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Good morning and welcome to this the lecture number 8 of the course Water Resource 

Systems Modeling Techniques and Analysis. In the previous lectures we have been 

discussing optimization of Functions of multiple variables with constraints; that means, 

we have now entered into the domain of constraint optimization and specifically in the 

last lecture I talked about the Kuhn Tucker conditions commonly called as the K-T 

conditions, which are necessary conditions for any optimization problem if it it has to 

have a optimal solution. 
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 So, we discussed about a general problem of this type minimize f of X and X is a vector 

of decision variables X 1, X 2, etcetera X n, there are n number of variables subject to g j 

of X less than or equal to 0 these are the constraints; we have n number of constraints. 

So, n number of variables and n number of constraints for such a problem the K - T 



conditions are the following; so, we have discussed this at length, so you have n 

equations corresponding to the first first set of conditions, then n number of equations 

associated with the second set of conditions lambda j g j equal to 0, we use this n plus m 

number of equations to solve for X 1, X 2, etcetera X n and lambda 1, lambda 2, etcetera 

lambda n. 

So, n plus m equations we have n plus m number of variables, we solve them solve for 

the n plus m variables and associated with each of these sets of solutions, that we obtain 

we check the conditions g j less than or equal to 0 which is the original set of constraints; 

and lambda j greater than or equal to 0 which is the sign of the lambda j s and as I have 

mentioned depending on maximization or g j of X greater than or equal to 0 the lambda j 

s sign will be changing according to which combination. We are talking about here and 

then we also examined through a numerical example, how we actually apply the Kuhn 

Tucker conditions to obtain the stationary points of an optimization problem. 

 Then, we introduce the most important topic of this course namely the Linear 

Programming. Recall that we said if f of X which is objective function is, in fact, a linear 

function of the decision variables and all the constraints g j of X are all linear functions 

of the decision variables and then additionally, if the decision variables are all non 

negative, then it constitute a general form of linear programming problem but, the 

essential requirement for a linear programming problem is that, the objective function 

must be a linear function of the decision variables and the constraints must be linear 

functions of the decision variables, then towards the end of the previous lecture I just 

started introducing the graphical methods, so we will continue with the graphical method 

of solution remembers the Graphical method of solution. 

 In fact, provides us with motivation for the more rigorous algorithmic way of solving 

the linear programming problem which is, in fact, the simplex algorithm, simplex 

method of solution, so we will understand the graphical method correctly, although it is a 

very simple procedure, but the motivation for the simplex algorithm. In fact, comes from 

the graphical method, that I will be discussing now, so we will revisit the problem that I 

discussed towards the end of the previous lecture and from that, will go on to explain the 

complete graphical procedure. 
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 So, we started with the example maximize Z is equal to 3 x 1 plus 5 x 2, subject to x 1 

less than or equal to 4, 2 x 2 less than or equal to 12. 3 x 1 plus 2 x 2 less than or equal to 

18, these are the constraints. 

And then, we have the non negativity of the decision variables x 1 greater than or equal 

to 0 and x 2 greater than or equal to 0, these are the non negativity of the decision 

variables. Recall that or observe that, the objective function is a linear function of the 

decision variables; the decision variables are x 1 and x 2 all the constraints are linear 

functions of the decision variables x 1 and x 2. So, all of these are linear functions 

additionally, we have the non negativity of the decision variables x 1 greater than or 

equal to 0, x 2 greater than or equal to 0, so because, this is the simple problem with only 

two decision variables, we can demonstrate with a graphical solution; here the fact that x 

1 is greater than or equal to 0, x 2 greater than or equal to 0 leads to the solution being in 

the first quadrant. 



(Refer Slide Time: 06:01) 

 

So, first we look at x 1 greater than or equal to 0 and x 2 greater than or equal to 0, which 

defines this region, in fact this is the first quadrant, so the solution must lie in the first 

quadrant then we look at each of the constraints. Let us say that, we look at x 1 is less 

than or equal to 4, so this is the constraint we are looking at the binding value for this 

will be x 1 equal to 4, we have x 1 greater than or equal to 0 and x 1 is less than or equal 

to 4, so we draw a line x 1 equal to 4 which, in fact shows the bound for this constraint, 

so you cannot have a value x 1 greater than 4. So, you cannot be looking at this region as 

for as this constraint is concerned because, x 1 is less than or equal to 4 it also means 

that, we have to look to the left of this constraint this line x 1. 

 Is equal to 4 so, we are looking at to the left of this line, similarly we look at the next 

constraint which is 2x 2 is less than or equal to 12 or x 2 is equal to 6, will become the 

binding line for this, so you draw a line x 2 is equal to 6 and then you point the arrow 

downwards to indicate that, you want 2x 2 to be less than or equal to 12. See what 

happens, these two together have defined a region, now that, any point here we violate 

this constraint 2x 2 is equal to 12, 2x 2 less than or equal to 12. So, it violates this 

constraint and therefore, it will not be a feasible, similarly any point here will violate the 

constraint x 1 is less than or equal to 4 and therefore, this will not be a feasible point, so 

among these two Constraints, themselves we have now identified that, you cannot be 

looking beyond this particular region for a solution. 



 Then we also add the third constraint namely 3x 1 plus 2x 2 is less than or equal to 18, 

so you draw a line 3x 1 plus 2x 2 equal to 18; how you do draw, you just need two 

points, so put x 1 is equal to 0, you will get x 2 is equal to 9, so 0 9 is 1 of the points you 

put x 2 is equal to 0 you will get x 1 is equal to 6, so 6 0 is another point. So, simply join 

these two points, you will draw the line 3x 1 plus 2x 2 is equal to 18, because you want 

3x 1 plus 2x 2 to be less than or equal to 18, we look at, look to the left side of this, so 

this constraint says that, you look to the left side of this. So in the earlier region, that was 

defined by these two constraints, if you look at any point here, now we are still in that 

region defined by the other earlier two constraints, but if you look at any point here, that 

will violate this constraint 3x 1 plus 2x 2 less than or equal to 18. 

 Therefore, along with this constraint, now we have a new region defined which can be 

shown like this; so, this is the region in which all the constraints are satisfied and this 

region is called as the feasible region. So, feasible region is a region, where any point 

within that region satisfies all the constraints of the problem, so these are the three 

constraints, so any point you take within this region or on the boundary of this region 

satisfies all the three constraints, so in the graphical method the first step is to identify 

the feasible region, so this is the feasible region. 

 What does that mean, now this means that, you have virtually infinite number of points, 

any point within this is the possible solution to this problem, so we have infinite number 

of points which satisfy all these constraints, from among these infinite number of points 

we want that particular point or that particular solution which, in fact maximizes our 

objective function Z is equal to 3x 1 plus 5x 2, so is that this point, is that this point, is 

that this point, this point, this point, etcetera (refer side 6:01). So, virtually 100, virtually 

infinite number of solutions exists and out of those infinity number of problem points, 

we want to choose one point which maximizes 3x 1 plus 5x 2, to see, which is this point 

what we then do is. 

 We draw a Z line let us say we put an arbitrary value of Z Z is equal to let us say 15 

some convenient value of Z you choose and then draw a Z line, so Z is equal to 15 which 

is 3x 1 plus 5x 2 is equal to 15, how do I draw this line? I put x 1 is equal to 0, I get x 2 

is equal to 3, so 0 3 is one line, one point then, I put x 2 is equal to 0, x 3 is equal to 5, x 

1 is equal to 5, so you get 5 0. So, this is how you draw this line Z is equal to 15, now Z 

is equal to 15, you on the line Z is equal to 15, there are several points which are lying 



within the feasible region and all of these points correspond to a value of Z is equal to 

15; what is your objective? Your objective is to increase Z to the best extent, possible 

you want the maximum value of Z. 

So, let us say Z is equal to 15, I go to Z is equal, to let us say the 18 or 21 and so, on, so, 

I get another line so, I keep increasing Z, the Z line moves parallel to itself as I keep 

increasing Z it moves parallel to itself in this direction in this particular case, so Z is 

moving in this direction. Now, as I increase Z it moves parallel to itself in this direction I 

further increase Z it goes here, so like I keep on increasing Z as long as there is at least 

one point within this Z line; which lies within the feasible region or on the boundary of 

the region we have a feasible solution possible and we are increasing Z, so we keep on 

increasing the Z until we hit such a point. 

 Where any further increasing Z, increasing Z will make the Z line leave the feasible 

space altogether; so, as I was increasing Z let us say we we were here we were here 

earlier, so you keep increasing Z the line moves parallel to itself and then finally, when 

you reach this point, when Z is equal to 36; any further increasing Z will make it leave 

the feasible space at Z is equal to 36. You have exactly one point in contact with the 

feasible region and therefore, that is still a feasible point, any further increasing Z will 

make it, make the Z line leave the feasible region and therefore, there will be no point on 

the Z line which are feasible by feasible, I mean they satisfy all these conditions all the 

constraints and therefore, this becomes the last point. 

 Z is equal to 36 is, in fact, the optimal solution because any further increasing Z is not 

possible without violating 1 of the at least 1 of the constraints and therefore, it becomes 

infeasible and therefore, Z is equal to 36 becomes the optimal point, so this is what we 

do in the graphical procedure. First you identify the feasible region; the feasible region is 

the region obtained by intersection of all these constraints and then it should also satisfy 

the non negativity conditions and therefore, it lies in the first quadrant, so we identified 

the feasible region, then you draw an arbitrary Z line and then start increasing the Z, 

because you are looking at the maximum value of Z, if you are looking at minimization 

of Z then, it will be moving in the other direction, so you have to look at smaller value of 

Z, so because we are looking at maximization 



of Z you would like to achieve as high a value of Z as possible. Yet at the same time 

maintaining all these constraints satisfying all these constraints and therefore, you are 

looking for a feasible solution which is also a which also leads to a maximum value of Z 

and therefore, you move the Z line parallel to itself Z keep increasing the value of Z until 

you hit a point; where the Z line is just in touch with the feasible region at one point. 

Beyond which no further increase in the value of Z is possible without violating at least 

one of these constraint, because you will leave the feasible region the moment you cross 

this point you will leave the feasible region and therefore, this becomes the optimal 

solution, so Z is equal to 36 becomes optimal solution x 1 is equal to 2 and x 2 

 is equal to 6 is the optimal point. How did you get this x 1 is equal to 2, x 2 is equal to 

6? You look at this this point is at the intersection of this constraint, namely 2x 2 is equal 

to 12 and this constraint which is 3x 1 plus 2x 2 is equal to 18. So, solve for those you 

will get 2 and 6 as the solution, so, you obtain the point 2 6 and you got the associated 

value of Z is equal to 36, verify that 3x 1 plus 5x 2 with x 1 is equal to 2 and x 2 is equal 

to 6. In fact, leads to Z is equal to 36, so this is how we solve a problem with graphical 

method identify the feasible region, look at the Z line and then identify the point at which 

the optimal solution occurs.  

Now, lets us look at your objective function here, was Z is equal to 3x 1 plus 5x 2 and 

you were maximizing this, so we are looking at in this example, maximize Z is equal to 

3x 1 plus 5x 2 and you obtain this Z which was moving parallel to itself and therefore, 

finally it touch this particular point. Let us say, I change the objective function returning 

all the constraints and the non negativity conditions, the same instead of saying 3x 1 plus 

5x 2, I will make it 3x 1 plus 2x 2. 
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 So, let us look at maximize Z is equal to 3x 1 plus 2x 2, instead of 3x 1 plus 5x 2 retain 

all the conditions are same which means that, your feasible region still remains the same, 

because we are not change the constraints and therefore, the feasible regions remains the 

same. 

What did I do in this by changing 3x 1 plus 5x 2 to 3x 1 plus 2x 2, I change the slope of 

the Z line. 
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 So, Z line, the inclination of the Z line changes and therefore, the Z line becomes this 

now, instead of this, the Z line now changes the slope and then it is starts moving parallel 

to itself in this direction. At the last point of contact to the feasible region the Z line will 

coincide with 3x 1 plus 2x 2 is equal to 18, I have 3x 1 plus 2x 2 as the objective 

function, so it just coincides with 3x 1 plus 2x 2 is equal to 18; any further increasing Z 

line will make it leave the feasible space and therefore, this becomes the optimal solution 

see that, in the previous case we got. 

Exactly one point in which the Z line was in touch with the feasible space whereas, here 

it is coinciding with the boundary of the feasible region, coinciding with 1 of the 

boundaries of the feasible region and therefore any point on this line here this yellow 

line, here is a optimal solution; which means you do not have one optimal solution, but 

multiple optimal solutions. In fact, infinite number of optimal solutions all along this 

yellow yellow line, each of which leads to the same value of Z which is 18, Z is equal to 

18, so this case, we will lead to multiple solutions, so you need not have one solution you 

may have multiple solutions to LP problem. 

And the multiple solutions occur when the Z line corresponds to one of the boundaries of 

the feasible region. The multiple solutions offer an infinite flexibility in decision making, 

because you have the five maximized value Z corresponding to 18, but you do not have 

one point, but you have infinite number of points all of which will lead to Z is equal to 

18. Which is a optimal solution and therefore, you can choose any of these infinite 

number of points for your decision and therefore, we must be alert to a situation that 

certain problems leads to multiple solutions and we should be able to capture the 

multiple solutions. In fact, we will see if you get one solution, here I may be another 

solution at this point, you should be able to generate all the infinite number of solutions 

all of which remember will lead to the same optimal solution Z is equal to 18. 

So, this is the first special case, that we consider you identified the feasible region and 

then see that Z line corresponds to one of the boundaries, beyond which it use the 

feasible space and therefore, that becomes the optimal solution and therefore, you do not 

have one solution, but you have infinite number of solutions. All of these points here on 

the boundary become an become an optimal solution, lead to an optimal solution and 

therefore, you have multiple solutions if you have two solutions you have infinite 

number of solutions, this is a solution this is a solution therefore, any point in between is 



a solution is a optimal solution. So, you have multiple optimal solutions, another special 

case is that your constraints may be such that, you do not have a bounded region in this 

particular case. What happen, you have let us look at this you have a region which is 

bounded in all the directions, so you have a bounded region; let us say that, some of the 

constraints are such that, you do not have a region which is bounded. 
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 Let us say your constraints that is, such that one constraint is saying you look at this 

direction and that it is saying you look at this direction and therefore, anything in this 

region is a feasible solution and there is and Z line is increasing in this direction; let us 

say Z is increasing in this direction. So, Z can be increased until infinity without 

violating any constraints and therefore, the region is unbounded, the feasible space of the 

feasible region becomes unbounded and such solutions are unbounded. 

Solutions in general, when you have an unbounded solution, the problem is ill 

formulated because, obviously any physical problem you cannot have, you cannot 

increase the objective function value to infinity; if it is a value formulated problem and 

therefore, when you get an unbounded solution the problem is ill ill formulated problem. 

Typically you will have another constraint which will limit the increase in the objective 

function, so you saw multiple solutions, you saw an unbounded solutions, your set of 

constraints may be such that, you may not get a feasible space at all or feasible region at 

all, you may have several constraints and then you are plotting constraints, sets of 



constraints; some constraints will define some region, some constraints will define yet 

another region, there is no intersecting point at all, intersecting region at all. 

 Such problems lead to what are called as a in feasible solutions or in feasible problems. 
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 So, you may have a constraint, which says you look at this direction, another constraint 

which says you look at this this direction, which means that, to satisfy this constraint you 

should be in this region to satisfy this constraint, you should be in this region therefore, 

there is no region where you can satisfy both of this simultaneously and therefore, there 

is no feasible space possible, such problems are called as in feasible problems or the 

solutions are in feasible. 
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 Another case, where you may have some intersection possible with certain constraints 

some other intersection possible with certain other sets of constraints, yet together they 

do not form a common intersecting region, such problems also lead to infeasibility. 

In general when you have infeasible solutions, which means again that, some of the 

constraints that, you have formulated are in consistent with other constraints and 

therefore, you need to look at the physical problem and see whether the constraints have 

been correctly formulated associated with the physical problems. 
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 There may be yet another case, where you may have a good feasible, good region of 

intersection among all the constraints, but this region may not lie in the first quadrant and 

therefore, it violates the region, violates the requirement of non negativity of the 

variables and therefore, still it becomes infeasible. So, infeasibility will indicate that, at 

least certain constraints are violated or the non negativity condition is violated, so in this 

case although the constraints form an intersecting region, the region violates non 

negativity conditions and therefore, it becomes in Feasible.  

So, in the graphical method, we have now identified three special cases and in fact, these 

three special cases pertain to any LP problem not necessarily, because we are solving it 

using the graphical method; the first one is that, you may have multiple solutions when 

the Z line is just coinciding with one of the boundaries of the feasible regions and 

therefore, any point on these boundary becomes an optimal solution therefore, you have 

infinitely many solutions, infinitely many optimal solutions all leading to the same 

optimal value of the objective function, these are multiple solutions, then you have the 

case where you may not have a bounded feasible region, so Z can be increased up to 

infinity you keep on increasing. 

Z it does not violate any of the constraints and therefore, it is still feasible, so you can 

increase the Z value to infinity without leaving the feasible space which means that the 

Feasible space is unbounded direction in which the Z is increasing for a maximizing 

maximization problem and therefore, it becomes an unbounded solution, in general when 

you whenever you have an unbounded solution you will have to look at the problem 

formulation the problem formulation will be wrong then you have the case of infeasible 

solutions, where the set of constraints is such that, you will not be able to identify a 

intersecting region which also satisfies the non negativity conditions which means, there 

is no point in the region the of interest which satisfies all the constraints and therefore, 

the problem becomes infeasible.  

In general infeasible problems are also in formulated problems, because you may have 

introduces in certain constraints, which violate other constraints in the in the sense that, 

if you meet this particular constraint, the other constraints are not satisfied and therefore, 

the problems are ill ill formulated. We must be able to capture all these situations that is 

multiple solutions, we must know how to capture the multiple solutions, we must know 

when the problem is unbounded, we must able to identify when the problem is 



unbounded and we must able to identify infeasible solutions as as we saw this this was 

simple problem with only two variables and only two Constraints and, so on. So, it was 

easy for us to identify in practical problems; you have hundreds and thousands of 

variables and thousands of Constraints therefore, we must have a mechanism to identify 

each of these different types of solutions which we presently see. 

So, from the graphical solution, then we must be able to move to higher size of the 

problems of the LP problems and therefore, we must have an algebraic way of solution 

of these LP problems, so let us start introducing an algebraic method of solution which is 

also an algorithmic method of solution which is called as the simple method; to do that, 
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We will look at the general structure of the problem LP problem, we typically write the 

objective function as maximize Z and Z is a linear function of the decision variables. The 

decision variables are x 1, x 2, etcetera x n and Z is a linear function of x 1, x 2, etcetera 

x n, then you have a set of constraints n number of constraints. 

 In the general form of LP, we write them as equality constraints, so a 1 1, x 1, a 1 2, x 2, 

etc a 1 n, x n is equal to b 1, this is for the first constraint, so the right hand values are 

denoted as b 1, b 2 etc b m, a 1 1, a 1 2, a 1 3, a 1 n, etc. These are the coefficients of the 

decision variables in the constraints, so this is the first constraints and the coefficient for 

the first constraints, first variable is a 1 1 first constraint, second variable is a 1 2 first 

constraint, nth variable is a 1 n, that is the coefficient a 1 n like this a 2 1, a 2 2, etc a 2 n. 



So, you have coefficient matrix we will write in the matrix form subsequently, some 

other lectures, but you can identify that. 

These are in fact, the coefficients which are constants and x 1, x 2, etc x n are the 

decision variables for which solutions are sort b 1, b 2, etc are the right hand side of the 

constraints these are also known known values, additionally you have the non negativity 

condition x 1, x 2, etc must be greater than or equal to 0. So, this is the way, we write 

one general form of LP in which all the constraints can be expressed as equality 

constraints and we typically look at maximize value of Z, this is one general form you 

can also write in the another form for example, you may look at minimization and then 

still you can retain less than or equal to and so on, but we will strict to one general form 

and then see, how we develop the simplex algorithm corresponding to this general form. 
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Which means your objective function must be of the type maximization, so we write this 

in a more compact form as maximize Z, subject to all the set of constraints I will write it 

as summation, in the summation form you have a i j, x j is equal to b i which means it 

constraints I will write as summation j is equal to 1 to n, there are n number of variables 

a i j, x j is equal to b i and i is equal to 1, 2 etc m, so I am writing this set of constraints 

here in a compact for using the summation notation and x j greater than or equal to 0, j is 

equal 1 to n there are n number of variables, m number of Constraints, Constraints I am 

denoting it as by i and the variable by j here. 
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So, this is compact form of LP still in the scalar notation, so we write this in the scalar 

notation as shown here. Now, let us look at various features of such a problem you have 

n number of variables, m number of constraints and m number of equations, actually 

because, we have made all the constraints to be equality constraints, we will see how to 

handle the in equality constraints, later on, but in the general form we are expressing all 

the constraints to be equality constraint, which means what you have a m number of 

equations and n number of variables if m is greater than n, m is the number of equations 

is more than the number of variables, then the generally problem is over defined. 

And therefore, you should be able to identify redundant constraint, which I have 

introduced earlier, so there must m minus n number of redundant constraint, which you 

must able to identify and eliminate. So, that you will have a maximum of m number of m 

is equal to n number of constraints, so if you are original number of constraints is more 

than the number of variables it indicates, that there are certain non certain redundant 

constraint, we must be able to identify the redundant constraint and eliminate the 

redundant constraint then, the next question if m is equal to n; that means, your original 

set of equations is, in fact, the number of variables, then you may have a unique 

solutions; that means, if there is a solution you you have now m number of equality 

constraint, which means n number of equations you solve n number of equations. 



Simultaneously, you will get a unique solutions, so if you have a solution it may be a 

unique solution, which means here is a no question of optimization, because you have a 

exactly one solution for all the n number of equations or you may not have a solution at 

all. So, you may n number of equations which may not have a solution at all if you have 

solution it will be a unique solution therefore, m is equal to n is not a case to considered, 

because there is no question of optimization. So, the only co condition we need to 

consider is, where m is less than n; which means n is the number of equations that you 

have is less than the number of variables, in which case you may have infinite number of 

possibilities out of which you would look at that particular problem, where that particular 

solution which leads to an optimal solution, so this is the case that we will be talking 

about if m is less than n. 

It corresponds to an under determined set linear equations, which means if there is one 

solution then, there are infinite number of solutions possible and out of these infinite 

number of solutions, we need to look at that particular solution, which also maximizes or 

optimizes the objective function, so this is the case, that we will be interested in the 

linear programming problem. 

(Refer Slide Time: 36:25) 

 

which means in the general form, the way which stated we said the objective function is 

of maximization type we will strict to that, as a as a standard form, we will retain the 

objective function as maximization type then, all the constraints of equality type and all 



the decision variables are non negative, if you have any optimization problem, then we 

should be able to express that optimization problem, we will satisfy these three 

conditions; which means that you may have a minimize objective function as 

minimization. 

You must be able to express as a maximization problem and you may have certain 

constraint or most of the constraints as in equality type, some of them may be less than 

or equal to, some of them may be greater than or equal to and some of them may be 

equality type; which may we should be able to express all these constraints as equality 

type then, we must also be able to express all the variables as non negative. 
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 Let us say, how we do this if you have objective function as minimization; let us say 

that, your objective function is minimize j is equal to 1 n, C j, x j this may be cost 

coefficient and there are n number of variables and only you are writing the objective 

function. Here the objective function is of the minimization type this can be written as 

maximize minus C j, Z x j summation j is equal to 1 n as you recall in one of the earlier 

lecture. 

I have shown that, if you want to maximize f of x, it is the same thing as maximizing 

minus f of x, so simply take Z minus C j, x j and maximize that, so a minimization 

objective function can be written as maximization objective function by simply taking 

the negative of the function itself. 
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Then the second one is if you have less than or equal to constraints, we need for our 

general form equality constraints, but our constraint may be of this form at the kth 

constraints; let us say a k, 1 x, 1 a, k 2, x 2, etc a k n, x n less than or equal to b n, this is 

the kth constraint; let us say that, I want to convert this in to equality constraint, now the 

left hand side is less than the right hand side. 

And I want it to be equal to which means; what I have to add certain value here certain 

non negative value to the left hand side, that is what we do, we add a additional variable 

here there, where n variables in the initial constraint, we add another non negative 

variable x n plus 1 to make it equal to b k and this additional variable is called as Slack 

variable. There was a slack, that was existing you fill up the slack with the slack variable, 

so the in an equality constraint of the type less than or equal to, we convert it in to an 

equality constraint by adding a non negative variable and this non negative variable is 

called as the slack variable and this non negative variable will be I am sorry this slack 

variable will be non negative, so x n plus 1 which you added. 

Which was not there in the original problem, but you added an additional variable and 

that is called as slack variable, that is x n plus 1 and that will non negative. 
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Similarly, if you have a greater than or equal to constraint let us say we will look at a 

small example 3x 1 plus 2x 2 is less than or equal to 18, which means what your left 

hand side is less than 18 you want to make it equal to 18 by adding 1 non negative 

variables. So, I will write 3x 1 plus 2x 2 plus x 3 is equal to 18 and this is called as a 

slack variable and your x 1 and x 2 anywhere greater than equal to 0, the addition 

variable, that you are adding is also greater than equal to 0, so you are satisfying the non 

negativity condition. 
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Let us say you have a equality constraint instead of the you have a greater than or equal 

to constraint, instead of the less than or equal to constraint, which means what the left 

hand side is more than the right hand side and you want make it equal and therefore, you 

should deduct some value from that and therefore, you subtract a non negative variable 

from that, so a k 1 minus x n plus 1, so you add another variable with negative sign now 

in the constraint. So, the variable is non negative, but you will deduct from the left hand 

side of that and this is called as a surplus variable, there was a surplus on the left hand 

side you reducing that, by deducting that surplus variable and this surplus variable is also 

non negative, so if you have a less than or equal to constraint you add a non negative 

value, non negative variable, that is called as a slack variable, if you have a greater than 

or equal to constraint you deduct a variable. 

 Deduct a certain value using a surplus variable and both the slack variable and the 

surplus variable that you, so introduce, where not there in the original problem and you 

introduce them to make sure that, the constraints are expressed as a equality constraint 

and both the slack variable as well as surplus variables are non negative, so if you have a 

let us say, x 1 plus x 2 greater than or equal to 5 as your original constraint you will put x 

1 plus x 2 minus x 4 is equal to 5 and this x 4 is, in fact the surplus variable and the 

surplus variable is also non negative, you will get greater than or equal to 0 x 4 greater 

than or equal to 0 then the last requirement is that all the decision variables must be non 

negative. 
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So, we looked at the objective function, we want that objective function to be 

maximization, so if your objective function is minimization you can convert it in to 

maximization, by looking at minus f of x if you are looking at minimize f of x, you can 

look at maximize minus f of x, then you wanted all the constraints to be of equality type 

we just now say, how to change the less than or equal to type of constraint to equal to 

constraint by adding that are called as slack variables, which are non negative then if you 

have greater than or equal type of constraints you deduct a surplus variable which is also 

non negative, then the third case is when you have a certain variables, which can also 

assume negative values. Remember in most of the decision making problems the 

variables, that we are talking about are either physical variables for for example. 

You may be talking about dimensions; physical dimensions of fled control storage you 

may be talking about the amount of hydropower, that you generated amount of water that 

is applied to a particular given to a particular city and so, on. So, these are physical 

variables that we are talking about and most of the cases they are non negative, we were 

be talking about negative variables; however, there will be a certain cases, were you may 

have to account for non negative account for un variables that are unrestricted in sign for 

example, you may be talking about temperature, temperature can assume negative values 

and in certain in such situation there must be a way of handling these variables in the 

general linear programming problem. When you have a variable which is unrestricted in 

sign which cannot assume negative values also it can take positive values it can also take 

negative values in such situations you must be able to convert that for the problem 

formulation into a non negative variable not the original variable itself.  

But we will convert, we will use those variables which are all non negative how do we 

do this, let us say, you have a variable x which is which is unrestricted sign inside which 

means in the problem solution it can assume negative values also, if you express the x as 

difference of two non negative, non negative variables. let us say that, I will put x is 

equal to x 1 prime minus x 2 prime and the x 1 prime and x 2 prime will go as decision 

variables, so x 1 prime and x 2 prime can be non negative, so, that if x is negative then x 

2 prime is greater than x 1 prime let us look at it more formally, so an unrestricted 

variable can be written as a difference of two non negative variables. 
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 Let us say that, you have x i is unrestricted in sign, than we can we can replace x i by a 

difference x i 1 minus x i 2, so I will write x i as x i 1 minus x i 2 with both x i 1 and x i 2 

non negative, so if in your final solution x i has to negative, what happens x i 2 will be 

greater than x i 1 and if x i has to be positive x i 1 will be greater than or equal to x i 2. In 

fact, in solutions you will have see that, only one of them will be non 0; however, we 

will come to that later, but right know you just understand that by expressing x i has a 

difference of two variables two non negative variables, what you have achieved is that in 

the final solution, if x i has to be positive then, this will be more than this if x i has to be 

negative then this will be more than this. 

Both of them being non negative and therefore, in the LP problem we still be dealing 

with non negative variables, so you are able to convert the non negative function into a 

maximization type, you are able to convert the less than or equal to into equality 

constraints greater than or equal to constraints in to equality constraints and you are able 

to convert the unrestricted variables into non negative variables and therefore, any given 

problem optimization any given LP problem can be expressed in the general form, which 

requires the objective function to be maximization type which requires all the constraints 

to be of equality type constraints and which requires, that all the variables in the LP 

problem are non negative. So, this how we achieve that and then express a given LP 

problem in the general form now, we this now we will start introducing the algebraic 

solution which is the simple method. 



Now, I i repeat this many times that, you can do a way without knowing the way the 

algorithm works, because there are elegant useful and very easily commonly available 

software’s for linear programming, in fact in library in that math lab you can easily solve 

any of this optimization problems, however, for a student it is extremely important to 

know and understand how the algorithm works; in fact, in the class room type of 

examples you should be able to solve this problems with hang calculators and therefore, 

it is important for us to know, how the algorithm itself functions. So, we will start with 

we will introduce over the today’s class as well as the next class we will discuss the 

simple method, how it works before going in to the actual Functioning of the algorithm 

itself, let us look at the motivation. 

 Form for the simple method we will re visit the Graphical solution where we obtain the 

optimal solution 
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Just look at this what what did we achieve here, first we form the objective of space or 

the feasible region, in the feasible region the solution lies somewhere, we do not know 

where, so some where the optimal solution lies and then we started with looking at how 

the Z value increases. So, starting with the Z value we kept on increasing Z value 

ensuring that, it still lies within the feasible region and we achieve that particular point 

beyond which the Z can know further being increased without violating any of the 

constraint and this we say lies at a particular corner. 
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So, the one observation we made is that, the optimal solution in this particular case was 

at a corner; if your Z direction increases changes then, still you are hitting at a corner, so 

the solution will be at this corner and at this corner and then this particular case it, so 

happens at it will be all along this line, let us say your Z line was some other was 

increasing in some other direction let us look at lets Z line was here, then it keeps on 

increasing in this direction. Assume that, it is increasing in this direction, then the 

optimal solution will be at this point, so the observation that we are making is that the 

optimal solution lies at one of the corner of the feasible space. 

So, it can be either this corner, it can be this corner, I am sorry it can be this corner or 

this corner or this corner or this corner etc. So, if we start the solution with some 

assumed value let us say that 0 0 was here x 1 is equal to 0, x 2 is equal to 0, was here 

which would have been Z is equal to 0 and moved from this point, to this point, this 

point, to this point, this point, to this point, this point, to this point, this point, to this 

point. Which means lets the enumerated all the corner points solutions, at all the corner 

points and then picked up the one that leads to the maximum, then we are safe we know 

that, the solution has to occur at one of the corner points of the feasible space; however, 

as the number of constraints increases as the number of variables, increases the problem 

the dimension of this feasible space will be quite quite large and therefore. 



Enumerating all the solutions at all the corner point, will still be and therefore, we have a 

mechanism by which starting with a particular point, we must know whether I go to this 

point or I should go to this point, in in a multi dimensional space you imagine that, you 

start with a particular point and then you must be able to see whether, I should go to a 

neighboring point in this direction, a neighboring point in this direction, this is what we 

achieve in the simplex algorithm, that means we start with the feasible solution, we we 

have identify the feasible region, we start with the feasible solution and then instead of 

enumerating all possible feasible solution, we will know starting with the particular 

feasible solution we will know in which direction the solution should proceed, so that we 

will hit the optimal solution in the least number of iterations this is what we do, so will 

go to the motivation for the simplex problem x 
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Now, again starting with a simple graphical solution, let us say that you take a problem 

maximize Z is equal to 6x 1 plus 8x 2 subject to 5x 1 plus 10x 2 less than or equal to 64 

x 1 plus 4x 2 less than or equal to 40 and x 1 and x 2 both are non negative, if we solve 

this with graphical procedure. 
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we get this feasible region, let us say you just look at constraints, now identify the 

feasible region, how do we identify, you draw this constraint 4x 1 plus 4x 2 is equal to 

40 and then it is because less than this you are looking at this direction similarly 5x 1 

plus 10x 2 is equal to 60 these are the two constraints. 

You draw this and identify the feasible region, because x 1 is greater than or equal to 0 x 

2 is greater than or equal to 0, this becomes the feasible region, so you have the points o 

A C and D as the corner point of the feasible region, but there are also other points you 

look at point B here point E here. So, you have six points here on this diagram, lets us 

see what are all the features of these six points you have two constraints 4x 1 plus 4x 2 is 

equal to 45 x 1 that is less than or equal to 40 and 5x 1 plus 10x 2 less than or equal to 60 

these are the two constraints. 
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Lets say the inequality constraint now 5x 1 plus 10x 2 less than or equal to 60 I convert it 

into inequality constraint by adding a slack variable x 3. 

 Is equal to 60 and 4x 1 plus 4x 2 less than or equal to 40 I convert it in to an equality 

constraint by adding another slack variable, remember this slack variable must be 

different from this slack variable 4x 1 plus 4x 2 plus x 4 is equal to 40, so what happen in 

the in the process we have two equations and four unknowns, so m is less than n and all 

your variables are greater than or equal to 0, which is the non negativity condition. So, x 

3 and x 4 are the slack variables, let us look at what are what all these corner points and 

the points which are intersecting with the x 1 and x 2 axis correspond to, so from this 

then we start developing, start looking at motivation for the simplex algorithm. 

And introduce what are called as a basic solutions, basic feasible solutions, basic 

variables, non basic variables and so on and that, leads to an algorithmic way of solving 

the LP problems this we will continue discussing in the next class. So, in today class 

essentially what we did is we started with graphical solution we identified the feasible 

region and then in the feasible region any point is the feasible solution and therefore, you 

have infinitely many points which are all feasible out of these infinitely many points, we 

want to identify the optimal solution for which, what we did is we took as a Z line and 

then move the Z line to parallel to itself in the direction in which it is increasing for an 

optimal maximization problem and then identify, that particular point beyond which the 



Z cannot be increased at any further without violating any of the at least one of the 

constraints 

 And that becomes the optimal solution, we saw that this optimal solution, in fact lies at 

one of the corners or coincides with one of the edges of the feasible space and the we 

saw the special cases where you have multiple solutions, multiple optimal solutions if 

you have two optimal solutions you have infinite number of optimal solutions then, there 

is case of unbounded solutions where your set of constraints may be such that, you will 

not have a bounded feasible region and therefore, the Z value can be increased for n for a 

maximization problem am until infinity without violating any of the constraints then you 

may have in feasible solutions. In general, when you have un bounded solutions or in 

feasible solutions the problem is in ill formulated, so you will have to look at the set of 

constraints then we just started looking at the general form of the LP and motivation for 

the simplex method. 

In the general form of the LP, that we used in this course we express the objective 

function as a maximization function and all the constraints as equality constraints and all 

the variables must be non negative if you have a minimization objective function. You 

can convert it in to maximization by taking negative of that, function if you have less 

than or equal to constraint you add a slack variable to make it equality constraint if you 

have a greater than or equal to constraint, you have deduct a surplus variable both the 

slack variable and the surplus variables are non negative and convert them in to equality 

constraints if you have variables, that are unrestricted in sign you express those variables 

as difference of two variables both of which are non negative to convert them in to to use 

them as non negative variables in the LP problem, so we shall continue this discussion 

and in the next class I will introduce 

 The Simplex method or at least the motivation for the simplex method and how we 

identify basic variables, non basic variables and so on, thank you for your attention. 

 


