frequency 2 pi, this is 
damping is 0 free vibration problems were considering, and I am considering step size of one 
tenth of critical step size and this is the algorithmic parameters, so blue line here is the exact 
solution, and the red one is a Newmark solution, obviously it’s not accurate but it is stable. So if
I now plot the energy balance we see that this is 10 to the power of -14 so you can see that the 
energy balance criteria is satisfied. 



Similarly if I now take same data with higher step size now T critical is delta T is T critical/100 
so we see that the exact and the Newmark solution match very well and the error is again quite 
small, the energy balance. Now how about damped free vibration? So I introduce 3% damping 



and again start with T critical/10 although the solution is not accurate, the error is still that the 
energy balance is satisfied, so energy balance is satisfied it does not mean that you have got 
accurate answers, okay it's like telling if you are getting stable solution you need not ensure that
the solution has acceptable accuracy. Now if I increase step size to T critical/100 I get you 



know the two exact solution and Newmark solution math, and this is the behavior of the error.



Now I deliberately select the algorithmic parameter in regions where the method is not stable, 
so we see that the Newmark solution diverges as time increases, and you can see that the energy
balance condition is also violated, now this is, numbers are very large is 0.15, if you look at the 
previous graph these numbers were 10 to the power of - 12 this is very large number and it is 
also blowing up. 



The same issue about algorithmic energy conservation can also be studied for other integration 
scheme, so I have shown some illustrations here this is the HHT alpha method with these 
parameters a damped free vibration with step size of 0.1 second and we see that the energy 
balance condition is met and it so happens that the step size is in the ensure stability of the 
solution. 



Now with improved step size here for this step size there are 10 points in a period because 
omega is 2 pi that means period is 1 second, I have taken 10 points in a cycle that does not lead 
to acceptable solutions. 

On the other hand if you take 100 points the two, the exact solution and HHT alpha solution 
matches and the error is acceptable. 



Now the discussion on energy conservation in Newmark based time integration algorithms has 
been presented in this work by Krenk, I have given the reference so in this paper he has derived 
that discussed this issue for both Newmark's method HHT alpha and generalized alpha 
methods, okay. 



Now, we'll now start discussing some issues about integrating equations of motion if we are 
dealing with nonlinear systems, we will start by discussing some preliminary ideas perhaps 
later in the course we will address these questions in a more elaborate way. Now why do we get
nonlinear systems? The sources of non-linearity in structural dynamics could be due to 
nonlinear strain displacement relations, or due two non-linear stress-strain relations, or non-
linear energy dissipation mechanisms for example friction at joins, aerodynamic damping, 
hysteresis and so on and so forth. Now for the purpose of illustration what we will do is we will
consider a nonlinear equation of motion of this form and at this stage let us not inquire into the 
question on how to arrive at this finite element model from a given continuum problem, that 
question will consider later. Now the question that we wish to discuss now is if you were to get 
this type of equation of motion how will you integrate the equation of motion, what are the 
issues? 

So let's see what happens to Newmark's method, so the representation for velocity and 
displacement remains the same, and the equilibrium equation at T = N+1 will have now this 
new term, so upon simplifying these equations from equation 2 I get if I solve for U double dot 
N+1 I get this, and if I substitute now this and these quantities into the equation of motion or in 
the first equation I get U dot of N+1 is UN dot plus these terms, and this is what we got earlier 
also. 



Now if we now go back to, we have now acceleration, displacement and I mean velocity and 
displacement all of that if we now substitute into the governing equation of motion we get this 
equation for UN+1.

Now this equation also has this term GN+1, UN+1 so at time TN+1 to obtain UN+1 I have to 
solve this non-linear equation, this is a non-linear algebraic equation. Earlier in the absence of 
this term we would have inverted this matrix and got the solution, but now these are a set of 
nonlinear algebraic equations which at every time step we need to solve, okay this is the 
additional complexity, so how do we tackle this? One of the popular algorithms for this is the 



Newton-Raphson method so we will quickly recall what is the, how do we implement that 
method? Suppose we consider a scalar nonlinear equation F(x) = 0, now our objective is to find 
roots of this equation, we follow an iterative procedure, so what we do is XK, we consider XK 
to be approximation to the root at K-th iteration step and XK+1 that is the improved solution is 
XK plus a correction. Now the objective is to find what this correction should be, so I will 
consider therefore F(xk+hk) which is since we are truncating this, this will be F(xk) + HK 
DF/DX at X = XK. Now if XK + HK is a true solution the left hand side would be 0 from 
which I get HK to be this, so that XK+1 is given by this, so the one quick observation that we 
need to make is to obtain the rules now I need gradients of function F.



Now we are talking about Newmark’s beta method, now if we are going to use Newton-
Raphson scheme within that, the scheme would be implicit now it also needs derivatives of the 
nonlinear functions, and if I take X naught to be initial guess on the root, then we have to make 
this guess to start the solution. Now in integrating equations of motion the initial guess could be
the solution from the linear system response or the nonlinear response at the preceding time 
instant or some other reasonable approximation. Step size for implicit schemes it typically is 
larger than what is needed for explicit schemes, the trade-off is large step size and need to solve
nonlinear algebraic equations at every time step, when we are talking about implicit schemes.



Now we will now consider to complete the discussion on Newton-Raphson method a set of 
nonlinear equations in SN variables, suppose I have FS (X1, X2, XN) = 0 for S = 1, 2, to N, 
there are N equations in N unknowns. Now how do we solve these equations? So what I do, I 
take XKS from S = 1, 2 to N to the approximation to the root at the K-th iteration step, and 
K+1, S is what I need to find. This is XKS + a correction, so I need to find this correction, again
we use Taylor's expansion so this is the function FS at the improved at XK+1S and this is given 
by this. So now by using a first-order Taylor's expansion I get this equation and if this is indeed 
the true solution the left hand side would be 0, so I get a set of algebraic equations for the 
unknown increments in X case, so if you solve that I get HK as inverse of this matrix of 
gradients, this has to be evaluated to implement the method. 



Now we have discussed the implicit scheme, now let us see if what happens if I now tackle the 
non-linear equation using explicit scheme, so let us consider the central difference method. So I
have this equilibrium equation at time T and these are the initial condition, and this is a time 
duration for which I want to solve the equation of motion, so as before we approximate U dot(t)
by a central difference approximation, and U double dot(t) we get this, this we have done 
before, now I substitute for these 2 in the governing equation and I get this equation and here 
the nonlinear term I am writing this equation at T and the nonlinear term is here, the unknown is
U(t) + delta T and that is here so on the right hand side I would have had G(U(t)) which would 
be known to me, so here as you can see we need not solve any nonlinear equations to advance 
from one step size to the next step size, so this is explicit. 



So we need not have to solve nonlinear equations at every time step, we need to invert this 
matrix all this is come, these discussions, these issues are common to what we already 
discussed this is an explicit scheme it requires a special starting scheme, and also for linear 
systems we already seen that this method is conditionally stable and there is a critical step size 
which depends on the natural frequency of the, highest natural frequency of the system and we 
expect that similar requirement also remains valid even when there is a non-linearity may be 
more stringent requirement, so in any sense, in any case we can expect that to get acceptable 
solutions from this we need to use a very small step size. 

Now the idea of spectral stability does not apply to nonlinear systems, because of the presence 
of non-linear terms we cannot use the Eigenvalues of the, spectral radius of the amplification 
matrix of the linear system to infer stability of schemes when applied to nonlinear system, so 
that issue has to be addressed separately. Now however the concept of energy balance provides 
a means to get an idea about algorithmic damping and stability, so when you are integrating this
we could as well check for energy balance and see whether, how it is behaving, so that may 
give you some idea about your choice of step size, if energy balance conditions are violated 
then you are using wrong step size. 



Now we have talked about explicit scheme and implicit scheme. Implicit schemes permits you 
to use larger step size, but at every time step you have to solve non-linear algebraic equation, 
explicit schemes there is no need to solve nonlinear algebraic equations but they require small 
step size. Now the question is can we combine explicit and implicit approaches simultaneously 
in one numerical algorithm, okay? For example if we have a structural system in which there is 
local non-linearity, so where there is non-linearity you could use explicit schemes and where 
there is linearity you can parts of the structures are linear you could use implicit scheme, so that
large step sizes could be used for certain parts of the system and explicit schemes the smaller 
step size can be used for certain other parts, so these ideas have been discussed in papers by 
Hughes, Pister, and Taylor and there is another paper I have given the reference, so what I will 
do now is I will quickly outline what the main issue is in this discussion.



Now we want to discuss now implicit, explicit and implicit explicit methods, actually we need 
to discuss how to combine implicit and explicit approaches in a single, in a simultaneous linear 
same algorithm, so we will review that we'll start with an implicit formulation and then we will 
look at explicit formulation in some detail and then see what are the issues when we combine 
the two. So let’s consider the equation of motion MU double dot + N(U,U dot) = F(t), this N is 
for nonlinear terms, so with certain initial condition and these are time duration of interest, so 
this U, N and F are S cross 1 matrices, M is S cross S mass matrix, it could be diagonal and N is
S cross 1 means actually what we have, we have to understand that there are S number of 
functions, each one of which is function of U1, U2, US and U1 dot, U2 dot, and US dot, so I 
runs from 1, 2, S.

Now we define what is known as tangent stiffness matrix where we differentiate the nonlinear 
term with respect to UJ, so i-th function d function differentiated with respect to J will give me 
the IJ-th element of the tangent stiffness matrix. Similarly we talk about a tangent damping 
matrix where I differentiate NI with respect to UJ dot and I get CT IJ, so this is tangent 
damping matrix. Now we can see that mass matrix is symmetric, and tangent stiffness and 
tangent damping matrices are also symmetric, now we denote by UN double dot ,UN dot and 
UN, the approximations to U double dot(tn), and U dot(tn) and U(tn) respectively, so these are 
exact which are not known these are the approximations.



Now let's start by discussing the solution for an implicit scheme, let's use in Newmark's method
for illustration, it could be other method as well, it could be HHT alpha method or generalized 
alpha method, it could be anything else, but for purpose of discussion we will stick to 
Newmark's method. So the equilibrium equation at time T is given by this, and at time N+1 the 
approximate equation will be this. Now the Newmark method we assume that displacement is 
given by this where alpha is an algorithmic parameter, and similarly what I will do now is I will
collect the term U double dot N+1 and delta T square alpha this is one term, this term makes the
algorithm implicit so all other terms which are at N are lumped in this U tilde N+1. Similarly 
for velocity U dot of N+1 is given by this, delta is algorithmic parameter, again here I will 
collect all the terms involving velocities and accelerations at TN and call this as U tilde dot, 
N+1 and the other term which makes the algorithm implicit I will collect it here, so this tilde are
U tilde N+1 is this, and U tilde dot N+1 is given by this, we call these values as predictor 
values, as you enter any time you would be knowing this at any given time step you will be 
knowing this from your calculations at the preceding steps. Now this is what we should find, 
these are the corrector values. 



Now how do we implement this method? We set T = 0, and N = 0, so T = 0 the initial 
displacement and velocity are known, and using the equation of motion I derive the initial 
acceleration. Now predictor value is, now N is 0 therefore UN tilde will be U naught + U 
naught dot delta T + delta T square U naught double dot, this into this term, so all these terms 
are known. Similarly U tilde dot 1 because N is 0 is U dot naught + delta T 1 - delta U double 
dot naught that is known, so that's what I meant predictor values will be known when you enter 
this step. 

Now the corrector steps would be given by this, now for U double dot N+1 I can use the 
equation of motion and write this terms there, okay, this term, this M inverse of this. Similarly 
U dot N+1 is the predictor term + this term, now you see here the unknowns are UN+1 and U 
dot N+1, and on the right hand side the unknowns are contained in this nonlinear terms, so 
actually these two equation therefore form a set of nonlinear equations for the unknowns UN+1 
and U dot N+1, we use Newton-Raphson's method with predictors as starting solution, we use 
this tilde as quantities with tilde relations as the initial guess, and use Newton Raphson, so how 
does that work out? So I have the first equation is given by this, I have taken the terms on the 



right hand side to left hand side and I equate it to 0, let us call it as some capital G(UN+1, U dot
N+1) is 0. The second equation for velocity leads to this equation. Now these two are pairs of 
nonlinear equations in UN+1 and U dot N+1, so there are 2S number of unknowns, and there 
are 2S number of equations. 

Now Newton-Raphson solution now we have to set up an iteration, and that iteration count is I, 
so I will first give a few mathematical details and then we'll return to the algorithmic 
implementation, so at I-th step if this is the guess and delta I is the correction, then this is the 
improved solution. So similarly on velocity this is the improved solution, now you substitute 
this into these two equations whatever we discussed till now use first-order Taylor's expansion I
get this expression, so what are unknowns here? This delta IJ and delta dot IJ are the unknowns 
which we need to find. Similarly using Taylor's expansion on H, I get this equation, so I have 
now, there are 2S number of unknowns and 2S number of linear algebraic equations they can be
cast in this form so the work involves evaluation of this matrix and inversion, so you have this.



Now G function is consequently this, and H function, where G and H are this, I am just 
repeating for sake of completion here. Now I need these gradients dou G/dou U, dou G/dou dot,
dou H/dou U and dou H/U dot so they can be evaluated from the Newton-Raphson, sorry 
Newmark beta, Newmark’s as a model, and we get these quantities in terms of tangent stiffness 
matrix and tangent damping matrix as shown here. So in terms of, we can write now this matrix
in terms of KT and CT which we will do now. 



So let us now return to you know we started with the 3 steps, we completed the predictor step 
and we are now formulating the corrector steps, so corrector steps now involves Newton-
Raphson steps, so a 4.1 we initialize, I = 0 that's a iteration and these are the initial guesses 
which are the predictors which we have already derived. Now iterations begin so I use this 
relation which is Newton-Raphson relation, and increment I and then I will see whether this 
algorithm has converged by using epsilon 1 and epsilon 2 as measures of you know 
convergence, if this is satisfied we exit out of this iteration loop, otherwise we go to 4.2 with, 
continue with these iterations. Now if the convergence requirements are met we will be here 
and I will assign now to the displacement at N+1 and velocity at N+1 these converge quantities,
then I have to compute U double dot N+1 for which again I use the equation of motion. 

Now I increment N the time marching and if I cross the final step size I exit, otherwise I go to 
step 2 which is that? We again start with predictor for the next step, okay? So this is 
implementation for, implementation of Newmark’s method for a nonlinear system, this is an 
implicit scheme because as we have seen average time step we are solving a set of non-linear 
equations. 



Now we look at the same problem formulation using explicit scheme, now what we do is we 
introduce this additional equation, see we got nonlinear equations in the preceding step because 
for U double dot N+1 I replaced it by, if you see here carefully for U double dot I have N+1, I 
am replacing this by F naught – N(UN+1, U dot N+1) and we are solving these nonlinear 
equations, if instead of that for these terms inside this bracket if I use the predictors, then this 
becomes explicit, okay so that leads us to the next scheme, the idea is we will use this as, we 
introduce this equation MU double dot N+1 as N U tilde N+1, U dot this also tilde, now use this
equation implementing the corrector step, that means at the stage of implementing the corrector 
step we will not use, we need not have to solve a set of nonlinear algebraic equation, but we 
still need to iterate, there will be multiple passes that will be needed and iteration will be 
needed, this avoids the solution to the set of simultaneous nonlinear equations at every time step
and the method becomes explicit. 



So how does it work? You start with T = 0, you have initial displacement and velocity use 
equation of motion get initial acceleration, then you use predictor values you set I = 0, and your
UN(i) is U naught, U1 dot(i) is U naught dot and U double dot(i) is U double dot naught when 
you are at N = 0. Next I need U tilde of I N+1, this is the predictor, this we have, this is for 
displacement, this is for velocity. Now after having found out I want now an improved estimate 
of U double dot N+1, to do that I will use the equation of motion where U and U dot are 
replaced by the predictor values, so I get consequently U double dot I+1, N+1 is given by this, 
this is an explicit equation there is no nonlinear equation solving here, so I get acceleration 



from which I will again improve upon the displacement and velocity and check whether the 
convergence has occurred, if it has occurred we will exit the iteration loop otherwise we iterate 
once again with an improved, the predictor values are now replaced by these improved values.

So we if we exit after satisfactory convergence I get UN+1 which is the, displacement will be 
what has converged here UI N+1, similarly velocity and acceleration are obtained, and here I 
will use the, not the predictors but the converge solutions to find acceleration. Then I will 
increment time and I will exit if we have cross the final time instant, otherwise we go back and 
continue with the algorithm, so this is an explicit scheme, it involves iterations, multiple passes 
but there is no nonlinear equation solving okay. Now the idea is the question that we are trying 
to ask is now can we combine these 2 approaches?



So the question is can we use explicit and implicit concepts simultaneously in one algorithm, 
the basic idea is we divide the finite elements into implicit and explicit sets, that means the 
mesh, finite element mesh part of the mesh is designated as implicit, part of the mesh is 
designated as explicit, so where you expect for instance local nonlinearities you could or stress 
concentrations or things like that you use finer mesh or you use explicit mesh, where you 
expect your understand, I mean linear behavior or things like that you could use implicit mesh.

Now let us yeah the superscripts I and E denote the two sets respectively, that is implicit and 
explicit, so associated with this partitioning I will have a MI, NI, FI as assembled mass, internal
force, and an external force for the implicit elements, and similarly ME, NE, FE as assembled 
mass, internal force and external force for the explicit elements. So the equation of motion now 
can be written as (MI+ME) U double dot + NI (U,U dot) + NE (U,U dot) is FI(t) FE(t), there is 
no, this is simply rewriting the equation of motion without making any approximation. The 
approximation is now is displayed here, for implicit part of the mesh I will use the current states
UN+ 1 and U dot N+1, for the explicit parts I will use the predictors, okay. So the idea is when 
you solve for the nonlinear equations you will be using NI naught N okay, and this will be, the 
structure of the matrices that you encounter and there banded ness features etc is controlled by 
NI not by N, and NE makes no contribution to that in your solution to nonlinear equations, so 
the effort in solving the nonlinear equations can come down substantially, so these are the



 predictor values as before, and I get UN+1 is the predictor plus this, which now I will write for 
U double dot N+1, in implicit scheme I wrote simply the governing equation here, in the 
explicit scheme I used the predictor equation, so here what I am doing I am splitting for implicit
elements I am writing NI with current UN+1 and U dot N+1 retained as it is, for explicit 
elements I am using the predictors. So the unknown nonlinear equation, effort to solve 
nonlinear equation is now related to this NI, so similarly I get an equation for U dot N+1 which 
is again written here. The tangent stiffness and tangent damping matrices are now evaluated 
only with respect to NI, you don't need the tangent KT and CT for complete N vector, so you 
need only for NI, and only for NI, so consequently the band profile of these matrices would 
correspond only to the connectivity of the implicit elements, so they can be quite sparse and 
well-structured and maybe easier to solve.



Now I will not get into the details of this implementation but we can make some observations, 
now what we have done is we have discussed the implicit, explicit, and implicit-explicit 
methods in the context of Newmark's method. Now same discussion or similar discussion can 
also be developed for other schemes such as HHT alpha and generalized alpha methods, so the 
predictor equations that you derive for HHT alpha should originate from HHT alpha 
representation, here the predictor equation you know was from the Newmark beta method, 
Newmark’s method, so that's one thing that we have to bear in mind. Now the partitioning of 
the mesh into explicit and implicit elements can also be interpreted as splitting the operator into 
explicit and implicit parts, so this is so-called operator splitting implicit-explicit method. 



Now what I wish to do in the remaining few minutes of this lecture is to give a brief 
introduction to what are the issues that we would like to address in the next module. The next 
module of this course is on model reduction and sub-structuring techniques. Why do we need 
that? The need arises because of, for example treatment of large scale problems I may like to 
reduce the size of the problem. Now the need also arises whenever you have to deal with 
situations when results from experiments need to be discussed in conjunction with predictions 
from mathematical models. For example if you have an instrumented structure there, if you say 
that if you have used say S number of sensors, the experimental model will have S degrees of 
freedom if we call the number of sensors as degrees of freedom, it has S degrees of freedom, 
but the computational model for the same structure can have different degrees of freedom, 
typically the size of a mathematical model could be fairly large compared with number of 
sensors that we use in experimental part, so there is a mismatch of degrees of freedom in 
computational model and experimental model, so how do we deal with that? Or the other 
situation is different parts of a structure could be developed by different teams, possibly 
working independently, working independently and possibly by using both experimental and 
computational tools, for example this type of issues can arise in dealing with automotive 
systems or space vehicles and things like that where different parts of the structure can be 
designed and developed by different teams, so each team will make a valid finite element model
for the particular sub-structure that they are dealing with and they may also conduct 
experiments on each of the sub-structures that they are studying. 

And finally when the structure is assembled then computational model need to be assembled, 
the experimental model needs to be assembled, so what are the issues? So these issues take us 



to a discussion on sub-structuring methods. Finally another context in which these issues will 
become important is in the context of what are known as hybrid simulations, here the word 
hybrid means in testing of structures under dynamic loads we combine both experimental and 
computational methods, that is why they are called hybrid simulation. Hybrid simulations are 
essentially experimental testing techniques to qualify structures for specified dynamic loads, for
example earthquake qualification testing of a structure, here we combine both experimental and
computational models for the same structure and the same team works on both of them, so a 
part of the structure is studied experimentally, and a part of the structure studied 
computationally. So how do we combine in the mathematical model that we use in our 
computational model with the part of the structure which is actually studied experimentally and 
for which no mathematical model is done, so this takes us to different types of sub-structuring 
problems. 

Now I'll briefly introduce the problem of model reduction, then we'll take up discussions in 
subsequent lectures. Now suppose we consider a N degree of freedom finite element model for 
a linear system, say the linear system is governed by MX double dot + CX + KX is F(t) with 
some initial conditions. What is the problem of model reduction here? The objective of model 
reduction is to replace this N degree of freedom system by an equivalent lower order system, a 
lower case N degree of freedom system, where the reduced system will have much lesser 
number of degrees of freedom than the larger system, so the objective is to derive the equation 
of motion for another system which has less number of degrees of freedom as shown here, and 
these two should be related this MR, CR, KR are the reduced N cross N structural matrix. XM 
is N cross 1 vector of degrees of freedom which have been retained in the reduced model, in all 
the model reduction techniques the displacement vector X(t) is related to, I mean is partitioned 



as XM(t) and XS(t), XM(t) are the degrees of freedom that we want to retain in the reduced 
model XS(t) are the degrees of freedom which we would like to eliminate, so this M and S refer
to the subscripts M refers to master SS slave, so those degrees of freedom which are retained 
are called master degrees of freedom, those degrees of freedom which are eliminated are called 
slave degrees of freedom. So XM(t) is N cross 1, master degrees of freedom and XS(t) is N - N 
slave degrees of freedom.

Now we represent X(t) as some sai into XM(t), okay, this is how we eliminate the slave degrees
of freedom, where sai is an N cross M transformation matrix, so we substitute this into the 
governing equation I have M sai XM double dot + C sai XM dot + and for X I am writing sai 
into XM, so this is M sai XM double dot + C sai XM dot + K sai XM is F(t), I'll pre multiply by
sai transpose, so I get this equation. So now I will call sai transpose M sai as MR which is a 
reduced mass matrix, and CR which is sai transpose C sai is the reduced damping matrix, KR is
sai transpose K sai which is a reduced stiffness matrix, you can quickly verify that these 
matrices are all symmetric, and FR(t) is sai transpose F(t) which is a reduced force vector. 



Now the question is how do we select sai? Okay, that is the main question. When we want to, 
when we reduce the size of the model for example the original model would have N pairs of 
natural frequencies and Eigen vectors, the reduced model will have lowercase N Eigen pairs, 
should these be equivalent? For example 100 degrees of freedom is represented in terms of 10 
degrees of freedom model, so the 100 degrees of freedom will have 100 natural frequencies 
possible, and a 10 degree of freedom will have 10 possible natural frequency, should these 10 
natural frequencies be related to the natural frequencies of the larger model, okay, that's the 
question. Similarly mode shapes, and we can also ask this question on the frequency response 
function between 2 coordinates, for example should the frequency response function over a 
given frequency range of the reduced system serve as acceptable approximations to the 
corresponding FRF’s of the original system, what is the objective of model reduction that we 
have to specify. 

Similarly if you are interested in transient behavior of the system, should transient response to 
dynamic excitations for the reduced system serve as acceptable approximation to the response 
of the original system, so the question on how to select sai, therefore gets answered in a broad 
way that it depends on the situation that context in which you want to reduce the model, so we 
have to discuss different options that are possible. 



Now actually we had talked about model reduction but there can be a problem of model 
expansion also, how does it come about? Suppose if you consider a structural system that is 
being studied both experimentally and computationally, if lowercase n is the number of 
measured degrees of freedom, and capital N is the degrees of freedom in computational model, 
typically the degrees of freedom in computational model is much greater than the degrees of 
freedom in an experiment. Now when we are reconciling the prediction from the computational 
model with what we have measured, then there are 2 options available to us, one is reduce the 
size of computational model so that only the degrees of freedom which are common to both 
experimental and computational models are retained, or alternately expand the size of the 
experimental model so that the degrees of freedom not present in the experimental model are 
approximately represented, okay so that there is a matching of degrees of freedom between 
experimental and computational models. 



Now some of these issues will be discussing what we will do is, I’d propose to discuss three 
methods, one is what is known as static condensation, that is also known as Guyan’s reduction, 
and there is a method known as dynamic condensation, and third method is what is known as 
system equivalent reduction expansion process and it is abbreviated as SEREP, we will be 
discussing this in the lectures to follow, we will conclude this lecture at this stage.
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