
Water Resources Systems 
Modeling Techniques and Analysis 

Prof. P.P.Mujumdar 
Department Of Civil Engineering 

Indian Institute Of Science, Bangalore 
 

Lecture No. # 03 
Optimization: Functions of a single variable 

 

Good morning and welcome to this lecture number 3, of the course, Water Resources 

Systems - Modeling Techniques and Analysis. In the previous lecture, we essentially 

studied the definition of a system and then looked at various types of systems.  
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Typically, we saw what is meant by a simple system, what is a complex system, then 

linear and non-linear systems, where principle of proportionality is valid or not, then 

time variant and invariant systems. In the time invariant systems essentially the 

properties will remain the same across time and in the time variant systems several of the 

parameters will be changing with respect to the time. Then,, we also saw continuous, 

discrete and quantized systems. In many of the water resources system, although the 

processes are continuous we may approximate them to be discrete and therefore, treat the 

systems as discrete systems and in the in the quantized systems, we may have time step 

during weight is sudden changed in the system occurs and that is what we call as 

quantized systems, then we have lumped systems and distributed parameter systems.  



In the lumped systems, we lump the various parameters in the sense that the spatial 

variation of the parameters and the processes are not considered in the lumped systems. 

Whereas, in the distributed systems we do consider the spatial variation of the 

parameters and the processes we have the deterministic and probabilistic systems. In the 

deterministic systems the same input always provides the same output, where as in the 

probabilistic systems there is the probability associated with an output for a given input, 

then they have the stable and unstable system. In the stable systems if the input is 

bounded then the output is also bounded, where as in the unstable system the systems 

become unstable if the input becomes input is you know you know it is bounded, but the 

output may not be necessarily bounded. So, the output of the system in that sense 

becomes unstable. So, these are types of system that we studied in the previous lecture 

and towards the end of the lecture, I introduced a simple problem which we wanted to 

convert into a mathematical problem. The physical problem statement we wanted to 

convert into a mathematical problem. We will start with that now and that is quickly 

recapsulate what the problem was.  
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It is a simple problem of water quality where we are interested in maintaining water 

quality at these 2 check points, point number 2 and point number 3. This is the stream 

which receives a effluence from 2 industries, industry 1 here and industry 2 here with the 

effluent quantity of w1 and effluent quantity of w2 at location 2. If you do not provide 



any treatment at this location, the DO level was q2 at location number 2 and q3 at 

location number 3. By providing a treatment appropriate treatment at the industry 

number 1 and at the industry number 2 we would like to maintain the dissolved oxygen 

level at a desired level of Q2 at location number 2 and at Q3 at location number 3. Now 

the dissolved location at any oxygen at any location will depend on the amount of stream 

flow that is coming in which is the flow discharge flow quantity etcetera and it also 

depends on a large number of climatic factors for example, the temperature, the relative 

humidity, the (( )) coefficient and so on. So, there are large number of processes that 

govern the transport of the load BOD into its translation into the dissolved oxygen at a 

given point. Let us assume that all of these processes have been taken into account and 

we have 1 parameter which gives the amount of  DO dissolved oxygen that can be 

enhanced at a particular location by providing a unit treatment at the upstream location.  

Let us say that we we treat 1 unit of this effluent quantity w1, then the dissolved oxygen 

at these location will be enhanced by certain amount. Now that is what we will define as 

the parameters a12 and a13 what I meant by that is each unit of waste load removed at 

site 1 here enhances the DO level at site 2 at this location by a12, which means 1 unit of 

waste load you remove you will get an enhancement of a12 at location 2 and a13 at 

location 3. Similarly, at 2 you remove 1 unit then it enhances the DO at 3 by a23; 

obviously, it does not affect the location here and nor it does not affect the location 

upstream of that. They will only affect the treatment, that only affect the dissolved 

oxygen, downstream of that particular location. So, a23 is the increasing DO level at site 

3 for each unit of waste load removed at site 2. So, this is the physical problem and then 

we have to now convert using this information, we have to now convert it into a 

mathematical problem.  

First let us take to look at what is that we want to achieve. What we want to achieve in 

this problem is that we would like to make the treatment levels at industry 1 and industry 

2, the sum of the treatment levels or sum of the cost of the treatment levels a minimum 

and achieve the desired DO level q2 at 2 and q3 at 3. So, from q2 we want to announce it 

to at least q2 at location 2 and from small q3 we want to achieve a desire level of q3 at 

site 3, but providing the treatments at industry 1 and industry 2, but by providing a 

minimum treatment; minimum sum of the treatment or minimum cost of the total 

treatment. So, this is the problem. So, let us look at the conditions that we want to put 



first. what is the condition? That we want to provide the treatment such that the dissolved 

oxygen level q2 is at end at this location. So, how do we write this? 
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Let us say that x1 is the fraction of effluent treated at site 1 which means w1 was the load 

that was coming at site 1, x1 fraction has been removed. So, what is the total amount 

removed w1 into x1. The total amount that is removed, the total amount of waste that is 

removed is w1 into x1, which means if you remove 10 percent it will be 10 percent of w1 

and so on. Similarly x2 is the fraction of effluent treated at site 2. we will take the cost as 

c1(x1) and c2(x2); that means, if I want to remove x1 fraction at w1 at the industry 1 the 

cost associated with that is c1(x1) and if you want to remove x2 fraction at site 2 the cost 

associated with that is c2(x2) and we want to make the distance on x1 and x2 such that 

the total cost is a minimum, then what is the condition that we want to achieve? We just 

look at what are the definition of a12 for every unit amount of effluent that is removed 

from site number 1 you will get an enhancement in the DO of a12 at site number 2 that is 

the definition of a12. So, you had a load of w1 and you removed a x1 fraction of that.  

So, the total amount of waste removed is w1 into x1. So, this is the total amount of waste 

removed at site number 1. For every unit of waste removed at site number 1 you will get 

an enhancement of a12 into that amount at site number 2. So, the total improvement in 

DO dissolved oxygen at site number 2 is a12 w1 into x1. This is the improvement and 

what was the original DO? Original DO was q2 small q2. So, q2 plus a12 into w1 into x1 



will be the total dissolved oxygen at site number 2, after a treatment of x1 has been given 

at site number 1 and this dissolved oxygen at site number 2 must be atleast equal to what 

we desired at that point it is Q2, we will write it presently. Similarly we look at site 

number 3; dissolved oxygen at site number 3 what is the existing before the treatment is 

q3 and what we desire is Q3.  

So, starting with q3 you have provided a treatment of x1 at site number 1, which means 

the total amount of wastage removed is w1 into x1. For every unit of waste that you 

remove at w1 you will get an enhancement of a13 at site number 3 and therefore, the 

total improvement of DO at site number 3 corresponding to the treatment x1 at site 

number 1 will be a13 into w1 into x1. So, a13 into w1 into x1 is the improvement at site 

number 3 corresponding to a treatment at site number 1. Similarly, a23 into w2 x2 is the 

improvement in the dissolved oxygen at site number 3 for a treatment of x2 at site 

number 2 and the original DO was q3. So, q3 plus the improvement due to treatment at 1 

plus the improvement due to treatment at 2, this will be the total dissolved oxygen after 

the treatment. So, we got the total dissolved oxygen after the treatment at site number 1 

and site number 2 where the treatments are given and we got the dissolved oxygen level 

at site number 2 and site number 3 corresponding to these treatments. Now this total 

dissolved oxygen that you get after the treatment must be atleast equal to the desired 

dissolved oxygen which is Q2.  
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So, that is what we write, this is the dissolved oxygen at site number 2 after treatment x1 

has been provided at site number 1. So, this is q2 plus a12 w1 x1 and this should be at 

least equal to Q2. Now Q2 is the desired DO level. So this is the desired level at site 

number 2. Similarly, this is desired at site number 3. So, these are the 2 major constraints 

that will be talking about. These constraints arise from our management condition that 

we want to achieve a minimum desired level of Q2 here and Q3 at site number 3 then 

there may be some technological limits. For example, you may not be able to say that 

you treat 100 percent of the effluent it may not be technologically feasible. Therefore, 

you may want to put an upper limit of the treatment levels. So, x1 should be less than or 

equal to an upper limit, x2 should be less than or equal to an upper limit. These can be 

different for the 2 sites then we may want to put a minimum level, typically we put a 35 

percent of a treatment level has a minimum treatment level that is mandatory.  

So, depending on the problems you may fix x min and x max. So, you are making 

decision on x1 and x2 such that they vary in this range and such that there cost is the 

minimum, total cost is the minimum and such that they satisfy these 2 conditions. So, 

this is how the original physically stated problem has been converted into a mathematical 

problem. That are a few things that you must note here. What are the actual decisions 

that you are making? The decisions that will be interested in or what is the optimal value 

of x1 and what is the optimal value of x2. Look at all the other parameters are they 

known. q2 is known which is the original dissolved oxygen level. a12 which is the 

parameter which indicates the improvement in the water quality at site number 2 

corresponding to a unit treatment at site number 1 is known or can be determine and 

therefore, for as for as this problem is consider, we will take it as a constant. Similarly 

a13 is the constant, a23 is the constant. w1 is the data what is the amount of effluent that 

is coming in this is known, w2 is the data what is the amount of water water effluent that 

is a waste load that is coming in that is known, c1 which is the cost coefficient that is 

known, c2 cost coefficient that is known. So, the only (( )) and similarly the desired 

levels Q2 and Q3 are also known and these technological limits we are fixing, similarly 

the minimum levels we are fixing. So, all of this other variables in this problem are all 

known. We are making decision on x1 and x2. So, x1 and x2 are only unknown in this 

particular problem.  



So, this is how we converted a physically stated problem into a mathematical statement 

and this is an optimization problem and we will see what is an optimization problem, 

what is the simulation problem etcetera presented in today’s class, but essentially what 

you must understand is that a physically stated problem has been converted into a 

mathematical statement of a problem. These are this is called as the mathematical 

formulation of the optimization problem and so, in most of the situations in in all most 

all the situations, we understand the problem physically and states the problem in 

linguistic terms first and then convert them convert these problems into mathematical 

statements such as this and this becomes the mathematical formulation of the problem 

starting with such a mathematical formulation we will provide a data for example, what 

are the values of c1,what are the values of q2, Q2, a13, a12, a23 etcetera we provide the 

data and there we should be able to solve for what is the optimal value of x1 and x2. 

How to solve for is the different question we will study during the course of this 

particular subject.  
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So, this is just a broad idea of problem formulations. So, as long as you understand the 

physical statements as the problem, you must be able to convert that into a mathematical 

statement. we will just go through some broad basics of what is optimization and what is 

simulation in optimization, we were looking for optimal values of a particular function 

by optimal I mean it may be a minimum value or a maximum value like say that you 

have to looking at in the previous problem that I just discussed you may be looking at 



minimization of the cost or in certain situations, you may be looking at maximization of 

the flood control benefit or maximization of the hydro power or minimization of the 

water pollution in some sites d o (( )) let say d o (( )) you would like to be minimize has 

have to location and soon. So, that is always a physical quantity which you may want to 

minimize or maximize. So, you have a function which needs to be optimized, then you 

may have certain conditions that you want to satisfy while we are optimizing them, you 

want to optimizing the function that we just define you may want to satisfy certain 

conditions. These conditions will define what are called as the constraints.  

So, you have a function which has to be optimize and you have a set of conditions that 

need to be satisfied that are called as a constraints. So, in the optimization let us have a 

look at it we may say maximize f of X now I say maximize you can also talk about 

minimization problem. So, in this example I am saying it is maximization problem. So, 

maximize f of X subject to g j of X less than or equal to 0. Now this X is the vector of 

decision variables. So, I may write X is equal to a vector of x1, x2, x3 etcetera xn, n 

decision variables and you may have m constraints. So, g j of X less than or equal to 0, j 

is equal to 1,2 etcetera m.  

So, these are m number of constraints in the previous example. For example, you just 

look at it this is your f of X. X consist of 2 variables x1 and x2, these are the decision 

variables and these are the 2 constraints or if into this also is constraints. These are the 4 

constraints 1, 2, 3,4. I will say if I include with the purpose because the many of the 

situations the bonds need not be included included as the explicit constrains, but; 

however, we will take the math constraints for that I am being. So, 1,2,3,4 4 constraints,2 

variables and this is the objective function. So, this is what we are relating, that is the 

objective function, there are decision variables, there are n n number of constrains.  

So, this is how typically an optimization problem is stated, you have an objective 

function which has to be either minimized or maximized, there are a set of decision 

variables in our case that decision variables where x1 and x2 the treatment at industry 

number 1 and the treatment at industry number 2, then you have a set of constrains, n 

number of constrains. Now the decision variables are the variables for which decisions 

are required very simple; that means how much is the treatment at industry number 1, 

how much is the treatment at industry number 2, these were the 2 decisions. In other 

situation, if you are talking about reservoir operation problem, you may be talking about 



the decision has what is the amount of release during the month June, what is the amount 

of release during the month July and so on. In water allocation problems you may talk 

about allocation to hydro power, allocation to irrigation, allocation to flood control as 3 

different decision variables. So, the decision variables are the variables on which we 

would like to make decisions.  

Now in this simple statement of problem, this is the general statement of the problem, as 

you can see in the complexity of the problem increases or changes with respect to the 

nature of a function itself it may be highly non-linear of a function or it may be a simple 

linear function and so on. So, the complexity of the problem varies depends on the 

depending on the nature of the function that you may also have a set of quite complex 

constraints, there may be highly non-linear in nature, there may be interactive in nature 

and so on. So, that also defines the complexity of the problem and also the number of 

variables and the number of constraints and so on all of this will determine the size and 

also the complexity of the problem. So, this is what we doing optimization. There is the 

function which we call it as objective function we want to minimize or maximize, there 

are set of conditions and then there are a set of decision variables on which we want to 

like to make a decision.  
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Simulation has against optimization will not provide you with one solution, one optimal 

solution. Generally we use simulation when we want to look at several alternatives. Let 



us say that you would have a large river basin and then let me let me draw that in explain 

what do what do you mean by simulation.  
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Let us say that you have river basin like this and then you would like to develop this 

river basin .The question is that you may be interested in answering is, if I put a reservoir 

here and a reservoir here and a reservoir here and a reservoir here is the benefit that are 

likely to get the maximum or should I be putting the reservoir at this point, at some other 

point here, at some other point here, some other point here etcetera. So, among virtually 

infinite number of possibilities you would like to explore which combination is better in 

some sense. So, you are actually screening alternative, there are large number of 

alternatives and you want to screen which among them is the best. For example, do I 

need to have 20 reservoirs here or only 15 is alright or 13 is alright, 12 is alright and if 12 

is alright at which which location you should have or I may not want the reservoirs in big 

dams, through big dams I may just want to use the water through lift irrigation. So, some 

lift irrigation somewhere, some ground water somewhere, some reservoir somewhere 

and so on.  

So, there are large number of alternatives that you would like to explore. In such 

situations it is easier handle and feasible to go with simulation rather than optimization. 

So, the simulation essentially helps us with checking alternatives and in simulation we 

mimic the behavior of a system. For example, we put those dams and then run the flow 



through those things and then see how the system actually behaves in practice. So, the 

physical behavior of the system is mimicked or imitated mathematically in simulation 

.we also use simulation to answer “what- if” type of questions. For example, we do not 

actually put the dam we say, what if you put the reservoir here, what happens to the 

downstream stream flows or what happens to hydro power generation, what how much 

of irrigation can be met and so on. So, there was the simulation is typically used for 

answering “what-if” type of questions and as I just said large water resource system 

which of the extremely complex in terms of their interactions among various components 

and so on. So, when you have large complex systems, simulation is a handy tool to 

providing how well the system performs. So, in terms of the performance evaluation of 

the system, simulation is a handy tool and as I just said that number of scenarios exist 

and therefore, you want to do the screening of alternatives screening of scenarios. So, 

rather than looking at just one optimal solution you may be interest in a range of 

solutions from which we would like to pick up. In such situations, simulation becomes 

very useful.  
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Through simulation, let us say that you run the simulation many times with different 

types of inputs and So on. So, while you may not be formally doing a optimization, but it 

is possible for you to get near-optimal solutions through simulation and in water resource 

systems, typically we use simulation in several situations. For example, analysis of river 

basin development alternatives, just now I I give the example you may want to put lift 



irrigation schemes, you may want to put reservoirs, you may want to put ground water 

utilization points and you may want to have a conjunctives at certain points, you may 

have recycling of water at certain points and so on. So, the large river basins you want to 

develop with several alternatives. In such situations you may want to use simulation. 

Then large Multi-reservoir optimization Multi-reservoir operation problems although 

they can be formally optimized because the systems are large and systems are complex, 

it is better to go with simulation first to get an insight into the behavior of the system 

itself first and then go with the formal optimization. Then generation of alternatives are 

trade-offs of water allocations; that means, between hydro power and flood control, 

between hydro power and irrigation, between one city with another city and so on. So, 

water allocations among various users you want to provide trade- offs, if I put more 

water here what happens to how does the other one suffer and so on.  

So, you you want to develop trade-offs between among water allocation water users. 

Then conjunctive use of surface and ground water, how much of surface water you 

would like to use, how much of ground water you would like to use across time periods 

in a year, across time periods in a decades and so on, such that the system become 

sustainable, such questions become best answer through simulation. So, we just saw the 

difference between optimization and simulation, typically we use optimization and 

simulation both in most water resource problems and there are situations where we use 

both optimization as well as simulation in a in a sort of interactive manner we simulate 

the system and then run through an optimization get an optimal value, look at the 

performance of the system, rerun the simulation and so on. So, simulation optimization 

combination methods are also available.  

So, now onwards we will for the, for some time will focus on optimization. It is a formal 

method of obtaining optimal values of a function. So, we start with the simplest methods 

and then proceed on to more complex problems of optimization. What do you mean by 

optimization? Let us say that you have a function f of x, we will start with the simplest 

function of function of a single variable f of x. Now f of x we want to get either a 

maximum or a minima that is a optimization problem, you may have a range over which 

x varies or over which f of x is defined or over which we are interested in. So, while the 

function may be defined in the entire rate, your interest may be only between certain 

values of x, x1 and x2. Within this rate you would like to check where the minimum of 



the function occurs, where the maximum of the function occurs and this is the 

optimization problem. There are classical ways of getting this optimal these optimal 

values and we will start with that that is optimization with methods of calculus.  
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We will start with the simplest of the functions that is function of a single variable. Let 

us say f of x is the function of a single variable x defined in the range x between a and b, 

this is x is equal to a and this is x is equal to b and the function nature is something like 

this. So, between a and b, this is the behavior of the function. The function attains certain 

value certain maximum value here and certain minimum value here, again picks up again 

attains a maximum value comes on which is the minimum value and so on like this. Now 

these peaks here x1, x3, x5, x6 etcetera where the maximum value has occurred. In fact, 

at x 5 maximum value may not have occurred that a change in the slope has occurred 

here, as well as the change in the slope 2 has occurred at x2 and x4 and so on. Now these 

are the points where the maximum has occurred x1, x3 and x6 are called as the local 

maximum values. So, there is the local maximum at this point, local maximum at this 

point, local maximum at this point and so on . 

At the local maximum what is the happening here? Let us say look at x1, the value of the 

function is higher than any other value in the neighbourhood. So, if you look goes 

slightly to the left, the function value decreases, slightly to the right the function value 

decreases. So, f of x1 is greater than f of x1 minus delta x1 which is slightly to the left, 



also it is greater than f of x1 plus delta x1 slightly to the right. So, at the local maximum 

the functional value will be more than it is the more than the function values at its 

neighbourhood that is how that the local maximum is obtained. Similarly at the local 

minimum, you look at x2 here. The function value will be smaller than its than the 

function values at the neighbourhood. Similarly, here the function value at x4 will be 

smaller than the function values at the neighbourhood.  
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So, we write that as f of x2 is less than f of x2 minus delta x2 and also it is less than f of 

x2 plus delta x2 which means you you go slightly to the left or slightly to the right, the 

function value will be more at those points. Now you look at the point x5. alright one 

more interesting feature is whenever we have a local maximum or local minimum, what 

is happening? The slope was in this direction when we came from point a, slope kept on 

reducing and then slope becomes zero at this point. Similarly, at x2 this slope becomes 

zero, at x3 slope becomes zero, x4 slope is zero, x6 slope is zero. So, at local maxima 

and local minima, the slope is zero. Slope of a function that is dy by dx or f of f dash of x 

will be zero. The first derivative of the function will be zero at his location .Look at what 

is happening at x5, the slope is zero here; however, it is neither a maximum nor a 

minimum in the sense that in the immediate neighborhood of x5, the function value has 

not changed or the function value is not less on either side making x5 is the maximum or 

it is neither more on either side making x5 the minimum.  



So, at x5, although the slope is zero the function value is either a maximum nor a 

minimum either a local maximum nor a local minimum. such points are called as saddle 

point. So, at the saddle point, the slope of the function is zero, but the value of the 

function is lower on one side and higher on the other side and vice versa. So, at f of x5, 

you can see f of x5 is less than x5 minus delta x5 and is also less than x5 plus the 

function value at x5 plus delta x5. So, we saw two points now two major observations. 

one is that at local minimum and local maximum the slope changes and the slope 

becomes zero and then we have what is called as the saddle point where even if the slope 

is zero it does not correspond to a minimum or a maximum.  
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Now we got what are called as local maxima, these are also called as relative maxima. 

So, x1, x3, x6 are local maxima. The maximum among all such local maximum maxima 

is called as the global maxima; that means, in this range between a and b, x6 is the 

highest among all the local maxima namely x1, x3 and x6. Among all these 3, x6 is the 

highest and that is called as the global maxima. Similarly between x2 and x4, x2 is the 

lower among the 2 minima. So, x2 is the global minima. So, when we are talking about 

global maximum and global minimum, we are talking within a specified range; that 

means, within the range a and b, x2 is the global minimum and x6 is the global maxima 

within this range.  
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Now we will go in to an important aspect of optimization with calculus namely the 

concept of convex and concave functions. Remember we are talking about functions of a 

single variable and we have just defined what are called as local maxima and local 

minima and then the global maxima and global maximum and global minimum. Global 

maximum is the maximum among all the local maxima. If you have a function where 

there is exactly one minimum which means the local minimum that you obtain is also the 

global minimum. Let us look at a function. Let us say that you have a function like this 

here and you get a minimum point at this location and this is the range that you are 

talking about. In this range, the function is something like this, there is the only one 

minimum here and this minimum also corresponds to the global minimum.  

So, the local minimum also happens to be global minimum. What is the feature of those 

function? Let us say that you draw, you join any two points on the curve. This is the 

function of curve. Let us say you join any two points, this is the straight-line you will be 

always about the curve. You take any two other points like this you want to join this 

point and this point this will still be above above the curve. So, you join any two points 

on the curve that will be always above the curve. This is the feature not the definition 

this is the feature of the (( )) feature of the function and such functions are called as 

convex functions where the local minimum is also equal to is also the same as the global 

minima. Let us say that there are two points a and b and you have joined and this point 

has to be always about the curve itself.  



So, let us see what is the condition for this; that is x1 and x2.You take any one point in 

between that would be alpha x1 plus 1 minus alpha x2 where alpha is a scalar between 

zero and one. So, this is alpha x1 plus 1 minus alpha x2. What is the function value 

corresponding to x1? It is f of x1 at this location, the function value corresponding to x2 

is f of x2. The straight line point corresponding to this location which is alpha x1 plus 1 

minus alpha x2 is alpha f of x1 plus 1 minus alpha f of x2 that is on the straight-line. The 

function value corresponding to this is f of alpha x1 plus 1 minus alpha x2, that is the 

function value corresponding to this. So, what we are saying is this value which is on this 

straight line namely alpha f of x1 plus 1 minus alpha f of x2 must be always greater than 

f of alpha x1 plus 1 minus alpha x2. So, this point is always lower than this point. That is 

what we are call it as convex function. So, this are the convex function, the local 

minimum is also equal to a global minimum and the straight line that is joining any two 

points will always lie above the curve itself.  
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So, we use this condition and write this as f of alpha x1 plus 1 minus alpha x2 which is I 

am talking about this point here. The function value corresponding this point must be 

always lower than the corresponding point on the straight line joining any of these two 

points could be less than alpha f of x1 plus 1 minus alpha f of x2 for all values of alpha 

between 0 and 1. Now this is if it is less than then it is called as strictly convex, if it is 

less than or equal to than it is still convex function, but not strictly convex. However, I 

repeat this is the feature of a convex function then definition of a convex function is a 



strictly convex function. The second derivative d square f by dx square is greater than 0 

for all values of x in that particular rate,for d square f by dx square of the second 

derivative of the function. If it is strictly positive in the range than the function is strictly 

convex in that particular range. If it is greater than or equal to zero that is d square f by 

dx square is greater than or equal to zero in the range that we are interested in then it is 

called as the convex function. 
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 What we just do it with the convex functions the same thing is true of the convex 

concave functions. In the concave functions the local maxima; local maximum will 

correspond to global maxima. So, there is only one maximum value here and any line 

that is joining between a and b, any two points you join, any two points on the curve that 

line will be always below the curve itself and giving the same argument that will used 

just now for the concave functions the convex functions on sorry.  



(Refer Slide Time: 44:13) 

 

We can write this as f of alpha x1 plus 1 minus alpha x2 will be greater than alpha f of x1 

plus 1 minus alpha f of x2 for all values of alpha between 0 and 1. For a strictly concave 

function, d square f by dx square is less than zero in that particular range. So, in the 

range if you have in in the particular range in of interest if you have d square f by dx 

square strictly negative then it is called as the strictly concave function where as if d 

square f by dx square is less than or equal to zero than it is called as strictly it is called as 

a concave function. Remember, a convex function corresponds to minima and concave 

function corresponds to maxima. So, the second derivative being negative corresponds to 

maximum values, second derivative being positive corresponds to minimum values. So, 

these are the important point set for must remembering this. 
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 Now look at a straight line, let us say that y is equal to m x plus c a simple straight line 

equation. What happens to the second derivative? The second derivative is zero. So, the 

straight line is both a concave function as well as a convex function. Now the other two 

points at I have already mentioned is for the convex function there is only one maximum 

in the range that we are considering and that maximum also corresponds to the global 

maximum. So, local maximum is also the same as local global maxima in terms of in the 

concave functions. Similarly local minimum is also the same as global minimum in the 

case of convex functions. The sum of strictly convex functions is strictly convex. So, if 

you have a two strictly convex functions, the sum of them is also a strictly convex 

function. Similarly, sum of strictly concave functions is also strictly concave.  
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Let us say you have a concave function like this which corresponds to a global maximum 

and you take a mirror image of this or f x is plotted like this which is also in a concave 

function. You take minus f of x which plots like this this corresponds to a local minimum 

which is also equal to is same as global minimum. So, f of x is if it is a concave function 

minus f of x is a convex function and vice versa. In fact, maximization of f of x will 

mean the same as minimization of minus f of x both the optimum values correspond to 

the same point on the x axis.  
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Another important point is if f of x is the convex function and alpha is any constant, then 

alpha f of x is the convex function if alpha is greater than zero and alpha f of x is the 

concave function if alpha is less than zero which means if you multiply it with the 

positive quantity then you still get a convex function, if you multiply with the negative 

quantity you will get a concave function and the same is true if it replaces with concave 

this would become concave and this becomes convex. So, these are the features of 

concave functions and convex functions. Why are we interested in the definitions of 

concave and convex functions? If you know that the function that you are optimizing is 

in fact a convex or concave function and if you are looking at the minimum value or the 

maximum value and then you have methods of isolating or identifying local minimum, 

you will be sure that the local minimum also corresponds to the global minimum in that 

range if it is in fact concave convex function and that is where the notations of convex 

functions then concave functions would be of use. 
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 Now look at what is happening to our original function here. So, this is the function with 

which we started x1, x3, x6 were local maximum and x2 and x4 were local minima. At 

all these points, local maxima as well as local minima the slope is zero. So, if you draw a 

tangent here at this point, the slope will be zero. Similarly at x6 the slope is zero, x3 the 

slope is zero and so on. These points at which the slopes are zero are called as the 

stationary points. So, at stationary point the slope of a function is zero. So, we write that 

as df by dx is equal to zero, we are talking about functions of single variables and 



therefore, we write it as df by dx is zero at x not then x is equal to x not is the stationary 

point.  

So, what we are looking at is in a particular rate we want to get the local maxima and the 

local minima. This is the optimization problem that we are looking at. So, the first 

condition we need to examine is whether the slope is zero at that particular point. This is 

called as the necessary condition. So, the necessary condition for a function to have an 

optimal value at a particular point is that the slope of the function at that particular point 

must be zero. So, d f by dx at x is equal to x not is zero. This is the necessary point 

necessary condition. So, in the necessary condition, you got slope is zero at this point, at 

this point, at this point and so on.  

So, what is the sufficiency condition that. Now the sufficiency condition is if d square f 

by dx square is greater than zero if it is valid for all x in that range then what happens it 

becomes a convex function. So, if d square f by dx square zero for all x in that range we 

just saw that in the in that range if it is greater than zero then you have only one 

minimum and that also becomes the global maxima the global minima. So, if d square f 

by d x square is greater than zero for all x f of x is convex and the stationary point itself 

is the global minima. 
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Similarly if d square f by dx square is less than zero for all x, f of x is concave and 

stationary point is also a global maxima. Now it may so happen that you may get d 



square f by dx square is equal to zero, then further investigation needs to be carried out. 

Let us just go through it again what we are interested in is that within a particular range 

between a and b, we want to examine whether the point x is equal to x not is the 

minimum or a maxima and in fact, whether it is the local minimum or a global minimum, 

local maximum or a global maxima. First we examine the slope of the function. So, slope 

of the function at x is equal to x not if it is zero; that means, that it may either correspond 

to minimum or correspond to maximum or perhaps may not correspond to either of them 

as it happens in that case of x5 here. So, if we have exactly one minimum; that means, if 

in this range the function for functions behaves as a convex function then we get that 

particular point change of slope and that itself corresponds to the global minimum. 

Similarly if in this range it behaves as the concave function, then the function the point 

corresponds to a local maximum which is also the global maxima; however, you may get 

different maxima and different minima like this. So, you may get slope is equal to zero, 

here slope is equal to zero here etcetera and the second derivative may be positive at 

some point may be negative at some points and so on.  

So, if you look at the second derivative it may positive at certain of these points which 

are the stationary points. It may be negative at certain points which are the each 

corresponds to the local maxima. So, we may capture all of these local maxima and local 

minima by looking at the second derivative. Let us say that the second derivative also 

becomes zero at some of these stationary points. Remember these are the stationary 

points x1, x2, x3 etcetera, these are all x5, x6 they are all stationary points because the 

slope of the point at those locations, slope of those slope of the function at those 

locations is all is zero and therefore, they correspond to their stationary points. Now 

some of the stationary points may correspond to local maxima and some of them 

correspond to local minima and some of them may correspond to saddle points and so 

on. So, these are examined based on the second derivative. We will see how we use the 

second derivative as sufficiency condition and what happens if the second derivative also 

becomes zero. What we do in the cases where the second derivative also becomes zero? 

So, we will will extend this problem and then see how will use the second derivative as 

sufficiency condition. So, the necessary condition for a function to have an optimum 

value at a particular point is that the slope at that particular point of the function must be 

equal to zero.  



So, in today’s class, essentially we started with definition of what we mean by a local 

minima, local maxima, local minimum, local maximum and so on and then looked at 

how we identify a convex function and a concave function. Remember the definitions for 

a concave function is that d square f by d x square must be negative and d square x by d 

x square if it is positive then it is the concave function and the convex functions will give 

you the local will just go through that once. So, that refresh our memory correctly. For 

example, in the convex functions we always get the global minimum and in the concave 

functions we always get the global maxima. So, the the notion of convex functions and 

the concave functions are useful because if you know that a function that you are 

optimizing is either a convex function or a concave function then the local minima or 

local maxima that you get are in fact the global minima and global maxima.  

The necessary condition for a function to have an optimal value at our given point is that 

the slope at that point must be zero or the first derivative of the function with respect to 

the variable must be equal to zero where treating functions of single variable. Then we 

go on to the second derivative to see if the stationary point is in fact a local minimum or 

a local maxima and then in the next class, we will also see what happens that the second 

derivative is also zero; that means, the first derivative is zero has the necessary condition 

the slope has changed, then we will look at the second derivative and decide whether it is 

a local minimum or local maximum depending on whether the second derivative is 

positive or negative. What happens if the second derivative is also zero? There we will 

continue this discussion in the next class. So, we are talking about optimization using 

methods of calculus of a function of a single variable now. We will continue our 

discussion in the next class. Thank you for our attention. 
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