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We have been discussing issues related to analysis of equations of motion, we are discussing 
alternative damping models, so we will continue with that discussion, and then we will take up 
two special topics in this lecture, one is on dynamic stiffness matrices, and other one is on 
transfer matrices.



So we have been, we have classified damping models as viscous and structural and each one is 
either classical or non-classical, and we have now developed the expressions for frequency 
response function for all these alternative damping models, there is one way of doing that is to 



simply invert the so-called dynamic stiffness matrix, that is if you have this equation of motion 
it can be expressed in frequency domain and then we get the matrix of receptance functions as 
inverse of this matrix this can be evaluated for every omega, and similarly if system is 
structurally damped this is the expression for the frequency response function matrix, so if we 
are adopting this approach of directly inverting the dynamic stiffness matrix then there is no 
need to worry too much about handling damping matrix, so this procedure is universally valid 
no matter whether damping is viscous or structural or classical or non- classical etcetera, but 
this is a brute force method it doesn’t provide too many insights, it can be computationally very 
demanding, so we would like to develop a kind of an uncoupled approach using natural 
coordinates, and if we have to do that then issues of modeling damping gets closely associated 
with how you compute frequency response function, and we have gone through that exercise 
and we have derived the frequency response function for the different types of damping models,
this is for classical viscous damping, this is for classical structural damping, and this is for non-
classical viscous damping, and this is for non-classical structural damping. 



So in each of this case there is a different interpretation for the natural coordinates, but the 
common feature is that there is a orthogonality relation satisfied by the structural matrices I 
mean the modal matrices with respect to the structural matrices which I enable uncoupling of 
equations of motion.



Now we pose two questions in our discussion or non-proportionally damped systems, the first 
one was what is the mathematical framework to uncouple the equation of motion this we have 
now answered, now there is another question that needs some discussion, this question is this 
are there any simplifications possible so that the damping remains classical and yet at the same 
time we take into account the fact that the structure is made up of subsystems with different 
material, so how do we approach this? So we consider a system made up of NS number of



subsystems, we'll assume that each of this subsystem is made up of different materials and there
are, therefore damping matrix itself can be envisaged as being made up of NS number of 
contributions from each one of these subsystems. 

Now CI here is a contribution to the structural damping matrix from the I-th subsystem, now 
what we will do is let us specify damping ratio as a function of the material in fact this is what 
is done in some design practices, for example the ASME, section 3, boiler and pressure vessel 
code specify the following damping ratios in the context of earthquake response analysis of 
industrial structures, if the structure is equipment it is 2% damping, piping system 5% damping,
welded steel structure 2% damping and so on and so forth, so this is the way of describing 
damping that is model ratios as a function of material is an alternative way of specifying 
damping. 



Now so let us do, try to see how we can handle these details, so again let's C be made up of this 
CI as shown here, and let phi be the undamped modal matrix so that phi transpose M phi is 
identity and phi transpose K phi is the matrix of diagonal matrix of eigenvalues. Now each of 
the subsystem we assume that damping can be represented as a proportional damping 
Rayleigh's proportional damping model for each of the subsystem, so CI is alpha A MI + beta I 
KI, so C therefore can be written in this form.

Now if you now consider phi transpose C phi we can obtain we use this and we will be able to 
write this but it is important to note that this phi transpose MI phi will not be diagonal, because 
MI is simply a contribution to, CI is a contribution to the total damping matrix from the I-th 
subsystem, similarly MI and KI are contributions to the respective mass and stiffness matrices 
from the I-th subsystem to the corresponding global mass and stiffness matrices respectively. So
let’s consider the following, let we will assume that beta I’s are all 0, that is the first case that 
means for each of the subsystem damping is mass proportional. Now if you recall if C were to 
be alpha M in Rayleigh’s proportional damping model the damping ratio for the J-th mode is 
given by alpha by 2 Omega J. Now alpha is a only free parameter, now let us consider phi 
transpose C phi this I will read, write it as 2 ETA J omega J, I am assuming that this is diagonal 
so it is 2 ETA J omega J and this itself is made up of alpha I phi J transpose MI phi J, now if I 
divide by 2 omega J, I will get ETA J as this ratio. 

Now I can take the omega J to the numerator and rewrite this with understanding that phi J 
transpose M phi J is 1, because phi transpose M, M phi is identity matrix this is 1, but we can 



see that the numerator I am getting phi J transpose MI phi J, so this can be, this as an 
interpretation of being the contribution to the total kinetic energy in the J-th mode by the I-th 
subsystem. And similarly this is the denominator can be interpreted as total kinetic energy in the
J-th mode, okay, and this ETA IJ is the ratio, so ETA J now therefore I will be able to 

express in terms of kinetic energy stored in different subsystems weighted by this factor ETA IJ 
and divided by the total kinetic energy in the J-th mode. 

If we now assume that ETA IJ, actually ETA IJ is a function of mode as well as material, now if 
I assume that for a given material damping is constant for all modes then what happens ETA IJ 
becomes independent of J, if it is for example if I have a system made up of say RCC and steel 
and soil and things like that, suppose RCC is 5%, steel is 3%, soil is 10% damping ratios, so for
all modes that is true, so we will assume that ETA IJ can be approximated as ETA I, so I get an 
equivalent damping for the J-th mode of the global system in terms of the material damping and
kinetic energy in different parts of the structure. 

Now the similar argument can be extended if I now take alpha A as 0 and write the damping 
matrix to be in terms of only stiffness matrix, so again if you recall if damping matrix in 
Rayleigh’s model if damping matrix is proportional to stiffness the J-th damping ratio is beta 
omega J/2 okay, let’s go through this calculation now phi J transpose C phi J is 2 ETA J omega 
J, and this should be equal to some summation beta I phi J transpose KI phi J. So I will again 
right expression for ETA J by dividing by 2 omega J, I get this. Now I will rewrite this in a 
slightly different form as shown here and for omega J square I will write phi J transpose K phi 
J, okay, so I am multiplying and dividing by certain constants so that the expression by 
mathematical is not altered but I will be able to interpret terms in terms of energies. 



Now so ETA J in this case will be again contribution to the total potential energy in the J-th 
mode by the I-th subsystem, that is what I will interpret this phi J transpose K phi J as, and the 
denominator which is phi J transpose K phi J is a total potential energy in the J-th mode, there is
a factor of half of course, now if you assume that modal ratio for I-th subsystem is independent 
of frequency that is mode count J, then ETA IJ can be written as ETA I, so the equivalent 
damping for the J-th global normal mode in terms of damping ratios for different materials is 
thus given by this ratio, so what you need to do is for a given mode shape you need to compute 
the strain energy in the system and the total strain energy will appear here in the denominator, 
and for each subsystem made up of a particular material you should compute what is the 
contribution to the total strain energy, multiply that by the damping ratio as relevant to that 
material, so sum it and divide by this total potential energy will get the equivalent damping for 
the J-th subsystem, the J-th mode for the global system. 



A generalization of this of course would be phi transpose C phi is taken as you know alpha I phi
transpose MI phi + beta I phi transpose KI phi, now again if you recall if damping matrix is as 
per the Rayleigh’s proportional damping model alpha M + beta K ETA J which is the damping 
ratio in the J-th mode is given in terms of alpha and beta and omega J through this expression. 
Now we will construct now phi J's transpose C Phi J which is 2 ETA omega J, now on the right 
hand side I will have this expression. Now ETA J will become now some of these 2 terms so we
cannot now interpret these terms, in terms of energies so if you want to use this model the user 
has to specify the ratios alpha and beta I for different subsystems, not the damping ratios for 
different materials, but of course it can be related to the damping ratios of the material if one 
does free vibration analysis of individual subsystems uncoupled from the remaining 
subsystems, so in this model alpha and beta I need to be specified for all subsystems this can be 
accomplished in terms of known damping ratios for each material by performing a separate free
vibration analysis for each of the subsystems in the uncoupled states, so this requires additional 
effort, okay. 



Now before we leave this topic we can consider one more mathematical complexity this is what
would happen if structural matrices are asymmetric, we have been dealing with even when we 
dealt with non-proportional damping we configured our equation of motion in such a way that 
all the structural matrices were symmetric, now it may so happen that either we choose to 
configure our equations in a way that we don’t end up handling unsymmetric matrices or 
alternately there may be physical problems, for example as in case of gyroscopic systems where
the structural matrices could be asymmetric, now I will not get into the genesis of asymmetry in
structural matrices but I will outline what one could do to uncouple equations of motion if one 
encounters asymmetric matrices, so what I will do is to illustrate this I will start with traditional
equation of motion MU double dot + CU dot + KU = F(t) and for purpose of illustration we'll 
assume that all these structural matrices MCK are all symmetric, okay, they are not asymmetric,
but now what I will do is I will introduce a new coordinate system wherein in the transformed 
coordinate system the matrices become as symmetric, so suppose if I do introduce a vector X in
terms of YI and Y double I, as U and U dot, so if YI dot will be U dot, U dot is Y double I. 
Similarly Y dot double I is U double dot that I can derive from the equation of motion.

Now if I rearrange these terms in a set of two and first order equations I get this equation, so I 
can write this as X dot = AX + F(t), now this A matrix here is a 2N cross to N matrix, you can 
see here this is A matrix, and this is clearly not symmetric, okay, so now the question we are 
asking is how can we uncouple the equation of motion if one encounter this type of equations. 



Now let us start with the usual approach we wish to introduce a transformation X = TZ, such 
that after transformation we get a set of 2N uncoupled first order equations, now the question is 
how to find capital T? As we have been doing till now suppose if we start with the free 
vibration problem X dot = AX and seek the solution in the form phi E raise to ST, this is fine 
because this is a set of linear differential equations with constant coefficients so exponentials 
are always solutions, so for some value of S this could be a solution, so phi and S are unknown, 
so now I will substitute into the governing equation and this I get this eigenvalue problem that 
means this type of solution is admissible provided S and phi satisfy this equation, where A is 
the structural matrix relevant to the problem. 

So this is an algebraic eigenvalue problem A is 2N cross 2N, so let SI,  S1, S2, S2N be the 
eigenvalues and associated eigenvectors be phi 1, phi 2, Phi 2N. Now let us blindly follow the 
procedure that we have used earlier to reduce the orthogonality relation, so we’ll just follow the
procedure as we have been doing and see where we get stuck if at all, so let us consider J-th and
K-th Eigen pairs, so the governing equations are A phi J is SJ phi J and A phi K is SK phi K, so 



name these equations as 1 and 2. Now pre multiply 1 by phi k transpose so I get phi K transpose
A phi J, SJ phi K transpose phi J. Now similarly pre multiply equation 2 by phi J transpose, so I
will get this equation. 

Now let us transpose both sides of equation 4, so I get phi K transpose A transpose phi J = SK 
scalar that remains as it is, phi K transpose phi J. Now at this stage we should notice that A 
transpose is not A, so we now have the fact that A transpose is not A, so we get stuck at this step
if we blindly follow the procedure that we have used earlier, so what we are doing earlier we 
will subtract equations say 3 and 5, the right hand sides are the same, but the left hand sides are 
not the same, so we will not get the required orthogonality relation or in other words phi K's are
not orthogonal to A, okay, so we can’t use eigenvectors of A to uncouple the you know 
equations of motion, so how do we proceed? So what we do is we define B as A transpose and 



we note that A and B would have the same eigenvalues but different eigenvectors, okay, so if A 
is a symmetric, B is A transpose, the eigenvalues of A and B would be the same. Now consider 
the eigenvalue problem now B sai = S sai, that is now since S is eigenvalue of A, it should be 
eigenvalue of B also so we can retain that here, sai is the eigenvector associated with matrix B 
which is A transpose. Now again let S1, S2, S2N be the eigenvalues and these be the 
eigenvectors sai 1, sai 2, 2N. 

Now let us again consider J-th and K-th Eigen pairs I get these two equations, that is what I do 
is the J-th Eigen pair is SJ phi J that is the Eigen pair for the first system of equations, that is A 
phi is S phi, SK sai K is the Eigen pair corresponding to the B matrix, B sai = S sai, so the 
eigenvalue problems are A phi J is SJ phi J, B sai K is SK sai K, so named this as 1 and 2, pre 
multiply 1 / sai K transpose and pre multiplied 2 / phi J transpose, if I do that I will get these 
two equations, so sai K transpose A phi J is SJ sai K transpose Phi J, similarly phi J transpose B 
sai K is SK phi J transpose sai K, named it has 3 and 4. Now let us transpose both sides of 
equation 4, so what I will get sai K transpose B transpose phi J transpose, transpose of phi J 
transpose is phi J itself, so on the right hand side it is SK which is scalar, sai K transpose phi J. 
Now B transpose is A, so therefore I can write it as sai K transpose A phi J, right, so because B 
is A transpose, call this as equation phi. Now if I subtract 3 and 5, I get SJ – SK is sai K 
transpose Phi J, so that would mean sai K transpose phi J is 0 for K naught = J, and sai K 
transpose A phi J is 0 for K naught = J, so this is the orthogonality relations that the 
eigenvectors of A and A transpose satisfied, so we need to therefore solve two eigenvalue 



problems, first of all each eigenvalue problem is of size 2N / 2N, not only that we have to solve 
two of them. 

So we can select the normalization constant so that sai K transpose phi J is a Kronecker Delta, 
so if I now denote capital Sai as the matrix of eigenvectors of the second system and matrix phi 
as a matrix of eigenvectors of the first system, I have sai transpose phi is I, and sai transpose A 
phi is diagonal of SI. Now how does this help us to uncouple the equations, so let us start X dot 
= AX + F(t) with X of 0 is X naught. Now let us make that transformation X = phi Z, I get this 
equation, now instead of pre multiplying it by phi transpose, I will pre multiply by sai 
transpose, so I will get sai transpose phi Z dot, this sai transpose A phi is Z + I transpose F. Now
we know sai transpose phi is identity matrix, sai transpose A phi is a diagonal matrix with 
eigenvalues appearing on the diagonals, so I get therefore a set of uncoupled to an uncoupled 
equation. Sai transpose F is the generalized force, so I will get this equation, for K =1, 2, 2N, so
these are first order equations which can be solved, and initial conditions, so to find initial 
conditions I use this relation I pre multiply by sai transpose I get this, that is after making the 
transformation X = phi Z, I pre multiply by sai transpose I get, so equations are uncoupled, so 
the point is therefore we can uncouple equations of motion in a very broad class of linear time 
invariant system problems, and that always helps us to represent solutions in a somewhat 
revealing way as a summation so we can understand the behavior of the resulting transfer 
functions by considering contribution from each of these terms in the summation. 



Now we now move on to a special topic, we know now that FEM is after all an approximate 
method, we are using now models from FEM that is the models resulting from application of 
finite element models in calculation of frequency response functions, now there are 
approximations in this, what are the approximation? The spatial discretization and errors due to 
interpolating field variables within an element using polynomials, okay, the given domain is 
represented approximately through a mesh that we adopt for making the finite element model 
and within an element we are using the nodal coordinates and interpolating the field variables 
using interpolation function, so both contribute to errors. And if you are using a modal 
superposition method to derive the frequency response function there is questions about errors 
resulting from modal truncation, so this would mean that a finite element model has limits on 
spatio-temporal scales within which the solutions remain etcetera, right, a given finite element 
model cannot be used to resolve you know the field variables in space, there is a limit on that 
and in frequency or in time.

So now this leads us to ask the question, can frequency response function of skeletal structures 
be evaluated exactly, that is within the framework of beam theory used, if so these solutions can
serve as benchmarks to validate approximate solutions. Now indeed such approach is possible 
and that is the issue that will be briefly visiting that takes us to discussion of dynamic stiffness 
and transfer matrix methods, so what we will do is we will start by considering an actually 



vibrating rod, in this discussion the forcing functions are all harmonic and we are focusing on 
steady-state behavior, that means system is damped and their steady state exists and we are 
focusing on steady-state behavior. 

So now let us consider an axially vibrating rod with field variable U(x,t) AE, M and L are the 
properties axial rigidity mass per unit length and span of the rod, and let’s assume that there are 
harmonic actions P1 E raise to I omega T, and P2 E raise to I omega T resulting in 
displacements delta 1 E raise to I omega T, and delta 2 E raise I omega T, so what is the 
condition under which all this can coexist, that is a question. So we can write now the equation 
for the axial vibration and see what we get, so we will assume that the rod is homogeneous so 
the governing equation will be AE dou square U / dou X square plus a structural damping term 
plus a viscous damping term which are proportional to the strains that is equal to the inertial 
term MU double dot plus a viscous damping term and a structural damping term which are 
proportional to velocities, so these two damping terms are proportional to structural velocities, 
and these two damping terms are proportional to structural strain rates, okay, strain rate in time. 

Now what are the boundary conditions at X = 0 this is a displacement, delta 1 E raise to I 
omega T at X = L this is a displacement, and we are assuming that the force, these coexist 
therefore the other boundary conditions are on forces are this, this is actual thrust which is P1 E 
raise to I omega T and at X = L it is P2 E raise to omega T, so under what conditions can the 
displacement delta 1 and delta 2, E raise to omega T can co-exist with forces P1 E raise to I 



omega T, and P2 E raise to I omega T, that’s the question, so we will assume now the solution 
to be of the form phi(x) E raise to I omega T, why? Because the system is linear, it is being 

driven harmonically, system is linear time-invariant driven harmonically and we are interested 
in steady-state behavior, so such systems always display a harmonic response behavior at the 
driving frequency, so the solution is of this form. Now substitute this into the governing 
equation, the time the derivative with respect to time will be taken care of, and I am left with an
ordinary differential equation in space which is phi double prime lambda square phi = 0, where 
this parameter lambda square is given by this ratio which is independent of spatial coordinate 
and time, but you must notice that this frequency of driving which is present here. 

Now this is a second order linear ordinary differential equation so this is the A cos lambda X + 
B sin lambda X are the solutions, so now let us start with the boundary conditions on 
displacement phi(0) is delta 1, phi(l) is delta 2. Now if phi(0) is Delta 1 you look here phi(0) is 
A that must be equal to A, phi(l) is delta 2 therefore A cos lambda L + B sin lambda L is this, so
therefore delta 1 and delta 2 must be equal to 1 0 cos lambda L sin lambda A B, so A B 
therefore can be written as inverse of this into delta 1, delta  2, okay. 



Now let us look at the questions on the forces, now AE phi prime(x) is this from the assume 
solution, therefore at X = 0, I get AE phi prime(0) is – P1, which is P1 AE B lambda, at X = L it
is P2 that is AE phi prime L is P2, so if you substitute that I get this equation. So now P1 and P2
are related to A and B through this matrix equation, which is actually assembled from this 
equation and this equation, so that is this, so consequently now I have A and B in terms of delta
1 and delta 2, that is what I have derived, and I am expecting delta 1, delta 2, P1, P2 to coexist 
therefore I should get same AB, so substitute for AB I get this. So now this matrix that AE into 
this into this inverse of this, this matrix is called a dynamic stiffness matrix for the rod element,



 so if you carry out this simplification you can show that the dynamic matrix is given in terms 
of cotangent and cosecant functions which is given here, so therefore I get AE lambda into this 
matrix is delta N to P, so something like KX = P, in static equilibrium equations, in static is of 
the form, static problems is of the form KX = P, so now this is something like D delta = P where
D is the dynamic stiffness matrix, so it depends on not only elastic properties, it also depends 
on inertial and damping properties and the driving frequency, so that is why the word dynamic 
stiffness matrix. 

Now this lambda is a complex valued number due to the presence of damping, if you look at 
expression for lambda this I is imaginary square root of -1, if damping terms are 0 that means 
H2, C2, H1, C1 are 0, then lambda square is M omega square by AE which is real valued, but in
due to presence of damping the lambda is complex value, consequently the dynamic stiffness 
matrix is also complex valued. Now you can see that D is symmetric but it is not Hermitian, 
now if you do now if the same problem were to be analyzed using a finite element method with 
one element, I would get this as the dynamic stiffness matrix where M is this, K is this, and C 
and D bar to be suitably chosen. 



Now we will see that quickly as an example so let’s consider a rod which is fixed at the left end 
and driven harmonically on the right side by 4 P E raise to I Omega T, so and let the system 
have, let the system damping be made up of both structural and viscous damping therefore 
lambda will be given by this, so this is the equilibrium equation at X = 0, delta 1 is 0, and at X 
= L, P2 is 1, so now the unknowns are the reactions at X = 0 which is P1 and displacement at 
the free end which is delta 2, so if we solve these equations I will get delta 2 as tan lambda L / 
AE lambda and the reaction as minus secant lambda.



Now the same problem if I were to solve using the finite element method that we have 
developed with linear interpolation functions I will get the similar, somewhat similar equation 
and this we have done already, this is a mass matrix, this is a stiffness matrix and we will 
introduce damping as in the simplified equation so we have got this expression if you recall we 
have tackled this problem, so the ST tends to infinity the displacement at the free end this will 
be the amplitude, and at T tends to infinity as a function of space this will be the solution. Now 
instead of using one term approximation right I will now introduce an additional node and do 



now this system will have 2 degrees of freedom, that is U2 and U3 and this end is fixed, so a 2 
degree approximation I can get a governing equation to be this and reaction is this, so I can 
solve that problem this problem also can be solved. 

Now let us assume some numerical values and plot the responses, the blue curve that you see 



here is a result from dynamic stiffness matrix using trigonometric functions, so this is actually 
the solution I have got here tan lambda L / A lambda and this minus secant lambda L, so this is 
displacement, blue line is this. The red line is finite element solution with one mode, that is one 
degree of freedom, the black one is finite element model with two elements, so you can see here
that with one element the response acceptability of the response ends somewhere here over this 
frequency range the one degree of freedom model is acceptable, for a 2 degree of freedom 
model actually it qualitatively captures the second peak, but still the answers are not good but 
as far as first mode is concerned it is lot better than results from a one mode of approximation, 
that is a single degree freedom approximation.



Now how about the reactions, so this blue line is again the solution from dynamic stiffness 
matrix method using trigonometric functions, and red one is one element model that is single 
degree freedom model, black one is 2 degree of freedom model, again the qualitative features 
observed are similar to what we observed in displacement, the two degree of freedom model 
qualitatively is acceptable at least in the sense that it has 2 peaks, but quantitatively it is not 
acceptable even for the behavior near the second mode whereas first mode it seems to be better 
than the solution from the one mode approximation. 



How about in space? Suppose I fixed the frequency and plot this function, this function 
displacement as a function of space for a fixed value of frequency and that I can find A and B



 and plot from the dynamic stiffness matrix of a function approach also, so I have not named the
frequencies here, what has been done is these lines I have selected few frequencies you can see 
that as frequency is varied the wavelengths of oscillations in space also increases, higher in the 
frequency region there are more waves within the rod, so this is a depiction of how the system 
responds in space for different values of frequencies, so if you are using one mode  
approximation you will be getting a straight line as a solution in a classical FEM, okay so that is
not acceptable if you cross the frequency and go to higher frequencies where we get, we can 
expect to get more oscillations in space.



Now the earlier calculation was for one chosen damping model only the velocity dependent 
viscous damping model was included, now I have changed some of the damping models and 
qualitatively I am showing the spectrum of the displacement, amplitude spectrum of the 
displacement this is for presence of both structural and viscous damping, this is the reaction, 



this is the force, so we could play with this and see how different parameters of the problem 
will influence the solution, so the good thing about these solutions is that they’re exact, whereas
you can easily see here the finite element approximations you know aspire to serve as 
approximations to these curve, so they have limited range of validity in frequency and also in 
space. 



Now I will discuss this for axially vibrating rod, the same exercise can be done for an Euler 
Bernoulli beam, so Euler Bernoulli beam again I consider you know one translation rotation at 
each node, there are two nodes and these are the model parameters, so again I assume harmonic
displacements and harmonic bending moment and shear force at the ends and ask the question 
when they can coexist, so this is a governing equation so again this is strain rate dependent



structural damping, this is strain rate dependent viscous damping, inertial term, velocity 
dependence viscous damping, velocity dependence structural damping. Now these are the 
boundary conditions on displacements and on applied forces, bending moments and shear 
forces, so again the question we are asking is under what conditions can the displacements delta
K E raise to I omega T and the forces coexist. So how do we tackle? Again we consider the 



governing partial differential equation and seek the solution in this form where sai (x) is 
unknown spatial function then time it is harmonic, because again we are considering steady 
state behavior, system is linear driven harmonically response will be in steady-state harmonic at
a driving frequency. So now you substitute into this I get a fourth order ordinary linear 
differential equation and the parameter lambda now has a different meaning as displayed here is
somewhat similar to what we got in the problem of analysis of axial vibration, but a few details 
are different so this is a fourth order equation therefore the solution will be in terms of sin and 
cosine functions and sin H and cosine H functions, A, B, C, D are the constants of integration.

Now I can now impose the boundary conditions on displacements, so this is the equation for 
displacement, and this is for the gradient so at X = 0, sai (0) is Delta 1, I get that must therefore 
be equal to B + D, sai prime of 0 is delta 2 therefore that must be A lambda + C lambda, sai (l) 
is delta 3 and it will involve all the terms, sai prime (l) is delta 4 it will again involve all this, so 
in the matrix form the deltas and this A, B, C, D are related through, related to each other 
through this 4 by 4 matrix. So if I am interested in A, B, C, D in terms of delta 1, delta 2, delta 
3, delta 4, I need to invert this matrix.



Now how about the boundary conditions on forces, so I need the second and third derivatives so
we can differentiate sai (x) once, twice, and thrice I get all these terms. Now at X = 0 the shear 
force is P1/EI that must be equal to this, the bending moment EI sai double prime(0) is given 
there, similarly at X = L, term coming from shear force and term coming from bending 
moment, so I can write these equations relating A, B, C, D to P1, P2, P3, p4 through this 4 by 4 



matrix, we already have A, B, C, D to be equal to the inverse of the earlier matrix multiplied by 
the displacements, so for A, B, C, D if I write this I will be able to relate deltas to the P’s so that
is this equation. So this matrix into the inverse of this matrix into deltas, so this product of these



2 matrices multiplied by EI is the structural dynamic stiffness matrix, so that you can simplify 
and show that it is of this form, okay, I use the notation s lowercase and uppercase S, lowercase 

c and capital C and they have these meanings. Again elements of dynamic stiffness matrix are 
complex valued because of presence of damping, and the dynamic stiffness matrix is 
symmetric.



Now we can again quickly consider a simple example a propped cantilever in which there is an 
applied bending moment E raise to I omega T at the support, so this is the nomenclature for 
degrees of freedom and these are the boundary conditions. So now if I use the classical one



 element finite element approximation using Hermitian polynomials I will get this equation, and
this we have done earlier, similar problem so the steady-state amplitude of rotation here that is 
U4 is given by this expression, okay, this is a one degree freedom approximation to the 
vibrating beam.



Now on the other hand using the dynamic stiffness matrix with trigonometric functions this is 
the equilibrium equations, Delta 4 is unknown the reactions R1, R2, R3 unknowns, so there are 
4 equations and 4 unknowns, the equation for delta 4 will take me to this expression and delta 4
will be this, this is exact, there is no error here as far as spatial discretization is concerned, and 
there is no model superposition either, so let's plot this, so the red one is a result from the 



dynamic stiffness matrix analysis, it continues to be valid for a wide frequency range, whereas 
the blue one is a solution from one mode approximation from FEM, qualitatively it is fine, it is 
picking up this first mode but there is an error I think even this error we have computed in our 
earlier calculations it was that number is there in our earlier lecture so there is a even the 
location of the peak is not correct, but qualitatively it is okay at least up to some frequency rate,
so this is the result for slope for the same exercise, so as far as comparison is concerned I have 
only these 2 comparisons. 



Now we can for purpose of illustration we can return to one of the examples that we have 
tackled a beam with a hinge and a roller, inclined roller we have solved this problem, now what 
we will do is we will assume that this system is driven harmonically along one of the 
coordinates F1(t) is E raise to I omega T, and how this system behaves, so if you recall we have 



made a 6 degree of freedom approximation for this and I am not going to give all the details, 
I’ll leave this is an exercise so you can form the 6 by 6 dynamic stiffness matrix using the 
dynamic stiffness matrix that we have derived just now and go back to the finite element mass 
and stiffness matrices, and this is the result that I have got from using the dynamic stiffness 
matrix approach for displacement, that is amplitude response of U1(t) and U6(t) okay, so I’ll 



leave it as an exercise for you to compare these results from 6 degree of freedom finite element 
model and this approximation.



Now we can also notice that I mean we can expect that there will be a relationship between 
dynamic stiffness matrix and the classical elastic stiffness and consistent mass matrix obtained 
using linear interpolation function for say actually vibrating rod, so the dynamic stiffness matrix
and the equilibrium in frequency domain was obtained earlier as this, now this is the dynamic 
stiffness matrix, now if we use Taylor's expansion around omega = 0 and expand these terms in 
this matrix you can show that this AE lambda cot lambda L which is this term if you expand the
first term will be AE by lambda, second term will be M omega square L/3 and some higher 
order terms, similarly the other term also can be expanded and we get this. Now if we assemble 
them in matrix form, this matrix can be expanded the first term will be the elastic stiffness 
matrix, the second one will be the consistent mass matrix, and higher order terms are of order 
omega to the power of 4, this is what we are ignoring and that’s why we are getting all the 
approximation. Of course this is not a serious dead end for application of finite element method 
because we can always increase number of elements and increase the size of the problem and 
get better approximations.

Similarly for Euler Bernoulli beam if one were to do the Taylor's expansion we will get the, if 
the dynamic stiffness matrix is expanded in frequency at omega = 0, the first term will be the 
elastic stiffness matrix, the second will be the consistent mass matrix and then we have higher 
order terms, okay, so this is an interesting property that explains the plots that we have obtained
till now. 



So we can make some remarks now so the dynamic stiffness matrix approach provides exact 
frequency response functions for skeletal structures that is within the framework of beam and 
rod theories that we adopt, no errors due to modal truncation or errors due to polynomial 
interpolation functions occur in these calculations, so therefore these solutions can form basis 
on which approximate solutions can be validated, that is its use that I perceive in this context of 
finite element course. 

Now it has great flexibility in treatment of damping that again adds to its value, then the 
problems with the dynamic stiffness matrix is extension to 2 or 3 dimensions, for example plate
problems or shell problems etcetera is not straightforward and often is simply not possible for 
various boundary conditions and geometries and so on and so forth, also this method ceases to 
be applicable if system behaves nonlinearly because a basic fact that we are assuming is that a 
harmonically driven system in steady state response at a driving frequency harmonically and 
that property is valid only for linear time-invariant systems, so moment the system non-linearity
is included in the modeling this approach becomes invalid. 

Now again if a structural elements are inhomogeneous spatially varying say elastic constants 
and so on and so forth, it is possible in principle to develop the elements of dynamic stiffness 
matrices by solving a set of initial value problems, but that would bring in some 
approximations. Alternatively after going into the frequency domain a finite element like 
solutions can be developed for such system, by such systems I mean inhomogeneous systems 
linear for linear time invariant problems after removing time we get a special problem that can 
be tackled using finite element method but the shape function then would be functions of that 



lambda which is a frequency, so such approaches are on a spectral finite element methods 
where the trial functions are functions of the driving frequencies, the trial functions are 
functions of driving frequency that helps you know treatment of dynamic problems as if they 
are static problems, this could also be trigonometric functions derived for the homogeneous 
elements but the computations would become tedious, but the advantage would be that the 
shape functions will adapt to the frequency of excitation, we need not refine the mesh if 
frequency increases. 

Now before we close this discussion there is one, yet another alternative approach which is in 
principle does whatever dynamic stiffness matrix does, and that approach is known as transfer 
matrix method, so to describe that we again return to the problem of axially vibrating rod, now 
what we do is at every station X = 0, I call the displacement and the force as the state vector, so 
state vector at the left end is delta P, at left end is delta PL and at the right hand is delta PR, and 
I want to relate the system states here to the system states here through a transfer matrix, so that
is what I want to do, so how do I do that? So we can do that by various alternative routes but 



since you already discussed dynamic stiffness matrix approach we can derive it from dynamic 
stiffness matrix, so we consider the equilibrium equation for the system in the steady state in 
the frequency domain which is given by this. Now we rewrite this equation, the first equation 
will be AE lambda cot lambda L into delta 1 – cosec, this P1 I will take to the right hand side 
and the cosec term I will take it to the right hand side, that means what I am doing is on the left 
hand side I am collecting terms involving states at left hand. Similarly the second equation I 
will get in this form, so now delta 1, P1 which is the system state at the left station is related to 
delta 2, P2 which is the system state at the right station through this equation, so the transfer 
matrix obviously will be, you have to get delta 2, P2 in terms of Delta 1, P1 and this product is 
the transfer matrix, so that is T is this, so if you multiply this we get this as a transfer matrix. 



Similarly for Euler Bernoulli beam we can do a similar exercise, the system state should be now
consisting of translation, slope, bending moment, and shear force, okay, so the state vector is 4 
cross 1, so the transfer matrix will be 4, 5, 4, how do we get that, so again this is the 



equilibrium equation in frequency domain, we expand and rewrite all this and on one side we 
collect terms or involving states at one station and on the other side terms involving states on 
the right side, if you do that I get this matrix equation 4 by 4 matrix into delta 1, delta 2, P1, P2,



which is translation, slope, shear force and bending moment at X = 0 is related to the similar 
state at X = L through this equation.



Now my objective is to relate what happens on the right side, right hand side to the left hand 
side and the transfer matrix is given by inverse of this into this, okay, so now I carry out this can
be multiplied I am not going to give all the details we can code it up and see how what we get. 



Now a simple example we can start with in study of an undamped single span beam, so this is 
the beam so you look at now left side delta 1 which is translation is 0, delta 2 which is the slope
which is non-zero unknown, P1 which is a shear force which is unknown, P2 = 0 which is the 
bending moment which is 0 at X = L, and translation is slope or zero, but there is bending 
moment and shear force, okay, if a system is vibrating harmonically this will be the equation, it 
may do so under free vibration conditions, okay, under some initial conditions.

Now we expand this and we get this equation, okay, now delta 2L and P1L which is the 
unknowns at the left end is given by this, and for non-trivial solution the determinant of this 
equation must be 0, so this gives an equation for omega which are the natural frequency of the 
system, okay, so using this approach given we can compute natural frequencies. 



Now the same calculation can be done if beam is inhomogeneous and made up of say N 
sections so in each sections assume that flexural rigidity and mass per unit length are changing 
and lengths could be changing, okay, so I can use the transfer matrix now I start with X = 0, 
multiplied by T1, I will get transfer system state here and that system state multiplied by T2 
will give me system state here and so on and so forth, so when I reach the right end this will be 
the equation okay, so again we if you write these equations the characteristic equation will be 
given by in terms of the system transfer function which is product of T1, T2, T3 up to TN, okay,
so this will help us to find the natural frequency. This is again exact although the beam is 
inhomogeneous this formulation is exact, so the beam is, of course the beam is made up of 



piecewise uniform sections, so we can get the characteristic equation and tackle this problem, 
and how do we get mode shapes, 



suppose I have finished solving this so at the end I would have got this, non-trivial solutions for



this, so again the eigenvectors are non-unique to an extent of a multi, constant multiple so one 
of the degree of freedom I can assign an arbitrary value, right, so what I do? I write that 
equation for the first segment and start with the known solution, so I will get solution here, that 
I propagate and when I reach here if all my calculations are 0, the delta 1 and delta 2 must be 0, 
that is a cross check, so you get that displacement pattern and that can be normalized later on to 
the desired normalization criteria, so these are the steps you fix omega at one of the natural 
frequencies, you start with delta 2 = 1 at station 0 which is left hand side and you get this, 
therefore you get P10 is equal to this, and you can also get the reaction at the right end although
it is not needed in this calculation, at this stage you can get P3N and 4N, N is a last station, this 
will help us to validate our calculations after we reach by multiplying the various matrices 
when we reach the right end we should get the same forces as we got here, that shows that our 
calculations are right. 



Now determine the state vectors for I = 1, 2, N using the transfer matrices, upon reaching the 
station N the states arrived at must match the ones obtained in step 1, okay, at this stage modal 
deflections are available only at N + 1 junctions, how do you get mode shapes within an 
element? You form now a transfer matrix which takes system states from this end to some point
within wherever you want the mode shape, so that you can repeat it whatever resolution you 
want and you will get you can trace the exact mode shape that allows for the actual special in 
homogeneity, later on you can evaluate the normalization constant and scale the mode shapes as
is needed. Now once the mode shapes are obtained you can do a frequency response function 
calculation in terms of modal superposition, but it so happens that if you are not interested in 
calculating mode shapes you can directly do the response analysis without computing the mode 
shapes, so how do we do that? To explain that let’s consider the same problem at one end I 



apply now a harmonic moment E raise to I omega T, I want to analyze the response of the 
system, the system has N inhomogeneous, N piecewise uniform beam sections, which are all 
you know that is not identical, so again I write the equilibrium equation in terms of transfer 
matrices now, I get this as the equation, so delta 3 and delta 4 at X = L are 0 P3, P4 are 
unknowns, at X = 0, delta 1 is 0, but delta 2 and P1 are unknowns, but there is an applied 
bending moment whose amplitude is 1, so that will sit here, so this you have to use now to 
propagate the you know the states, so first what I will do is we need to solve for delta 2 0 and 
P1 0 for that I can use the equation this equation in the first, I mean this equation and I will get 
delta 2 0, and P1 0, then subsequently the reaction at the other end is also obtained using this.



Now you want at any junction K, the response you use this, up to K you multiply the transfer 
matrices you will get the response at any K-th junction, okay, and if you are interested in a 
response within a subsection you have to replace the transfer function matrix now has to be 
written up to that value of X, not up to the end of the element but within an element whatever 
distance you want to move that X you have to put in your formulation and get this, both this 
dynamic stiffness matrix and transfer matrix methods are special techniques, they have the 
potential to provide exact solutions and since finite element method invariably leads to 
approximate solutions it is nice to have an alternate solution where the solution are exact, so 
skeletal structures can be handled in an exact manner in frequency domain using dynamic 
stiffness matrix and transfer matrix also can do many things exactly, so this is a point that I was 
trying to make. 

Now in the next lecture we will now move on to certain modeling issues, we have been talking 
about analysis of equation of motion, will halt that discussion for a while now, we will go to the
discussion of grids and 3 dimensional skeletal structures in the next lecture, so this lecture 
concludes here.
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