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Good morning and welcome to this the lecture number 29 of the course Water Resource 

Systems, Modeling Techniques and Analysis. Over the last two lectures, we have been 

now discussing the stochastic optimization; essentially, in the last last two lectures, we 

have covered the basics of probability theory that will be requiring in developing the 

optimization model; and in the previous lecture, in the last lecture specifically, we dealt 

with the normal distribution, the lognormal distribution and the exponential distribution. 

Now, these are not the only distributions that will be typically using; we also use gamma 

distribution, and when we are talking about extreme values, we may use compiles 

extreme value distribution and so on. But, the three distributions that I covered in the last 

lecture, will give you some idea about how to use the pdfs in the optimization models 

and that usage of the pdfs in the optimization models, we will be discussing today. 
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So, let us quickly recall what we did in the last lecture. We discuss the normal 

distribution; as I mentioned, normal distribution is the most commonly used distribution, 

especially in the optimization models and so on; because it is rather easy to handle the 

normal distribution, however we also use other distributions like lognormal distribution, 

exponential distribution, gamma distribution and so on. The normal distribution is the 

symmetric about x is equal to mu, and we define the standard normal distribution, by the 

standard normal variant by Z is equal to X minus mu over sigma, where x is the original 

random variable and x (Audio not clear from 02:04 to 02:07) the notation, x follows the 

normal distribution with mu comma sigma square, indicating that it has the parameters 

mu and sigma square. Normal distribution has two parameters mu and sigma; sigma is 

the standard deviation. So, we typically use sigma square, which is the variance.  

And then once we convert it into a standard normal distributions, standard normal variant 

like this (Audio not clear from 02:38 to 02:40) z f (z), and then the capital F of z, which 

is integral of minus infinity (( )) f (z) d z; this gives (( )) of z being less than or equal to z, 

and (( )) f (z) is tabulated. So, we use the tabulated values of capital F (z) to obtain 

different probabilities associated with the variable z, and then transfer it into the variable 

x. (( )) seen a a few examples, of how to use the normal distribution tables for obtaining 

several probabilities associated with the random variable x.  



Then we also discuss the lognormal distribution; recall that if x follows normal 

distribution, y is equal to ln (x) follows lognormal distribution. So, if we say x follows 

lognormal distribution, then y is equal to ln (x) follows normal distribution; and we have 

also seen, how to obtain the parameters of y, which follow normal distribution; that 

means, typically mu y and sigma y. Starting with the parameters on x that means, we 

have given mu x and sigma x, we can obtain mu y and sigma y. We have seen the 

expressions associated with this.  

This is the pdf of lognormal distribution. So, this will have parameters mu y and sigma y 

defined on y is equal to ln of x; and then it will also be a function of x, if we are 

considering pdf. But, a more simpler way of… But a simpler way of handling with the 

lognormal distribution is to simply convert your sample data x into log (x) ln (x); and 

then deal with the ln (x), the sample data on ln (x), because ln (x) follows normal 

distribution, you can then compute the movements of mu and sigma on ln (x), on the 

sample containing ln (x); and then use the use the normal distribution, as we have done 

earlier.  

Then we also looked at the exponential distribution, the exponential distribution gives 

the f (x) of exponential distribution is given by lambda e to the power minus lambda x, 

this has only one parameter lambda and lambda is estimated by 1 over mu. So, if you 

have a sample, you can estimate mu, which is the sample estimate of the mean; and then 

get lambda, and lambda is lambda defines the pdf. The cdf - f (x) is then given by 1 

minus e to the power minus lambda x, for x greater than 0, lambda greater than 0; and we 

have also seen a few examples, one example typically, on how to use the f (x) to obtain 

different probabilities; and the exponential distribution looks like this; it is the 

exponential curve in fact, f (x) versus x.  

That was just to introduce a few typical probability density functions and the associated 

cumulative distribution functions. Now, we will progress further, and see how we use the 

pdfs or and the cdfs in optimization problems. As I have been mentioning earlier in the 

deterministic optimization cases, we assume that the inflows, inflows are deterministic; 

in the sense that you specify a sequence of inflows, you assume that the same sequence 

keeps on repeating; for example, if you were solving the reservoir sizing problem with 1 

year mean inflows mean monthly inflows; let us say june month, july month etcetera like 

this up to december… you up to may you have monthly inflows, and you solve the 



optimization problem, what it indicates is that the same sequence of inflows is likely 

to… Is remaining constant, it it in fact, remains constant in the future, that is what is the 

implication of the deterministic optimization.  

However, in reality, it is not so, as you know the inflows are governed by rain fall, which 

is the random variable, and the soil moisture if you are looking at, it is the random 

variable, evaporation if you are looking at, it is the random variable and so on. And we 

have seen in the last two classes, what we mean by random variable; how we address the 

problems associated with the random variable, given the pdf, how we access the 

probabilities associated with the random variables and so on. So, this information that we 

have we have seen in the last two classes. We will now, try to synthesize with the 

optimization problems.  

And the first level of optimization that I will introduce is the chance constrained linear 

programming problem. So, we have earlier seen the linear programming problem, in 

which the constraints were deterministic; in the sense that there was no probability 

associated with any of the constraints. The movement we introduce any random variable 

into an optimization problem, any constraint that contains that particular random variable 

or a function of that particular random variable in any constraint becomes a probabilistic 

constraint. You can you can no longer write it as a deterministic constraint, because one 

of the variables in that constraint is the random variable.  

So, you have to write it in terms of the probabilities associated with that particular 

random variable, and that is what leads to chance constrained linear programming, if we 

are look looking at the linear programming problems. So, we will start with the chance 

constrained linear programming; remember, this is an explicit stochastic optimization 

technique; explicit, because as I mentioned in one of the earlier classes, it considers the 

probabilistic behavior of the random variable, explicitly in the optimization, in terms of 

taking into account, the probability distributions of the particular random variable into 

the optimization directly. Contrast this with the implicit stochastic optimization, where 

the optimization model remains deterministic, and you run it for several sequences. 

 

 



 

So, we are now, dealing with the class of optimization problems called as the explicit 

stochastic optimization; and the first model that we will consider is the chance 

constrained linear programming problems. And specifically, we deal with the chance 

constrained linear programming for reservoir design and operation; and we denote this as 

an abbreviation by CCLP - Chance Constrained Linear Programming. Now, the chance 

constrained is also called as reliability constrained, for the reasons that I will mention 

just now. So, it is also called as reliability constrained linear programming problem and 

we will take the reservoir design or reservoir operation problem for demonstrating, how 

the CCLP models are formulated. 
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We will start with the deterministic LP model that we had seen earlier. Recall that we 

formulated the deterministic model like this. We are looking for the minimum storage 

capacity, this K is the storage capacity, to satisfy a certain demand pattern. So, we are 

saying R t greater than or equal to D t, that means every we are specifying the demands, 

and you want to meet those particular demands always, and if possible, you want to 

supply more water than the demand. So, R t greater than or equal to D t, indicates that 

the release should be atleast equal to the demand.  



Then we have considered S, this is the storage continuity - continuity constraints; S t plus 

1 is equal to S t plus Q t minus E t minus R t, simple mass balance; and this is the 

capacity of the reservoir, which means if we are talking about storage is, this is the 

capacity, in terms of volume; and these are the capacity constraints; this R t is… S t must 

be always less than or equal to K, and R t must be less than or equal to R t max (( )) 

maximum release that is possible, and S t must be greater than or equal to S t S 

minimum. You may specify a minimum storage, and then say that S t must be greater 

than or equal to S minimum.  

Now, look at these constraints now; we assume the Q t to be deterministic in this. In fact, 

all the variables we assume to be Q deterministic, but Q t is the main driving variable, 

which is assume to be deterministic; and therefore, in this, if you also assume E t to be 

deterministic or negligible, this constraint becomes deterministic, and all of these 

constraints are in fact deterministic. Now, in this now, if you want to introduce 

randomness; that means, the uncertainty associated with a hydrologic variables Q t and E 

t, then what happens? You can no longer write any constraint, which has Q t explicitly or 

which has a function of Q t as a deterministic constraint. You can only write them as 

constraints containing probability distributions.  

Let us see, how we incorporate that? So, what we are deriving at now, is starting with the 

deterministic optimization that is shown here. We want to now address uncertainty 

associated with the randomness in the hydrologic variables; and specifically, we will talk 

about the uncertainty associated with the inflow, reservoir flow Q t. For the time being, 

we will ignore evaporation; although, it can be readily incorporated indict into the 

optimization, but to understand how we incorporate randomness, for the time being, we 

will only assume that Q t is random, and we will ignore evaporation.  

Further, we assume that them probability distribution of Q t is known. Although I say 

assume, this information can be obtained or this we can obtain the probability 

distribution fairly accurately, if you have the sample values on Q t, that is the reservoir 

inflow at a particular location is known, are measure for the last about 30 40 years, you 

have the data, from the data you can estimate, which probability distribution best suites 

that particular sequence of inflows. So, the probability distribution of Q t is known. 

Remember we are talking about Q t here, which means that, from one time period to 

another time period, it may have a different distribution; Q 1 may have some 



distribution, Q 2 may have distribution, Q 3 may have it is own distribution and so on. 

So, we are assuming that all the all the distributions of Q t are all known, for all t; I 

repeat that the distribution of Q t, for all t is known. 

(Refer Slide Time: 15:12) 

 

So, this is the problem that we are talking about now; we are looking at the minimum 

storage capacity; we want to meet a certain demand pattern, known demand, so demands 

remain deterministic. We are specifying a set of demands, let say D 1 is equal to 100 

units, D 2 is equal to 100 units, D 3 may be 200 units and so on. These demands are 

fixed, and they are deterministic; there is no uncertainty associated with the demands. 

But the reservoir inflows, which control the storage and therefore the release are random 

variables.  

So, we are considering the reservoir inflow Q t as the random variable; and we may be 

talking about a monthly operation, let say (( )), you may have 12 time periods for 

monthly operation; that means, we are saying now, Q 1 is a random variable, Q 2 is a 

random variable, Q 3 is a random variable etcetera. So, the inflow associated with these 

time periods is the random variable.  

Now, look at these S t and R t, if you look at the continuity here, both S t and R t are 

ignoring evaporation for the time being, let us ignore evaporation; both S t and R t 

depend on Q t, and because Q t is the random variable, S t as well as R t become random 



variables. So, S t and R t both being functions of Q t, they become random variables; and 

therefore, S t plus 1 is also a random variable. So, in the same continuity equation now, 

Q t you know, the distribution half, that is the probability distribution of Q t is known. S t 

and R t are functions of Q t and therefore, they are also random variables. But you do not 

know the distributions of S t and R t.  

(Refer Slide Time: 17:50) 

 

If you have a function of a random variable, let us say H is equal to f (x), where x is the 

random variable. Let me write it this way, this concept let us understand slightly 

carefully, that is, if you have a function of a random variable, H is equal to f (x), let us 

say; x is random and H is also… H therefore, becomes random. A function of a random 

variable is also a random variable. Now, if if you have only one function, that is h is 

directly related with x; then you can determine their distribution of H from the 

distribution of x. But typically, if you have H is equal to f (x) and you have another 

variable let say, G is also a function of x and H. If you have such a situation, and and in 

which you have only the distribution of x, then it becomes difficult for you to get the 

distribution of G and also H, here it may have G also here.  

So, if you have only one random variable, whose distribution has to be determined based 

on another random variable of which it is a function of, it is possible and easy. Although, 

you can do some numerical methods etcetera, there are ways of obtaining these, but it is 

not simple, obtain the distributions in this particular case of both S t as well as R t as a as 



they are functions of Q t. So, you know the distribution only of Q t. It is difficult to 

obtain distributions of both S t and R t; and therefore, what we do is, we use what is 

called as a linear decision rule. Remember the problem, we are talking about is one of 

reservoir design, which has inbuilt into it, how we operate, inbuilt into it the policy of 

operation itself, because we are saying R t must be greater than or equal to D t, which 

means you want to meet the demands in every time period, at at least, the R t must be 

atleast equal to D t is what we are saying.  

So, in a constraint containing two random variables, if the probability distribution of one 

is known, the probability probabilistic behavior of the second can be expressed as a 

measure of the probability in terms of the probability of the first variable; that means, if 

you have only R t and R t being a function of Q t, because Q t distribution is known, you 

can transfer the distribution to R t, whereas if a constraint contains both S t and R t and 

both of them are functions of Q t, then it is difficult for you to get the distributions of S t 

and R t. To overcome this difficulty, we introduce what is called as a linear decision rule. 

We will see, what we mean by that. 
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Now, before that, we will start understanding how we write the chance constraints or the 

reliability constraints. You had to begin with, you had the deterministic constraint R t 

greater than are equal to D t; this is the deterministic constraint. (No audio from 21:16 to 

21:21) We could write this earlier as in this particular form, because R t was 

deterministic, because Q t was deterministic and therefore, S t was deterministic, 

everything was deterministic and therefore, you could write these in this form.  

The moment you introduce any random variable in the optimization problem, and any 

variable, which is the function of that particular random variable also becomes random 

variable; and therefore, R t is now, a random variable, because it is the function of Q t, 

which is the inflow; and therefore, you can no longer write this in this particular form, 

you must be able to write this as a probabilistic constraint, because you cannot be 100 

percent sure that this constraint will be met always, because there is a uncertainty 

associated with the inflows, and that uncertainty is also transfer to the releases; and 

therefore, this constraint we write it in this form. 

Probability of R t being greater than or equal to D t is greater than or equal to alpha. So, 

what we are saying is, instead of stating R t greater than or equal to D t, we state that the 

probability of R t being greater than or equal to D t must be at least equal to alpha 1. I 

may specify this alpha 1, to be let us say, 80 percent, 90 percent and so on. So, what we 

will say is, instead of saying R t must greater than or equal to D t, we will say that at 

least 90 percent of the time, R t must be greater than or equal to D t, at least 70 percent of 

the time R t must be greater than or equal to D t. So, we are stating now, in terms of the 

probabilities associated with the releases R t. So, that is the way we will state.  

Here, we may specify this, so we may say, this is known or specified and R t is (( )) 

decision variable, D t is known, it is deterministic; (( )) a (( )) random variable and 

therefore, this becomes a probabilistic constraint, in terms of the (( )) R t. Now, the the 

statement reads like this, probability of release equaling or exceeding the known demand 

is at least equal to alpha 1, and the alpha 1 here is referred as the reliability. The 

reliability with which the demand can be met, is denoted as alpha one here in this 

particular case.  

So, what we are stating is that the demands in period t must be met with at least a 

reliability of alpha 1; that is why we are putting a greater than or equal to sign here; and 



that is the implication of this. So, the reliability of meeting the demand in period t is at 

least alpha 1. Now, this alpha 1 can be a constant for all the time periods, we you may 

say that at least 70 percent of the time, the demand should be met in period t and that 70 

percent you may hold constant; or alpha 1 can also be a function of time period t, in 

which case, you will write alpha 1 t, instead of writing simply alpha 1. But we will start 

with the simple case and understand how we handle this kind of chance constraint. So, 

this constraint that we have written now; from the deterministic constraint R t greater 

than or equal to D t; we have converted into probability of R t being greater than or equal 

to D t must be greater than or equal to alpha 1. This becomes a reliability constraint or a 

chance constraint or a probabilistic constraint, all three are synonymous. So, we have 

converted the deterministic constraint into a chance constraint now.  

Similarly, we had other constraints in the deterministic optimization S t less than or equal 

to K, R t less than or equal to s t R t max and S t greater than or equal to S s min or S t 

min. Because Q t is random, R t is random, because Q t is random, S t is random and 

therefore, any of these constraints, you cannot state in deterministic forms like this, 

because there is the random variable associated with this; S t is the function of Q t 

therefore, S t is the random variable; R t is the function of Q t therefore, R t is the 

random variable; and therefore, you cannot state these constraints in deterministic forms. 

So, much the same way as we stated the constraint R t greater than or equal to D t in the 

reliability constraint form.  
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We also state the other constraints for example, R t less than or equal to R t max, which 

is the constraint on the maximum release, because R t is the random variable, we write 

this as probability of R t less than or equal to R t max must be greater than or equal to 

alpha 2. We use another reliability level for this; similarly, probability of S t being less 

than or equal to K greater than or equal to alpha 3. Probability of S t being greater than 

or equal to S min greater than or equal to alpha 4. It is likely that the new students will 

get confused with the implications of this; so, just let us understand what this particular 

constraint says, there is the physical limitation physical limit up to which the storage can 

go, S t must be less than or equal to K; however, because S t is the random variable, you 

cannot state it in deterministic form as S t less than or equal to K. 

So, storage must be less than or equal to K is a condition, which we have to incorporate 

through the continuity relationship etcetera, addressed using the probability distributions 

of Q t; however, when you are saying, S t less than or equal to K, if S t is the random 

variable, you cannot simply say state it as a deterministic constraint, you have to state it 

as a probabilistic constraint; and therefore, associated with any random variable, 

remember, if a a constraint contains any… if any term of the constraint… of a constraint 

contains the random variable, then that constraint cannot be stated as a deterministic 

constraint, it has to be stated as the probabilistic constraint, which means S t less than or 



equal to K, we are saying that by and large S t must be less than or equal to K, which 

means about 90 percent, 80 percent and so on.  

So, we associate the probability of S t being less than or equal to K, and then we state, 

remember see here, all the right hand sides are greater than or equal to, irrespective of 

what are your constraints, which means, we are saying that R t must be less than or equal 

to R t max with the probability of alpha 2, with the minimum probability of alpha 2. 

Similarly, S t must be less than or equal to K with minimum probability of alpha 3, S t 

must be greater than or equal to S min with the minimum probability of alpha 4. So, 

these are stated also as reliability constraints or chance constraints. 

(No Audio from 28:34 to 28:44) 

 Now, we will see, how to handle all these chance constraints in the LP problems. Now, 

the probability distribution of S t and R t, we do not know; all we know is the probability 

distribution of Q t. Let us say that the Q t from your sample data etcetera, you can 

assume that the Q t follows normal distribution in time period t, with varying parameters 

across time periods t; that is Q 1 follow the normal distribution with certain parameter, Q 

2 follow the normal distribution with certain other parameters and so on. So, Q 1, Q2, Q 

3 etcetera up to Q 12, you have estimated the probability distributions, and therefore, you 

know, the probability distributions of Q t.  

However, S t and R t, which are functions of Q t, you do not know the probability 

distributions, and it is not straight forward as I just mentioned to determine the 

probability distributions of both Q t and R t; both of which will appear in a particular 

constraint in the continuity constraint. And since S t, R t and Q t are interdependent, it is 

not possible to derive probability distributions of both S t and R t; and to overcome this 

difficulty, we use, what is called as the linear decision rule. We will understand the linear 

decision rule, although this is I I must alert you that it is slightly a dated concept now, we 

have much more regress and much more sophisticated ways of addressing the chance 

constraints; however, as the background the students must know, how the chance 

constraints are typically handled in a linear programming problem. We use the linear 

decision rule; linear decision rule you must remember always is, an approximate way of 

handling the chance constraints.  



We are actually, if I may say so, taking a back door entry in into handling the chance 

constraints. What we are doing there is in principle, what was the function of two 

random variables; we are converting into a function of one random variable, by 

somehow treating the other random variable as a deterministic variable; that means both 

S t and R t are random; however, we will device some intelligent way, by which we will 

say that, although S t and R t are both random variables; we will treat only R t as random 

variable; and do something with S t, so that we it becomes deterministic. Then we do not 

have to deal with two random variable, we deal with only one random variable as the 

function of Q t, whose distribution is known. So essentially, this is the principle of LDR; 

that is, we are reducing the number of random variables, which are functions of Q t, 

which is the random variable. Now, the justification we give for this is, we will see that I 

will come to the explanation. 
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Now, look at the linear decision rule; we say this is linear decision rule, because we are 

relating R t as a linear function of the total water available in time period t. So, in a 

reservoir in time period t, you had S t, which is the storage; and Q t, which is the flow; 

and therefore, the total water available to make the release R t is S t plus Q t. Now, out as 

the total water available, I will now release only S t plus Q t minus b t. So, this is the 

water available, I will release S t plus Q t minus b t and b t is a deterministic parameter; 

that means we will say that b 1, b 2, b 3 etcetera have to be determined, but they do not 



have uncertainty associated with it, they remain the same across a across years; that 

means, b 1, b 2 etcetera up to b 12, if we are talking about the monthly operation will 

remain constant and they are deterministic.  

So, what we are saying is, I will relate the random variable R t as S t plus Q t, which is 

which are both random variables, S t is the random variable, Q t is the random variable, 

minus b t, all I am saying is (( )) water S t plus Q t, I will release only S t plus Q t minus 

b t, which makes perfect sense, because there is so much amount of water available, and 

you will deduct b t, and then the remaining amount, you will release you will use it as 

release, and b t is the deterministic parameter, you can take it as greater than or equal to 

0. We will see various forms of LDRs, in which b t need not be greater than or equal to 

0, but b t typically can be a in this particular form of the LDR, you can take b t to be 

greater than or equal to 0; because we do this and this is the linear decision rule; that 

means that we apriori decide, a priori decide that my release in time period t will be a 

linear function of what is available. So, I will take S t plus Q t minus b t as release.  

Now, in this LDR now, the entire amount Q t is taken to account for is taken into account 

for making the release decision; that is what we are saying is, we are making the release 

during time period t and we are taking into account the initial storage, which is known; 

the entire amount of Q t, we are accounting for in taking that is you know, R t; however, 

we may develop a general linear decision rule, in which we will account for only part of 

Q t, not the entire Q t. So, you may say that R t will be equal to S t plus some fraction 

beta Q t minus b t; that means I will consider 70 percent of Q t, 80 percent of Q t, while 

making my release decision. So, this is the idea that we use. 
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So in general, we can state the LDR is follows; R t is equal to S t plus beta t Q t minus 

beta minus b t (( )) equal to 1, this is for all t. So, we may have beta 1, beta 2 etcetera. So, 

you may use different proportions depending on your requirement, beta 1 (( )) from beta 

2 etcetera, which means (( )) this, in this constraint is that out of the total (( )) is coming, 

I will take only 70 percent to account for the water availability in deciding the release, 

and the release is still a linear function of the S t as well as Q t, because b t is the, beta t 

is known and b t is the deterministic parameter.  

Now, in this, if you put beta is equal to 0; that is beta t is equal to 0, what does it mean? 

It means that you are making the release based on only water available (( )) for the 

inflow at all; that is the conservative way of accounting for it, because you are only 

looking at, what is available; do not even look at what is likely to come during this time 

period, and then simply make the decision based on what is available in the storage. It is 

a conservative way of making decision; whereas, as the other extreme of beta is equal to 

1, it indicates that you are accounting for the entire flow Q t in the time period while 

taking the decision on R t. So, that yields an optimistic policy; and in between you can 

have several policies.  

So, the linear decision rule essentially, is introduced to make sure that you do not have to 

deal with two random variables, you have to deal with only one random variable as the 

function of Q t, whose distribution is known. How that you have linear decision rule 



simplifies the optimization model? So that we can solve it, obviously you know, when 

we are looking at the chance constraint like this; you cannot put this chance constraints 

directly into linear programming problem; unless you convert them in into deterministic 

forms, and then use the deterministic forms in the chance constrained. For example, you 

cannot directly put probability of R t greater than or equal to D t greater than or equal to 

0.7 or 0.8 and so on, into ALP problem, you need to start looking at the distributions of 

them, and then use the distributions and make sure that in the linear programming 

problem, you are you are posing these constraints, you are stating these constraints in a 

linear form. 
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Now, that is what we will do now; that means, we have a chance constrained of the form 

(( )) probability of R t being greater than or equal to D t is greater than or equal to alpha 

1; that means the reliability which which the demands are met in period t must be at least 

equal to alpha 1 is what we are stating. So, we will take a LDR here, LDR is the linear 

decision rule. So, we are saying R t is equal to S t plus Q t minus b t.  

Now, we have the storage continuity equation; remember in all of these (( )) neglecting 

the evaporation. (No Audio from 39:20 to 39:31) So, what we will do is, we will 

consider the storage continuity equation S t plus 1 is equal to S t plus Q t minus R t this 

is the storage continuity. Now, when you put R t (( )) t in this. So, we are saying S t plus 



Q t minus S t minus (( )) b t, this result in S t plus 1 is equal to b t; simply (( )) S t plus 1 

is equal to b t. 

Now, b t is a deterministic parameter and therefore, what did we do through this, we 

simply said that the S t plus 1 which is in fact, a random variable, z equal to a 

deterministic parameter and this is how we avoid… S t avoid treating S t as a random 

variable we are simply saying that S t plus 1 is equal to b t, which is the deterministic 

parameter unknown deterministic parameter, but it is deterministic still. So, the effect of 

using this LDR is to treat S t as deterministic in the formulation, that is the major 

achievement that we did through the linear linear decision rule.  

So, the advantage of this is that the other random variable R t may be expressed in terms 

of the known distribution of Q t; Q t is the inflow and it is distribution is known. So, in 

effect what we are saying is that all the uncertainty in Q t is transferred only to R t and 

not to S t. This is the way we address the problem associated with dealing more than 1 

random variable; obviously, it is not a elegant way, it is not a straight forward way, it is a 

sort of a devious way, if I may use the one in which we are we are saying that one of the 

random variable I will set it as deterministic variable; however, this simplifies the 

calculations a lot and it also addresses the uncertainty associated with the reservoir 

inflows. So, we get S t plus 1 is equal to b t the as a result of your linear decision rule. 

Remember now, we have already included the storage continuity equation, in deriving S 

t plus 1 (( )) is equal to b t. So, the movement I put S t plus 1 is equal to b t, we have 

included the reservoir continuity equation with this particular linear decision rule. 
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So, we will now, look at how the optimization model appears to be. We formulated the 

chance constraint probability probabilistic constraint as probability of R t being greater 

than or equal to D t greater than or equal to alpha 1. To use in the linear programming 

problem linear programming algorithm, we need to state this constraint in a deterministic 

form. We will see, how the deterministic equivalent of the chance constraint is 

formulated. So, this is probability of R t being greater than or equal to d t greater than or 

equal to alpha 1. Now, what is R t? R t is from this S t plus Q t minus b t. So, I will put 

for R t, S t plus Q t minus b t greater than or equal to d t greater than or equal to alpha 1.  

Now, Q t is the inflow, which is the random variable, whose probability distribution is 

known. So, Q 1, Q 2, Q 3 etcetera all these random variables, we have already estimated 

the probability distributions and S t we have said, it is a deterministic variable; remember 

here, we got S t plus 1 is equal to b t. So, I can write S t as b t minus 1. So, the idea of 

doing this is, that I will express everything in terms of only one random variable. So, that 

is what we are doing now. So, S t is b t minus 1, because S t plus 1 is equal to b t I will 

write S t as b t minus 1 Q t a written as it is, b t as b t greater than or equal to D t greater 

than or equal to alpha 1.  

And this one, I will write with Q t taking on the left hand side of the inequality, Q t 

greater than or equal to D t plus b t minus b t minus 1. So, I have taken Q t on the left 

hand side greater than or equal to alpha 1. Now, this is of the form probability of x being 



greater than or equal to a greater than or equal to alpha 1, so, this is of this form; but 

what is our f of x capital f of x, remember capital f of x is probability of x being less than 

or equal to a less than or equal to x, and therefore, always I would like to express the 

probabilities in terms of the random variable being less than or equal to some 

deterministic quantity. 

Look at this probability of Q t being greater than or equal to a; Q t is the random 

variable. Let us say, this is a and this area is probability of Q t being greater than or equal 

to a, and this area is probability of Q t being less than or equal to a this will be 1 minus 

alpha if it is equal to alpha. So, if this area is alpha, you look at this one; you said this has 

to be greater than or equal to alpha 1, then that should be less this will be less than or 

equal to 1 minus alpha. So, when you change the inequalities inside, this inequality 

changes with 1 minus alpha 1; that means, you are pushing this towards this side and 

therefore, this becomes less than or equal to 1 minus alpha 1.  

So, this will write it as probability of Q t being less than or equal to D t plus b t minus b t 

minus 1 less than or equal to 1 minus alpha 1. You have change the inequality inside 

therefore, this change with 1 minus alpha 1. Now, look at these quantities D t is known, b 

t is deterministic, b t minus 1 is deterministic; therefore, this right hand side is 

deterministic and Q t is the random variable. So, if we know the distribution of Q t, we 

we can express this in terms of f of Q t, because you are saying that Q t is less than or 

equal to some deterministic quantity. So, that is what we will do. 
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So, this term here inside the brackets, we write as, again I will repeat that probability of 

Q t being less than or equal to D t plus b t minus b t minus 1 is less than or equal to 1 

minus alpha 1. So, for completeness sake, again you F of a F x of a, we write it as 

probability of x being less than or equal to a. We are saying, the cumulative distribution 

function of the random variable x, at x is equal to a is equal to probability of x being less 

than or equal to a. So, using that we write this as F Q t, which is the random variable of 

the deterministic quantity here, d D t plus b t minus b t minus 1 is less than or equal to 1 

minus alpha 1.  

Now, this is the CDF of Q t. So, F Q t (( )) is the CDF of Q t. We will understand another 

simple notation here; let us say this is your F of x. So, for a given level of alpha, we can 

write this as F inverse of alpha, and if we want to denote the random variable, we can 

write this as F x. So, corresponding to alpha the value of x on this x axis, we will be 

written as F inverse of that particular value alpha. So, that is what we do here. So, this is 

the deterministic equivalent, we are saying that F Q t of D t plus b t minus b t minus 1 

must be less than or equal to 1 minus alpha 1, we write this as D t plus b t minus b t 

minus 1 less than or equal to F Q t inverse like here, F Q t inverse of 1 minus alpha 1.  

 

 



Now, this becomes the deterministic equivalent. Now, look at this you have specified 

alpha let us say alpha 1 is 0.7, 0.8 etcetera. So, you does specified alpha and the CDF of 

Q t is known and therefore, you should be able to get this value, like I as mentioned here 

the moment you set alpha, because the CDF is known you will get F inverse 

corresponding to that alpha. So, this value will be known. This is known and these two 

are the decision variables. These two are the deterministic, they are decision variables 

therefore, this entire constraint here, becomes a deterministic constraint. In fact, we call 

it as deterministic equivalent of the chance constraint that we started with, that is of this 

chance constraint.  

So, essentially what we did is, we started with the probabilistic constraint namely, 

probability of R t being greater than or equal to D t, use the linear decision rule, by using 

the linear decision rule, we could achieve setting one of the random variables to be a 

deterministic random variable, that is S t plus 1 is equal to b t; and then we went to the 

probabilistic constraint, and express the probabilistic constraint in a deterministic form 

by using the information on its distribution. So, the distribution is known, and you have 

set a particular value of alpha therefore, this value you can determine from the 

distribution, and D t is known b t and b t minus 1, they become decision variables. So, 

what what was the earlier decision variables R t, S t etcetera; have been now converted in 

terms of b t and b t minus 1; like this each of the constraints that we stated in 

probabilistic form, we can convert it into deterministic equivalent.  

 

 

 

 

 

 

 

 



(Refer Slide Time: 50:46) 

 

This figure in fact, shows what I mean by F Q t inverse 1 minus alpha. So, this is the 

distribution of Q t, which is the random variable and small q t the value that it takes; 

now, this if you look at this, for any specified value of 1 minus alpha, you go to the curve 

and come to the x axis, that indicates the value F Q t inverse 1 minus alpha 1, which been 

In fact, a value of flow, if you you are dealing with Q as a flow. So, this is how you can 

determine this quantity. 
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Now, let us say you take probability of R t being less than or equal to R t max is greater 

than or equal to alpha 2. So, this is another chance constrained; now, we want to write 

this chance constraint also in the form of a deterministic constraint, it turns out to be like 

this, but for a practice, let us do this now; that is probability of R t being less than or 

equal to R t max is greater than or equal to alpha 2, we will start with. 
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So, we will say probability of R t being greater being less than or equal to R t max is 

greater than or equal to alpha 1; (No Audio from 52:27 to 52:39) alpha 2 is what we have 

used, let us do it with respect to alpha 2; and then we will use this expression here, the 

same LDR, R t is equal to S t plus Q t minus b t, we will use this LDR and see, how we 

convert the second constraint, in terms of the deterministic equivalent.  
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This we have said is greater than or equal to alpha 2, so I will put it as alpha 2 here. 

Remember, in converting any probabilistic constraint into a deterministic constraint, you 

should write the constraints, in terms of the random variable, whose distribution is 

known. So, in in this particular problem, we know the distribution of Q t. So, to convert 

any probabilistic constraint, you must be able to write those that particular constraint in 

terms of the random variable Q t. So, we will use the linear decision rule, we said this is 

S t plus Q t minus b t, this is the linear decision rule is less than or equal to R t max, 

which is greater than or equal to alpha 2.  

Now, what is S t? We have put S t plus 1 is equal to b t so, S t will be equal to b t minus 

1 deterministic plus Q t will written as it is, because it is distribution is known minus b t 

less than or equal to R t max greater than or equal to alpha 2. Now, this is deterministic, 

this is deterministic this is known therefore, I will written only the Q t on the left hand 

side Q t less than or equal to R t max minus b t minus 1 plus b t greater than or equal to 

alpha 2, what is this you can identify this as F of Q t of this particular value. So, I will 



write this as F Q t of R t max minus b t minus 1 plus b t greater than or equal to alpha 2 

and this we will write as R t max minus b t minus 1 plus b t greater than or equal to F Q t 

inverse alpha 2. 

So, this is the deterministic equivalent of the constraint R t greater than or equal to (( )) R 

t being greater than or equal to R t max must be greater than or equal to alpha 2. So, this 

is how we use we convert the probabilistic constraints into the associated deterministic 

constraints. (No audio from 55:48 to 55:55) Now, we will see the other constraint 

similarly, we now, wrote the second constraint also as deterministic constraint.  

Look at the other two constraints now, S t less than or equal to K and S t greater than or 

equal to S min. We have already by using the linear decision rule. We have set that S t is 

the deterministic; because we are saying S t is equal to b t minus 1. So, we have set the 

storage as a deterministic variable already and therefore, these two constraints can be 

state away written as S t being less than or equal to K, then need not be written as 

probabilistic constraints, because S t is the deterministic variable.  
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And then, we write the complete form of the deterministic equivalent, we write as 

minimize K, this is not maximize, this is minimize k, subject to D t plus b t minus 1, this 

is the first deterministic equivalent we got, this is the second deterministic equivalent 

you got, and then we are writing S t less than or equal to K as b t minus 1 less than or 

equal to K, b t minus 1 is the greater than or equal to S min b t is greater than 0 K is 

greater than 0. 

This we have to write for all t, look at this now; what are the decision variables? k is the 

decision variable you do not know, what is the value of k; b t is the decision variable, b t 

minus 1 is the decision variable, this value is known, because alpha 1 you have fixed, 

this value is known, this is also known, b t are decision variables this is known, because 

alpha 2 is fixed, and these are decision variables; and this is known, this is this is to be 

determined. So, this can be solved using any linear programming algorithm.  

So essentially, what we did through this exercise now is that by treating Q t as random 

and by using the distribution of Q t probability distribution of Q t, we reformulated the 

problem of the determination of a storage as a stochastic optimization problem. Any 

constraint that contains a random variable becomes a probabilistic constraint, and we 

state these probabilistic constraints, and then determine the associated deterministic 

equivalents of the probabilistic constraints.  

For determining the deterministic equivalent equivalents of the constraints, we have use 

the linear decision rule, which actually converts one of the random variables into a 

deterministic variable. So, typically we use R t is equal to S t plus Q t minus b t in the 

example that I showed, and then by using the linear decision rule, we can convert the 

probabilistic constraints into deterministic constraints, and then we can use the linear 

programming algorithm to solve this.  

Now, in the particular way of a handling this probabilistic constraint that I just showed, 

the b t and b t minus 1, the b t is will become decision variables along with the capacity 

K, and once b ts are fixed your storage is are fixed, because S t plus 1 is equal to b t and 

then R t can be determined and so on, using the continuity equation. So, we will continue 

this discussion and solve an example, using the chance constrained linear programming 

problem in the next class, thank you for your attention. 


