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In the last lecture we started talking about methods for time integration of equation of motion 
and we introduced the basic terminologies and the role of finite difference schemes in 
developing these methods, we started talking about the forward difference method or the so 



called forward Euler method, so here we consider the equilibrium equation, we are restricting 
our discussion to linear systems MU double dot + CU dot + KU = F(t) with some prescribed 
initial conditions, and the time duration of interest is between 0 to TF. Forward difference 
approximation to the derivatives lead to these equations for displacements, velocities and I 
mean substituting that we will get this equation for the evolution of the displacement.



We were discussing the issue of how errors grow as the time marching takes place, so to 
illustrate that we considered a single degree freedom system which is driven by F(t), the idea is 
that even if you have a multi degree freedom system moment you do normal mode analysis and 
transform the coordinates to the natural coordinates, in the uncoupled state the equations of 
motion would be a set of single degree freedom systems, so to understand growth of errors it is 
enough to focus on how the errors would behave when we developed the scheme for a single 
degree freedom system, so this is the equation based on forward difference scheme for this 
oscillator, and we can put it in a matrix form capital Y N+1 is the vector consisting of a 2 cross 
1 column consisting of UN+1 and U dot N+1, and LN is this 0 delta T into FN, so A is this 
matrix. 

Now what we do is at the nth step we assume that an error gamma N is introduced, because of a
truncation and round off and issues like that, now we substitute this equation into the governing
equation and we want to develop a scheme on understanding how the errors grow, so from this 
equation we see that the governing equation for evolution of error is given by gamma N+1 is A 
into gamma N. Now to be able to understand how the solutions to this type of equations behave 



we considered, any equation of the form XN+1 is AXN, and we introduce the transformation on
X which is phi Z, we introduce a new coordinate system Z by introducing the transformation X 
=  phi Z, and phi was selected to be the matrix of eigenvectors of A matrix, and we showed in 
the last class that the condition for the X the modulus of X, the J-th element of that to go to 0 as
N tends to infinity is that the maximum eigenvalue, the absolute value of maximum eigenvalue 
of matrix A must be less than 1, so this quantity is known as the spectral radius of matrix A, so 
we want that the spectral radius must be less than 1, an alternative way of looking at it is if we 
plot the eigenvalues on the complex plane this is real part of the eigenvalue, and imaginary part 
of the eigenvalue, and if this is a unit circle we want that for stability the roots must lie within 
the unit circle, that is for asymptotic stability for errors to go to 0, if errors not to grow it is 
sufficient if the roots lie on the unit circle, and if they are outside that the solution would be 
unstable in the sense the errors grow as we march in time.



Now let us return to the analysis of forward difference scheme and we had this equation YN+1 
is AYN and from this I developed this equation gamma N+1 = A gamma N. Now let us rewrite 
this in terms of gamma naught, so we get that gamma N+ 1 will be A to the power of N into 
gamma naught, how do we see that? If you write now gamma 1 this will be A into gamma 
naught, if I write gamma 2 it will be A into gamma 1 which is A square into gamma naught, so 
continuing in this manner we get this equation. Now this equation we can see that it describes 
how error introduced at N = 0 grows in time, now what we do is we seek the solution of this 
equation in the form gamma N is equal to alpha N gamma naught, where alpha is a scalar 
quantity which could be complex valued, so upon substituting into this equation I get alpha 
N+1 gamma naught is A alpha N gamma naught or in other words for non-trivial solutions we 
see that this leads to an eigenvalue problem as stated here, and for non-trivial solution the 
determinant of A - lambda I must be 0, so the roots of this equation if I write it as alpha naught 
E raise to I theta, because we expect alpha to be typically complex valued, so I can write the 
complex number in this form where alpha naught is the amplitude, and theta is the phase, so 
gamma N will be alpha naught N exponential I theta into gamma naught.  

So now if we are interested in the asymptotic behavior of gamma N, as N tends to infinity we 
want that if this amplitude of these eigenvalues satisfy this requirement that the maximum value
of this absolute value of this eigenvalue is less than 1 then it guarantees that the solution decays 
to 0, so the behavior of the growth of errors in forward difference scheme is therefore governed 
by eigenvalues of this matrix A, what are the parameters that enter this matrix A? Delta T 
omega and ETA, now ETA and omega are parameters dictated by the problem on hand, on that 
we don't have any control when we are developing the numerical scheme, so the only 



algorithmic parameter that we have is delta T. So now clearly for this condition to be met it will
place the restrictions on delta T, now if we were to see that we will actually find the roots so if I

 now use this equation determinant of A - alpha A is 0 I get this characteristic equation, and this 
is a quadratic equation in this case we can quickly solve that and if we solve this that we see 
that these two, the two roots are given by this. So upon simplification we can show that the 
roots are given by 1 - ETA omega T + - I Omega D delta T, where omega D is the damped 
natural frequency, omega into 1 - ETA square, so bit of algebra will lead to this.



Now therefore what is the maximum value of the amplitude of the eigenvalues, we can compute
that and we get that to be this 1 + omega square delta T square - 2 ETA omega delta T, for 
stability, asymptotic stability we want that this maximum value should be less than 1, so if we 
impose this condition we get the requirement that delta T should be less than 2 ETA /omega for 
the condition of stability to be satisfied, asymptotic stability to be satisfied, so therefore we 
conclude that the forward difference scheme is conditionally stable for damped systems, this 
critical step size that is 2 ETA / Omega this one as we see here is a function of ETA and omega 
so if system has damping then delta, the step size that you should be less than 2 ETA / omega 
for to ensure that the errors don't grow in time, but if system is undamped we see that there is 
no step size which guarantees stability, so this leads to the conclusion that the scheme is 
unstable for all choices of step size for undamped systems. So in an undamped system this 
would mean that the scheme introduces an artificial negative damping into the discretized 
model, which alters the basic physics of the problem, so that alteration in the behavior of the 
system is essentially due to the way we have discretized the governing differential equation, so 
this would indicate that for all different scheme has many pitfalls and we should be cautious if 
we want to use this.



Now let's look at another first-order method that is the backward Euler method, here instead of 
using the forward difference scheme for approximating derivatives we use a backward 
difference scheme, as you would see this switch you know results in a substantial change in the 
qualitative behavior of the integration scheme, so again to see that let’s again start with our 
multi degree damped forced oscillation problem, MU double dot + CU dot + KU = F with 
prescribed initial conditions and time range of interest from 0 to TF. Now let’s consider the time
instant T plus delta T, and we write now the derivative at that point it will involve the 
displacement at T + delta T and at T, so this is the approximation according to the backward 
difference scheme. Similarly acceleration can be written in terms of velocities and suppose if 
you use now the expression for U dot at T + delta T we see that if I solve for UN+1 it will be 
delta T into UN dot N+1 +UN, similarly I get from the backward difference approximation to 
the acceleration I get U dot N+1 is delta T, U double dot N+1 + UN dot. Now clearly you see 
that this is an implicit scheme because the right hand side contains unknowns U dot N+1 and U 
double dot N+1, so it's an implicit scheme.



Now let's return to the governing equation what we done, what we did just now was to obtain 
forward difference approximation to the displacement and velocity, now let's written to the 
governing equation of motion and substitute those approximations, so for UN dot I get this for 
ND1 I get this, that is I am considering equilibrium equation at time TN+1, now this is the 
equilibrium equation as per the forward difference scheme and by rearranging these terms and 
collecting coefficients of U double dot N+1, I get the time evolution of U double dot N+1 is 
given by this equation, okay, so in this let me again emphasize we have got, we have used 
backward difference scheme for approximating velocity and displacement, velocity and 
acceleration terms. So how do we implement this? 



In A version of this implementation is you start with T = 0 and set N = 0, read U naught and U 
naught dot that is this information we have at T = 0 and use this equation in this sequence, first 
we write the expression for acceleration that is given by this, so when N = 0, I am writing U 
double dot 1, so on the right hand side I have U naught dot which is known, U naught which is 
known, FN+1 is known, because F(t) is given to us. Then I go to the expression for U dot 
(N+1), I would have computed this U double dot N+1 in the previous step so I can use that, so 
similarly when I come to UN+1, I would have computed U dot N+1 in the previous step I will 
use that, then I increment N and I will stop this process if I cross TF, otherwise I return to 2 and 
go through this.



Now a more useful scheme up for implementation is if we go back here we notice that at every 
time step we need not invert these matrices, especially if delta T is constant for all time steps 
then this can be inverted only once and that can be stored outside this loop, similarly the 
product of this matrix with this C + delta TK, and K can be evaluated only once and kept 
outside the loop, this is of course valid only if delta T is independent of steps N, for all N where
I am using constant delta T, so in this case I will first store all these matrices and initial 
conditions and the forcing functions and then I will evaluate this matrix M + delta TC + delta T 
square K inverse and product of that into C + delta TK and K, I will evaluate outside the loop, 
then I will start my count N = 0, and then use these 3 relations, so here I am using now BD and 
A, which have been computed outside the loop. Now increment N, and I will stop if I reach the 
final time instant otherwise I return to this, so that means as I am running through these steps 4, 
5, 6 I am not evaluating A, B, and D, repeatedly so this will obviously enhance the speed of 
computation.



Now let’s see how, what are the stability characteristics of the Euler backward Euler method, 
now in the previous study on stability of forward difference scheme we notice that the presence 
of forcing function doesn't affect the matter solidity to stability, so we need not consider a 
forced oscillator but we can consider now in single degree freedom system which is unforced, 
so the finite difference schemes that we are using are listed here and by reorganizing these 
terms I can write the evolution equation as some matrix which is A in our earlier case, and 
UN+1, U dot N+1 is a previous step, so the next step if you want you have to invert this matrix 
and get this, okay, now this matrix we have to know find the eigenvalues of this matrix, that 
means this 1 - delta T this inverse, so this amplification matrix here is inverse of this, this is A. 



Now this matrix we already encountered in the application of forward difference scheme, so we
have found eigenvalues of A there, now we want the eigenvalues of inverse of that so we can 
see that eigenvalues of A can be obtained as reciprocals of eigenvalues of A inverse so that you 
can verify why that is true. Then the characteristic equation we have already solved and these 
were the roots that we obtained for A matrix in the earlier case, so this is this, and the 
reciprocals of that would be this now. 



So now if you separate real and imaginary parts I get this expression for their 2 eigenvalues, so 
the spectral radius which is maximum value of lambda bar is given by this expression. Now we 
want that this spectral radius should be less than 1 for stability, now you observe this there is 1 
here and there are other quantities in the denominator which are all positive, so that would 
mean the denominator here is always greater than 1 for any choice of delta T, so that also means
that the spectral radius is less than 1 for any choice of delta T, so this means the integration 
scheme is unconditionally stable so you can select delta T in whichever manner you want the 
errors won't grow.



Now let me show some numerical results, so let us consider an undamped single degree 
freedom system with frequency, a natural frequency 2 phi, the period will be 1 second, and we 
are starting from 0 displacement and unit velocity that means we are basically computing the 
impulse response function of the system, so let us start with a forward difference scheme and I 
will take about a 100 points in one cycle of oscillation, so notwithstanding that you see that the 
blue line that I am showing here is the result obtained from numerical simulations and we 
already seen that forward difference scheme is always unstable for undamped system and that 
you see here the error is growing, okay, so the system, the discretized system has a negative 
damping. 



Now let us introduce damping, suppose about 3% damping is introduced and we know the delta
T critical we can find out 2 ETA / omega is a critical step size, and if I now take for illustration 
delta T to be 2 times the delta T critical I expect solutions to be, solutions to grow as time 
passes and that's what happens here, because forward difference scheme is unstable if delta TX 
is delta T critical. 



On the other hand if it is exactly equal to delta T critical you see that the blue line amplitude 
remains constant, but still it's not a good approximation for the red line which is the exact 
solution, okay. Now the physical system here has a natural damping but my numerical solution 
appears as if the system is undamped, so this again an influence of discretization which is 
undesirable. Now how do you remedy this if you are using the same method? You reduce step 



size, so I have halved the step size delta T critical by 0.5, so again red is exact and blue is the 
approximate solution. Now the blue lines start showing the DK that we expect but still the 
results are not accurate enough. 



Now I take delta T critical by 20, now I see that the two solutions start comparing quite well so 
the forward difference scheme in this case with the right choice of step size produces stable and
acceptable solutions. 



Now let me take the backward difference scheme, so it is a damped system, this system the 
backward difference scheme is stable for any delta T, so now if I take 25 points in a cycle it 
looks adequate from an engineering point of view, but the numerical solutions show that that's 
not quite adequate because the red line is the exact solution and blue is this, so it's not showing, 
it's showing where the comparison is pretty bad. 



Now instead of 25 points, suppose if I take 50 points in a second there is some improvement but
still not impressive 100 points still not good enough, 200 points there is improvement but still 











not acceptable, 400 points we're nearing acceptance but still not quite there, 800 points seems 
okay but still there are differences, 1600 points the comparison is pretty good so that means if 
you want to use backward difference scheme you have to take about 1600 points in a cycle for 
this case to get a good approximation to the impulse response of the system, this also points 
towards the fact that these methods are a first-order method so you need very small step size to 
get acceptable solutions.



Now I have plotted the norm of the error for the backward difference scheme and the norm that 
I have used is defined here, since we know the exact solution it is X exact - X numerical whole 
square + X dot exact - X dot numerical, and there is a to make units consistent I have divided 
by omega, so this is the norm I have shown and this is with 200 points in a cycle the value of 
this error is about 0.035 and with 1600 points the error comes to about you know 5 into 10 to 
the power of – 3. 



So this is how the backward and forward difference schemes perform with respect to a single 
degree freedom system, so but our objective is really to apply these methods to multi degree 
forced oscillation problems. Now we can make few remarks now, what are the modes of 
unsatisfactory performance of a given scheme? Lack of stability that means errors grow, the 
numerical dissipation and amplitude distortion even if errors don't grow there may be 
undesirable damping induced by the integration scheme which may distort the amplitude of the 
response and it also could lead to distortion of the frequency, then low order of accuracy 
resulting in requiring smaller step size to get acceptable solutions, so these are some 
unsatisfactory features of the integration scheme that we have seen so far. And one more thing 
that we have to notice is stability of the scheme and does not guarantee that solutions obtain 
would possess acceptable accuracy, okay, we have seen now we have used step sizes which are 
quite satisfactory from the point of view of stability requirement for both forward and backward
cases for difference schemes, but accuracy was not always acceptable. 



Now when we apply the integration schemes to multi degree freedom system we need to make 
you know take into account a few facts so I will try to start discussing that, suppose we have 
equation MU double dot + CU dot + K = F(t) with specified initial conditions, and if we are 
integrating this equation numerically that is directly that is without introducing transformation 
on the dependent variable that is known as direct integration, so here we would be integrating a 
set of N coupled ordinary differential equation, that is direct integration an alternative would be 
we will consider this equation but we will make this transformation U = phi Z, where phi is the 
matrix of eigenvectors of the underlying stiffness and mass matrices, and phi transpose M phi is
identity, phi transpose C phi is diagonal, we assume damping to be classical and phi transpose 
K phi is diagonal with elements being the squares of the natural frequencies, with this 
normalization scheme the governing equations for Z will result in a set of uncoupled second 
order ordinary differential equation this we have seen this. So now P(t) is the generalized force 
obtained by using the relation phi transpose P(t) = Phi transpose F, and similarly we can derive 
the initial conditions on Z using the orthogonality relations and the mass matrix of the system. 
Now what we could do is we can integrate each one of these equations numerically find out 
ZN(t) as time history and our interest would be to find elements of U(t) so we had to go back to 
this equation and find elements of U(t), so in a mode superposition method that the numerical 
solution of a differential equation is carried out in the Z domain, and to get back to U domain 
you have to again go back to U = phi Z, the relation U = phi Z.



Now suppose we are doing modal superposition and we consider this set of equations N = 1 to 
N, in a N degree, capital N degree of freedom system there will be N such oscillators and 
suppose if we integrate all these equations with a common step size of delta T, delta T is 
common not only for each mode for at all times, but also the same delta T is used to integrate 
Z1, Z2, Z3 and Z capital N, this would be equivalent to in evaluating U(t) by integrating 
directly the governing equation without doing mode superposition with the same step size delta 
T, so this is something that is very important to take cognizance of. Suppose we are using 
forward difference scheme which is conditionally stable to integrate this equation say MU 
double dot + CU dot KU = F(t), in order that we get stable solutions we need to use a step size 
of delta T which is minimum of 2 ETA and omega N, where these N runs from the first mode to
the last mode.

Now suppose if ETA N is constant for all modes then the critical step size is given by 2 ETA 
omega capital N, that means the highest natural frequency plays a crucial role in determining 
the critical step size if you are using the forward difference scheme, so this places severe 
demand on the step size, because as you go higher up in the frequency the time periods become 
small and our requirements on step size become more and more stringent. On the other hand if 
you use backward difference scheme which is unconditionally stable to integrate this equation 



the scheme would provide stable solution for any step size, so there is no requirement on step 
size from point of view of stability, so the choice of step size now, step size to be used in this 
case is governed by the considerations on accuracy, so here the analyst has to exercise his or her
judgment in selecting delta T, so this calls for engineering judgment that mean we should have 
an idea on how to select step size because any step size that we use will result in stable 
solutions. Now from the numerical schemes and the illustrations that we have shown so far, we 
see that about 800 to 1600 steps within a cycle of oscillations at the highest frequency expected 
in the response has to be used to get acceptable accuracy. 

Now when an conditionally stable explicit scheme is used for  analyzing multi degree freedom 
systems the requirement on step size to ensure stable solution typically results in stringer 
requirements than requirements on step size imposed by consideration of accuracy, that means 
if you ensure that the solution scheme is stable in a multi degree freedom system that means 
you have to go to the highest natural frequency and find out the critical step  size and use the 
step size which is less than the delta T critical then by enlarge the requirement on accuracy 
would be met, because in the response of multi degree freedom systems if we use modal 
superposition often we see that the majority of the contribution to the response would be made 
by first few modes, so if you use now the highest mode in determining step size then you will 
have adequate number of points within a cycle of lower order modes, so that is likely to lead to 
acceptable solutions, so in conditionally stable schemes therefore accuracy is likely to be 
guaranteed if you use step size which is less than critical step size, but it is not a universally 
valid statement but one could typically expect this to happen. 



Now in the methods that we discussed so far we have used first order approximations and that 
led to you know for getting acceptable solutions from point of view of accuracy we saw that we
need very fine step size to be used in the scheme, now that requirement can be mitigated if we 
use now, second order finite difference schemes to approximate the derivatives, so we start 
discussing about or what is known as central difference method, so first let us review quickly 
what is the central difference approximation to a derivative. Suppose I consider U dot(t), I can 
write this in terms of value of displacement at T + delta T/2 and T - delta T/2, so delta T is the 
time difference between these two time instants, and this will have accuracy order delta T 
square. Similarly U double dot (t) I can write in terms of velocities as this. Now for each of 
these U dot and U dot T + delta T/2 and T - delta T/2 I can further use the finite difference 
approximation, so that means what we are doing here is we have time instant T here, and we 
have T + delta T/2, and we have T - delta T/2, so at this point we are writing U dot, so that will 
be the displacement here at T + delta T/2 - T minus delta T/2 by the difference delta T, similarly
acceleration can be written, but now when it comes to approximating velocities I need



 velocities at this point as well as at this point, what I do? I consider other time instant T + 
delta-T and one more time instant T - delta T, so they will start appearing in our approximation 
because we need to get velocity here again central difference method requires the displacement 
here minus displacement here, so that is what we are doing here, so this is the approximation to 
acceleration, this is approximation to velocity. 



Now if I now return to the governing equation of motion this is MU double dot + CU dot + KU 
= F(t), now we will consider equilibrium at time T and we will use for velocity this 
approximation, and for acceleration this approximation, this is what we have derived just now, 
substitute for U dot and U double dot into this equation we get this equation. Now if I rearrange
these terms and collect terms which multiply U(t) + delta T and so on and so forth I get this 
equation. Now the equation for U(t) + delta T can be deduced from this and we get this 
equation, therefore UN + 1 in this approximation will be this matrix inverse into this column 

vector, so to implement this scheme what we should do we will see that. Now if we now, there 



is one point that we should notice so this is the expression for UN+1, now if N = 0, U1 will 
have if you see carefully U naught and U(-1) okay, this will be U(-1). Now what is U(-1)? How 
do we get U(-1)? U(-1) is a hypothetical quantity, so this also means that this scheme is not a 
self-starting scheme, what we do is we manipulate these expressions and get in approximation 
to U(-1) as follows, so we have U naught dot is U(1) - U(-1)/2 delta T, from this I get U1 as 
this, similarly U naught double dot will be this, from this I get this expression. So now by 
solving for U(-1) I get this, so this is what I will be doing and we should notice that U double 
dot of 0 is reducible from the governing equation, so this will be simply M inverse F(0) – CU  
naught dot – KU naught, so U double dot of 0 is known from the definition of the problem 
therefore what the terms that lie on the right hand side of this equation are also known.



Now how do we implement this method? So we can write now the steps so we set N = 0 and 
obtain U double dot of 0 from the governing equation because we know F and F(t) for all T, 
then from this I reduce U(-1) which is this, then I evaluate these matrices I am assuming that 
delta T is constant for all times that would mean the inversion of this matrix need not be done 
within the time loop, within the loops that through which the time advances so that can be done 
outside, so I evaluate all these matrices which I need subsequently outside the loop. Now in this
step I evaluate E1 +1, UN dot and UN double dot, for which we already reduce the equation. 
Now we advance N and we will stop if it crosses the final time instant, otherwise we’ll go back 
and continue advancing the time, so this is the scheme so again you should notice that the 
matrices A, B and D are evaluated only once outside this looping, of course this is possible only
when if we are dealing with linear systems, if the system is nonlinear then at every time T we 
need to solve an algebraic non-linear equation and we will deal with that sometime later.



Now before we consider the questions about stability of the central difference scheme, will 
digress a bit and we discussed what is known as Jury’s criterion. In our stability analysis we 
have already saying if A is the amplification matrix the question that we need to answer is 
whether the spectral radius of A is less than 1 or not, we don't really need to know the numerical
values of eigenvalues of A, we need simply to check an inequality, so that means the question 
we are asking is very simple, far simpler than asking what are the eigenvalues we are simply 
asking whether spectral radius is magnitude of spectral radius, and the magnitude of the highest 
eigenvalue is less than 1 or not, to answer that question there is a simpler strategy which avoids 
the actual determination of eigenvalues and that strategy uses what is known as Jury's criterion. 
So to illustrate that we will consider the polynomial P(z) as A naught Z to the power of N A1 
ZN-1 and this, this is the polynomial where A naught is greater than 0. 

Now Jury’s criterion provides a necessary and sufficient conditions, necessary and sufficient 
condition for the roots of the polynomial to lie within the unit circle in the complex plane, so 
the necessary conditions are P(1) must be greater than 0 and - 1 to the power of N, P(-1) should 
be greater than 0. Now to construct sufficient conditions we construct what is known as Jury’s 



table, the table has this form so from the given polynomial we start constructing these rows and 
the number of rows to be constructed is 2N – 3, suppose this is the second order polynomial 
there will be only one row, so the rows are shown here, the first row clearly provides the 
coefficients of Z to the power of 0, Z to the power of 1, etcetera. The second row is also you 
know derived from that and subsequent rows have B's and C's etcetera where the BCK up to Q 
this continues, so this is a sequence continues, is given by this set of relations so from the given 
polynomial the first step is to construct this table, then the necessary conditions we already seen
P(1) greater than 0, P(-1) to be greater than 0, for N even otherwise less than 0 for N = R, the 
set of sufficient conditions is given by terms contained in this table, and they are listed here. So 
the number of sufficient conditions is actually N – 1. Now the criteria do not provide 
information of the value of the roots that means we are not finding the eigenvalues, but we are 
only checking whether the roots lie within unit circle. 



Now so let's try to now return to the question of stability analysis of the central difference 
method, now let's consider this equation X double dot + 2 ETA omega X dot + omega square = 
R(t) and if we apply now the central difference method I get for XN double dot this relation and
for XN dot this, so substituting that this we have done we get this equation. For reasons that 
will become clear we'll combine this equation with the identity XN = XN and we get this 
equation, so this is a vector of system states at N and N+1 and this is the amplification matrix 
given by this, so the stability of the scheme depends on eigenvalues of A, and eigenvalues of A 
intern depends on the natural frequency, damping and delta T, natural frequency and damping 
are parts of this problem specification so it is not, they are not the parameters that we can 
choose, so the only parameter that we can choose is delta T and by examining eigenvalues of 
this we will be able to tell what is the critical delta T, so we get by formulating A - lambda I 



determinant of that equal to 0 this polynomial equation, this is a characteristic equation. 

Now of course I can solve for this lambda and find out what the eigenvalues are, but let us now 
use Jury’s criteria and see what we get. Now P(lambda) therefore is lambda square minus 
lambda this, this is the polynomial associated with a characteristic equation, the necessary 
condition is P(1) must be greater than 0, so that leads to the requirement omega square delta T 
squared / 1 + ETA omega delta T must be greater than 0, numerator is positive, ETA is positive, 
omega is positive, therefore this requirement is met. Similarly - 1 whole square P (-1) if we 
manipulate we get this expression and this has to be greater than 0, so for this to happen we get 
a condition on delta T and that turns out to be delta T less than 2 / Omega which is this 2 by 
omega is nothing but TN / phi, where TN is the period, 2 phi / omega N.

Now the sufficient conditions how many are there? 2 - 1 which is 1, so that is modulus of A 
naught must be less than modulus of A2, that means 1 should be less than 1 – ETA omega, delta
T / 1 + ETA omega delta,  so this is always satisfied we can see this, examine this and we can 
verify that it is always satisfied. 

So now delta T critical is obtained as 2/omega, so the step size that we select must satisfy the 
requirement that delta T should be less than 2/omega and we can immediately notice that this 
critical step size which is 2/omega is independent of damping in the system, so in the forward 
difference scheme if you recall we got 2 ETA/omega is the critical step size, backward 
difference scheme of course was unconditionally stable but here we get the requirement that 
delta T should be less than 2/omega, so therefore we can observe few properties of this method, 



the method is an explicit method with second-order accuracy, the method is conditionally stable
with critical step size of 2/omega, the critical size step size is independent of damping. 

Now the method requires a special starting procedure, it is not a self-starting scheme and we 
have discussed, we have assumed in our discussion that the step size is constant. Now if M is 
diagonal and C is proportional to M, then this matrix A, if M is diagonal and C is proportional 
to M this matrix will be a diagonal matrix therefore the implementation of the method does not 
require inversion of any matrix, so that is when you are dealing with large system that is 
something that we should take note of, and it is also important to note that this requirement 
may, that M is diagonal and C is proportional the observation that the method does not require 
inversion of the matrix is not particularly significant if you are dealing with linear systems, if 
we are dealing with either multi-step methods or non-linear systems this becomes an important 
observation. If this condition is not satisfied then we need to invert this at least once if you are 
using same delta T, otherwise you have to invert this at every delta T that is if delta T is not 
constant then the matrix needs to be inverted at every step, so this can place severe demands on 
computation if you are dealing with large-scale problems. The method is easily implementable 
even if the system is nonlinear, because it's an explicit method there is no solution of nonlinear 
algebraic equations as time progresses. Now delta T is the only algorithmic parameter to be 
selected and that has to be less than 2/omega. 



So some numerical illustrations, so let's start with an undamped free vibration of a system with 
natural frequency 2 phi, ETA is 0 and will select a step size which is about 5% more than the 
critical step size, so we see that the red line is the finite difference approximation so the error is 
growing and it swamps the true solution, so on this scale the true solution appears like a flat 
line. Now on the other hand if delta T is about 95% of the delta T critical, so things look the at 
least the errors don’t grow but the solution obtained is quite unsatisfactory, okay, the blue is the 
exact solution, red is the solution from central difference scheme. 



Now if I now take step size to be delta T critical/5, the solution starts looking much better, but 
still as you see, as you progress in time there is still a distortion in phase and there is some 
observable difference between blue and the red lines, if you take now delta T, delta T to be delta
T critical / 10 then the solution looks quite good, the red and blue look almost identical, of 
course one can plot the error, norms and examine what exactly are these differences, but 
through these graphs we can see at least qualitatively that the solutions are agreeing quite well. 



Now let’s consider damped system, this critical step size is independent of damping and that 
remains constant, suppose if I take now a delta T to be one point naught 5 times delta T critical 
which is not a right choice to make the solutions will become unstable and that is what we see 
here. 



Now on the other hand if I take 95% of delta T critical, the errors there has no growth of errors 
but still the solution is, numerical solution is very poor, so with factor 5 that means delta T is 
delta T critical by 5, we start getting good solutions, and with delta T critical by 10 I get quite 
pretty good solution. 



Now we want to now study the stability of other integration schemes that I will be introducing 
shortly, central difference method is an explicit second-order method it is conditionally stable, 
so the next question that we need to ask is are there any schemes which are implicit and 
unconditionally stable and have second-order accuracy, so that discussion will take up in the 
next class, as a prelude to that we need to have some idea on what are known as Z transforms, 
that we'll be using in analyzing those other schemes and we can also as well analyze what we 
have already done using this approach, so let’s quickly recall some preliminaries about that, so 
let F(t) be a function of time such that F(t) is 0 for T less than 0, and let S be a complex number,
we define the Laplace transform of F(t) as F(s) 0 to infinity, F(t) E raise to - ST DT. 

Now if F(t) is a sampled, that means it is multiplied by a comb like function, a series of direct 
delta functions, so how does this function look like? It is a series of direct delta functions place 
that a common interval a capital T, now if F(t) is written like this that means, F(t) is sampled at 
all these time instants, the sampled waveform can be written in this form. Now let us consider 
Laplace transform of that so I substitute this into this so upon carrying out the integration I get 
Laplace transform F(s) as N = 0, F(nT) E raise to - SN capital T. Now this can be written as 
F(nT) exponential ST to the power of – N, suppose if I call this quantity E raise to ST as Z, I 
can write this as F(nT), Z to the power of –N, so this quantity is known as Z transform of F(t) 
and it is written as F(z) as this, so this is a discrete version of Laplace transform, so this is the 
definition. 



Now we need to recall some result from geometric progression a series like 1 + R + R square up
to RN is called a geometric progression, and if I multiply now this by R, I get R + R square, so 
on and so forth +R to the power of N+1, suppose if I subtract this I get 1 - R into SN which is
equal to this, from which I get sum of first N terms in a geometric progression to be given by 
this, so if modulus of R is less than 1 then as N tends to infinity SN goes to S which is 1/1-R, 
now we can quickly see few examples if F(t) is a step function, F(nT) will be 1 for all N, 
otherwise it is 0 now using that and using this result we can show that the Laplace, the Z 
transform of a unit step function is given by Z /Z – 1.



Similarly if I have F(t) is KT that means a straight line, then F(nT) will be n capital T and the 
Laplace transform of that we can show through some manipulation that it is given by TZ/Z-1 
whole square, this you can verify. There are few more examples, for example we having 



exponential, if you are having a F(t) as E raise to – AT, then F(nT) will be exponential - anT. 
Now the Laplace transform of this if I do I will get this as Z/Z - exponential – AT, similarly we 
can verify that the Z transform of sin omega T and cos omega T are obtained, through these 
expressions, so I’ll leave this as an exercise for you to verify.



Now a few properties of Z transform can be quickly recalled, the Z transform of AF(nT) is 
AF(z), similarly the Z transform of A to the power of N, F(nT) is FA – 1 Z, Z transform F(t) 
-NT is Z – N F(z), Z transform of F(t) + NT is given by this, okay, now if we now, I mean this 
can be used for K+1, K+2, K+N, so on and so forth, suppose if I now consider Y(k) to be 
summation N = 0 to KX(n),  if we have this Y(k) I can write Y(K) as Y(K-1) + X(K). Now if I 
take Z transform, Z transform of Y(k) – Y (k-1) is Z transform of X(k) which is X(z), so from 
this I get Y(z) to be X(z)/ 1 – Z, so if there is a dynamical system in which evolves as YK = 
YK-1 + XK, then the X(z)/1-Z would be its transfer function. 



Now to make that clear we'll consider a dynamical system with input X(t) and output Y(t), let 
the input-output relation for the sample data be given by this equation, let be Y(n) + A1 Y(n-1) 
+ so few terms up to AK YN-K this is equal to B naught X(n) + B1 XN - 1 and so on and so 
forth, up to N – M. Now if I take now Z transforms on both sides and use identities that I briefly
mentioned we can show that the frequency response function in the Z domain is given by this 
ratio and we get this as the frequency response function. Now the idea of introducing this Z 
transform is basically to visualize the finite difference schemes that we are going to develop as 
a kind of input-output relation of this form, so consequently associated with the finite difference
scheme that we use we can define a frequency response function.

Now this frequency response function will be in the form of a ratio like this and the zeroes of 
the denominator zeroes, and the zeroes of the numerator are known as poles. So the zeroes of 
the frequency response function must lie within unit circle is a requirement that we need to 
verify, so here if you are following this approach we need not formulate the A matrix, the 
amplification matrix instead we can formulate the frequency response function in the Z domain 
and look at the zeros and poles of the frequency response function.



Now to quickly see that let’s say we revisit the central difference scheme and we got this as 
evolution equation, which is this, now if I write this for N I get this equation, on the right hand 
side there will be N – 1, now if I take Z transform I get this equation, so for non-trivial 
solutions you know this bracket, terms inside this bracket must be equal to 0 and this leads to 
the polynomial equation that we are looking for, and this is identical to the characteristic 
equation we obtain by considering eigenvalues of the amplification matrix. 

So now what we can do is instead of applying Jury’s criteria on this, criterion on this we can 
apply the Jury’s criterion on this equation, so in this case will get the same solution as we got 
before because we apply Jury’s criterion on this equation to derive the critical step size, and if 
we had done this using this logic would have got the same answer. 

So now let's conclude this lecture at this stage, in the next class I will ask the question, are there
any second order schemes which are implicit and which are unconditionally stable, so that takes
us to discussion of what are known as Newmark family of methods and we'll take up that 
discussion in the next lecture.
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