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Good morning, and welcome to this the lecture number 21, of the course, Water 

Resources Systems - Modeling Techniques and Analysis. Now, we are talking about 

problems dealing with reservoir sizing. So, in the last lecture, if you recall, what we did 

is, we introduced the concept of the mass diagram and the ripple diagram that 

conventionally is used for determining the reservoir size. The problem there is that for a 

given sequence of flows and for a specified demand, what is the minimum reservoir 

capacity that is necessary. 

So, this is the problem that we are dealing with, what is the minimum capacity of the 

reservoir that is necessary to meet the given sequence of demands for the given sequence 

of inflows. Now, classically this used to be done by the mass diagram or the ripple 

diagram, but the ripple diagram or the mass diagram it will be extremely difficult to get, 

accommodate the time varying demands and also to accommodate the storage dependent 

losses, and then we introduce the sequent peak algorithm.  
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So, if you recall the sequent peak algorithm, we write it as K t is equal to K t minus 1 

plus R t minus Q t; R t minus Q t in any given time period t. In fact, indicates the deficit 

that occurs during that time period, Q t is the inflow, R t is the demand or the release the 

from the reservoir, which we set it to equal to demand. 

Therefore, R t minus Q t is the deficit, we are computing the deficits in a cumulative 

way, whatever was the deficit or the storage that was necessary during the previous time 

period, we add into this particular deficit in this t period, and then calculate in some 

sense, the cumulative deficit during a critical time, and K t minus K t becomes 0; if it is 

negative, which means that your K t minus 1 plus R t minus Q t; if it is negative, then it 

we set it as 0. Like, this we compute several all the K t s during all the time periods, and 

we pick up the maximum of such K t s and that is, what is the reservoir capacity? Recall 

that we do these computations typically for two cycles, just make sure that we do not 

miss the critical period; that is critical length of periods, time periods. 

Especially, if the critical period is the occurring towards the end of the sequence, end of 

the inflow sequence, we carried out to carry the computations to the next cycle. So, 

typically, we carry it for a maximum of two cycles; in the two cycles will get the critical 

period. And therefore, we pick up the maximum of this K t s and this we call it as though 

minimum require capacity. 



A minimum requires storage capacity, to meet the particular demands R t for a given 

sequence Q t. Again, here if you want to include the storage dependent losses, then it 

becomes slightly unyielding or slightly compare some and complicated; however, as I 

mention, there is an algorithm available developed by (( )) 1987; or something around 

that time, which have also incorporate the storage dependent losses in the sequent peak 

analysis. However, once we know the optimization algorithms, these types of problems 

can be very easily, readily, formulated as optimization problems. 

So, let us look at the reservoir operation capacity determination using LP, this we 

covered in the previous class. What we essentially do is, that we write the storage 

continuity equation, S t is the storage at the beginning of the time period; Q t is the 

inflow during the time period; R t is the release that is taken out of the reservoir; minus L 

t is the losses, total losses during that time period; and this we write it us equal to the 

storage at the end of the time periods. So, this is just just the storage continuity, this 

constraint is storage continuity. 

And then, we apply the constraint S t is less than or equal to K; to indicate that the 

storage must be less than or equal to the capacity; and of course, the non negativity 

conditions. And then, we minimize K, which means we are looking at the minimum 

reservoir storage, set of which will satisfy these demands for this given inflow patterns, 

with losses specify. Now these losses can be average losses during the time period and so 

on. So, this is how we determine the reservoir capacity, and we also solve that we get the 

same capacity as the sequent peak algorithm for a given demands and inflows.  

Now, we will look at the losses, we said in this formulation; that the losses must be 

specified per period; that means, let say that we are talking about the volume units here, 

storage within volume, inflow volume, realization volume, and therefore, the losses was 

also in volume, typically in million cubic meters is what we talk about. 

So, if you specify average losses, let say that you are talking about 12 time periods, 

monthly time periods, and then you may specify average loss during June month is so 

much; average loss during July month is so much, and so on. Based on your historical 

data, you would have estimated this. 

However, notice that L t, which is the loss and specifically the evaporation loss, which is 

much more significant compute to any other losses such as (( )) loss and so on. So, we 



need to account for the losses as storage dependent losses, because as the storage 

changes, I mention this in the last class, but let us understand this correctly.  
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As the storage changes, the surface area changes, typically will have the reservoir like 

this, and then the upper upstream counter levels would be something like this, and then 

as the storage changes, let say that your S t was somewhere here, and then this will be 

the surface area. 

So, the surface area; that is the water surface area here will depend on the contours 

upstream of the dam, and also on the storage level that is the elevation. So, typically you 

will have water called as the storage; that is area capacity relationships for any given 

reservoir, you have Area - Capacity Relationship, so from this storage, if you go to any 

other storage. 

Let say, will go to this point, then this becomes the area in the third dimension here, 

which means the area will depend on the storage and the storage and elevation are 

dependent. So, as your elevation changes, your area changes, and as the area changes 

your losses will change. 

So, typically we will have e t into A, the losses will be equal to e t into A, where e t is the 

rate of evaporation, this will be typically in depth units, and area is in area units, and this 

is area of water spread, and this area of water spread is related to storage, and typically 



we will be changing from time period to time period, because your area is changing, your 

storage is changing. And therefore, the area will also change. 

And therefore, we need to account for the losses as storage dependent losses, because the 

storage is continuously changing by the area changes and therefore, the evaporation 

losses change. And therefore, we need to account for the losses as storage dependent 

loss. Let us see, how we do that. 
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So, we want to now account for the evaporation, and rewrite the continuity equation. 
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This was the continuity equation, S t plus Q t minus R t minus losses, where the losses 

were lumped, and then consider we considered average losses, but because the 

evaporation losses can be quite significant from time period to time period, and they are 

dependent on the storage is S t and S t plus 1. Specifically, in our country, like ours 

tropical weather, the evaporation losses have to be in accounted for accurately, because 

they can make a significant difference, as I will presently show through an example, in 

the capacity determination.  
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So, let us look at, how we account for evaporation as storage dependent losses? Now this 

is the area capacity relationship, this is storage on the x axis, surface area on the y axis, 

this is water surface area or water spread area, typically we will have this curve like this. 

Now this is the area capacity curve for using linear programming, what we do is beyond 

the dead storage level? This is the dead storage, and we approximate the storage capacity 

relationship with a straight line. So, this is approximate straight line and then look at the 

slope of this, this slope is a is to 1. So, this is the slope of the area capacity relationship 

beyond the dead storage. So, this is the dead storage and beyond the dead storage, we fit 

a straight line and then call this as a is to 1. So, the slope is a is to 1.  

Now look at, what is happening, corresponding to A naught, which is the dead storage 

there is a constant rate of evaporation. So, that will write it as A naught into e t, which 



means, now the total storage, we are reckoning as consisting of two parts, one is 

corresponding to the dead storage, and another is beyond the dead storage. 

So, corresponding to do the dead storage, we have an area of water spread of A naught 

and that will give me a constant evaporation of A naught into e t, where e t is the rate of 

evaporation in depth units, typically will talk about millimeters and converted into 

meters, because this would been millions square meters or square meters etcetera. It is 

the area unit. Then, what is happening beyond this time, this part you just look at this, we 

want to get the area corresponding to an average storage S t plus S t plus 1 divided by 2. 

So, this is the average storage storage in period t. 

That is you started with S t, just look at this, this is the period t, your initial storage was S 

t; you ended up with the storage of S t plus 1. So, in this time period, the average storage 

is S t plus S t plus 1 divided by 2; corresponding to this S t plus S t plus 1 divided by 2, 

what is the area? It will be a, which is the slope multiplied by that storage. So, a multiply 

by the storage here will give the surface area at any given point. So, S t plus S t plus 1 

divided by 2 is storage here multiplied by that slope, you will get the surface area. So, a 

into S t plus S t plus 1 divided by 2 is the actual surface area, corresponding to the 

average storage in period t; that we multiply by e t, which is the rate of evaporation to get 

the total evaporation loss E t. So, this is the total evaporation loss.  

The first term corresponds to the evaporation loss associated with the dead storage, 

which corresponds to an A naught, area of A naught. The second term here corresponds 

to the average active storage or average live storage namely S t plus S t plus 1 divided by 

2; and the area corresponding to that is a into S t plus S t plus 1 divided by 2 into the rate 

of evaporation; and therefore, this is the additional loss, evaporation loss. 

So, this is what you get in volume units, remember that; this small a is that I am showing 

here is area per unit active storage above A naught. That means, A naught is the area 

corresponding to the dead storage and from this point onwards we have put, we have fit a 

straight line for the area capacity relationship. 

And therefore a, which is the slope of the line is area per unit has units of area per unit 

active storage, which means meter square per meter cube or something like that. Now, 

we use this, now in our storage continuity equation, so what we did essentially here is? 



That we express the evaporation loss as a function of the storage, this we will use now in 

the continuity equation. 
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So, we will write this as E t is equal to A naught e t; and then, I will introduce for a into e 

t divided by 2; a e t by 2, I call it as a t some constant a t, which in this from time period 

to time period, because e t changes from time period to time period. So, I will write it as 

a t is equal to a into e t by 2; and therefore, I write E t as A naught e t plus a t into S t 

plus S t plus 1. 

And A naught e t, I will write it as L t that is fixed evaporation loss, I will write it as e t 

into A naught and therefore, this term is L t plus, I will written this as it is, a t into S t 

plus S t plus 1. Now, this is the total evaporation loss in time period t, we will substitute 

this in the storage continuity equation. 
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So, the storage continuity equation was S t plus Q t; that is the initial storage plus the 

inflow minus the release minus the total losses E t is equal to the end of the period 

storage S t plus 1; the evaporation loss E t we just wrote it as L t, which is e t into A 

naught plus a t, which has A naught e t by 2 into S t plus S t plus 1. So, this is what we 

substitute here. 

So, in this equation, we write S t as it is, Q t as it is, R t as it is for E t, I will write it as L 

t plus a t into S t plus S t plus 1. And this should be equal to S t plus 1. We simplify this, 

and then get it as 1 minus a t into S t plus Q t minus R t minus A naught into e t is equal 

to 1 plus a t S t plus 1. Now, this is the continuity equation 

(No audio from 17:36 to 17:43) 

With losses accounted for; that is which storage dependent losses. 

(No audio from 17:48 to 17:55) 

Accounted for and putting all the decision variables on one side, on the left side, you can 

also write this as 1 plus a t into S t plus 1, 1 minus a t into S t is equal to Q t minus R t 

minus A naught into E t, just notice that Q t is given R t is that particular demand pattern 

that you want to me therefore, this is known. A naught is the area of water spread, which 

corresponding to the dead storage which is known; e t is the rate of evaporation that is 

known. So, the all the terms on the right hand side are known, S t is the decision variable 



and similarly, S t plus 1 becomes decision variable, a t can be determine from data and 

therefore, the left hand side has announce S t, right hand side everything is known. 

Now, this is the set of constraint that we write for all t, now this notation, you must be 

aware now that we write it as for all t. So, this constraint set, we write for all t, which 

means that if you are if you are time periods or monthly time periods, then you will have 

12 such constraints, because t will go from 1 to 12 and S 13 that is the last time step, you 

set into S 1, which will be also equal to the storage at the beginning of the first time 

period, will come to that as a we progress. 

So, now onwards we will be using this form of continuity, where we are specifying the 

storage dependent losses. Now, in this, with this storage continuity equation then, we 

will reformulate our original problem, our original problem was if you recall, we wanted 

to find out the minimum value, minimum storage subject to the continuity and S t less 

than or equal to K and etcetera. So, only the storage continuity will change now, and 

incorporate the losses as storage dependent losses; and therefore, will replace the 

continuity, original continuity with this continuity now. 
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And Right therefore, the storage constraint, we write it as 1 minus a t S t plus Q t minus 

L t minus R t is equal to 1 plus a t into S t plus 1, where L t is defined as e t into A 

naught, and this figure should give you all the details, A naught is that particular surface 

area corresponding to the dead storage, a is the slope of the area capacity relationship 



approximated as the straight line beyond the dead storage, and S t plus S t plus 1 they are 

the storage is at the beginning and the end of the time period t. So, we write this 

constraint and S t is less than or equal to K and R t greater than or equal to D t. Now, this 

is in various forms, we use this; that is we specify D t and say that by release should be 

greater than D t, release should be at least equal to D t.  

(No audio from 21:21 to 21:30) 

So, when we have the demands specify, we can write as R t greater than or equal to D t, 

and sometimes we may write R t as D t itself here anyway these (( )) will come to later, 

but right now, you understand that we have replies the storage continuity by this 

particular equation expression here, which accounts for storage dependent losses.  
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Now, let us see, how we state the problem and therefore, we state the problem as 

minimize K, which means we are looking at that particular storage capacity K, minimum 

storage capacity K, subject to the storage continuity equation, which account for the 

evaporation losses written for all time periods t, S t is less than or equal to K, because the 

storage must be less than or equal to the capacity. 

Do not miss the point here; that this is the capacity K, and we are talking about live 

storage only; and therefore, your S t at any point, which is a actual storage must be less 

than or equal to K, what happens if S t goes above K the overflows occur. So, the 



overflows occur whenever K is less than S t, because you want to restrict S t up to this 

point anything beyond that will go as overflows and sometimes depending on your 

formulations, overflows can be absorbed into the release R t itself. 

So, in this form now we are not accounted for overflows separately; R t itself accounts 

for the overflows, because of this constraint namely S t is less than or equal to K. You 

are restricting the storage to the capacity K, and anything in access will be filled in R t. 

So, this is the general formulation. Now, from the original formulation we have just 

change the storage continuity to account for the storage dependent losses; and then we 

will solve this. In addition, we put S T plus 1 is equal to S 1, where T is the last period in 

the sequence. 
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Let say that you are talking about monthly sequences, which means that you will have 12 

time periods, in which case capital T is 12, T is the last time period. So, capital T is 12. 

And therefore, S 13 we set it as S 1, let say you are talking about 10 day time periods, 

which means that you will have, let say 36 time periods in a year, then S 37 will be equal 

to S 1. So, the last time period the storage at the end of the last time period must be equal 

to the storage at the beginning of the first period; that is what it in includes. Now, as I 

said the spill if any is absorbed in this term R t here. 
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Let us take an example now. Now, this is where specifying the monthly flows. So, the 

inflows are given, the demands are given D t, Q t and D t are in million cubic meters. 

These two are in million cubic meters, and the rate of evaporation e t is in millimeters. 

So, these are millimeters. So, like this from June to May all these values are given. So 

this is the data now, this data is typically available at any reservoir side, this is the rate of 

evaporation, remember this is typically major at the reservoir side by weather stations 

and may be by pane evaporation and so on. 

So, you will have estimates of the rate of evaporation, Q t is the flow which is majored at 

the reservoir, and D t is the demands that you have estimated that need to be met by this 

reservoir; for such a combination, we need to find the minimum storage that is necessary 

to meet this demand demand pattern for this given inflows, when these rates of 

evaporation occur; that is the problem now. 

We also have the area capacity relationship from which we know the area corresponding 

to the dead storage level, which is in our notation A naught. So, this A naught is known 

and also this slope a is known. So, those values are necessary. So, we know A naught as 

37.01 million meter square, and slope of the area capacity curve beyond the dead storage 

in our notation, it is small a is 0.117115 meter square per meter cube, this is the slope 

therefore, it is in meter square per meter cube. So, all the data is given. 
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Now, we will formulate the continuity equation. To form the continuity equation what 

are the terms necessary, we need a t here; and therefore, we have to estimate a t.  
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What is a t? a t we defined as, a into e t by 2, and a is the slope of a area capacity 

relationship beyond the dead storage, e t is the rate of evaporation therefore, you can get 

a t, because e t changes from one time period to time period. Although, a remains 

constant, a t changes from one time period to time period.  
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So, we will get a t, Q t is given, now this is given, this is given, this is given, this is what 

we compute, we convert this e t in millimeters into meters, because everything is in 

meters, million cubic meters and so on. So, we convert e t into meters, which means that 

this should be actually a t is equal to a into this e t divided by 2, divided by 1000. So, that 

is how we calculate a t, then you calculate L t, which is A naught into e t, you have A 

naught here and you have the e t here, corresponding to different time periods. 

So, e t is given, so A naught into e t you get L t. This will be in million cubic meters, 

because A naught is in million square meters and e t is in million, e t e t is in meters 

convert e t into meters, and then calculate this, and then you need 1 minus a t and 1 plus 

a t. So, once you calculate a t, you get 1 minus a t for example, this will be 1 minus 

0.01357 that will be this ,and 1 plus a t is 1.0136 and so on. So, given a t you can 

calculate these. So, like this for every month, June to May you have 1 minus a t and 1 

plus a t and therefore, we should able to now write the continuity equation for all the 

time periods. Q t is given, D t is given, E t is given, and we have now calculated 1 minus 

a t and 1 plus a t.  
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So, we will write the continuity equations, in the long form this is how it looks. So, our 

model is minimize K subject to 1 minus a t into S t plus Q t minus L t minus R t is equal 

to 1 plus a t into S t plus 1; and R t is greater than or equal to D t; and S t is less than or 

equal to K; and S 3 S 13 is equal to S 1, this is the additional constraint to make sure that 

the storage at the end of the last time period is equal to storage at the beginning of the 

first time period. 

So, we start filling this 1 minus a t, which is 0.9864 into S 1. I am writing it for t is equal 

to 1 first plus Q 1 which is 70.61 minus L 1 which is 8.58 minus R 1 which is the 

decision variable is equal to 1 plus a t which have calculated 1.0136 into S t plus 1, 

which is S 2; like this, we write for all the time periods 1, 2, 3 etcetera 12, when you 

come to 12, this will become S 13, but S 13 we replies it as S 1 here, and that is what I 

am writing here, S 13 will be equal to S 1. 

Then R t is greater than or equal to D t. We write it as R 1 greater than or equal to this D 

1; R 2 greater than or equal to this D 2 etcetera. Like, this we write and then, this set of 

constraints is written like this, there are 12 sets like this, then S t is less than or equal to 

K S 1 to S 12 all less than or equal to K. So, this is the complete statement of the model 

of course, there is the non negativity, the set of non negativity constraints namely S t is 

greater than or equal to 0; and R t greater than or equal to 0; that is assumed in any LP 

problem formulation unless otherwise state here. 



So, this is the linear programming problem, how many decision variables are there, S t is 

the decision variable, R t is the decision variable, and therefore, you have 12 decision 

variables corresponding to S t; and 12 decision variables corresponding to R t; how many 

constraint are there, there are 12 constraints here, 12 constraints here, and 12 constraints 

here, which means 36 constraints apart from the non negativity constraints. So, 36 

constraints and 24 decision variables, we solve using any LP software this particular 

problem, and then look at the solution. 
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So, when you solve this, you get the solution like this, S t and R t and the associated K 

value. So, this is the storage capacity, required capacity.  

(No audio from 32:18 to 32:28) 

Our objective function was this 617.93 that is minimize K. So, we are getting minimum 

required capacity is 617.928 million cubic meters, associated with that we also get the 

storages 13.26, 6.9 etcetera up to 4.45; and the associated releases 68.13 and so on. 

Remember that every time period, you should be able to meet, if you pick up any points 

here, you should be able to meet the associated storage continuity equation; for example, 

you pick up time period t is equal to l, starting with this plus the inflow during time 

period 1 minus release during the time period 1 etcetera. 



If you substitute this, you should be able to get S 2 which is 6.9 and so on. You can 

verify this, once the solution is feasible, then all the constraints are satisfied and 

therefore, that conditions will be satisfied automatically. The point you have to note now 

is that you got storage of 617.928 million cubic meters, when you accounted for storage 

dependent losses. So, you have the evaporation rates, and then you accounted for storage 

dependent losses. 

Let us see now, what happens, if the storage dependent losses are not accounted for, 

which means that we are saying that the losses are negligible. If the losses are negligible, 

then we write the storage continuity equation as S t plus Q t minus R t is equal to S t plus 

1. Assuming that the losses are all neglected, then what would you expect, let say that 

you solve the minimization problem again; that means, the linear programming problem, 

where you are looking looking for the minimum required storage to meet that particular 

demands.  

If you neglect losses would you get a higher storage or a lower storage, your inflows are 

the same; your demands are the same; and you are ignoring the losses, when you are 

accounting for the losses actually, what is happening, the flow that is coming which adds 

to the storage, you are taking out something, which means that some amount of water is 

not available for you to meet the demands. 

And therefore, when you account for the losses, you will end up getting a higher storage 

requirement, because the flows or the amount of water available during a particular time 

period is smaller by the amount that has been lost into lost as losses, evaporation losses 

specifically. And therefore, when you ignore the losses, you will get a lower storage 

required, because with the lower storage, you will be able to meet the demand, because 

you have ignored the losses. So, let us see what happens, if you ignore the losses.  
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So, without evaporation now, I resolve the problem, which means essentially what I 

would (( )) means that I will write S t plus 1 is equal to S t plus Q t minus R t; that is all 

for all t, I will write, and then we are looking at the objective function of minimize K 

with all other constraints; that is S t is less than or equal to K and so on. So, all of this 

will write only the storage continuity equation, I will change ignoring the losses, with 

losses, we get about 617 million cubic meters, without losses you will get about 

588.11cubic meters, which is much 588.11 I am sorry 588.11 million cubic meters, 

which is smaller than the 617.93 million cubic meters, you must always remember this 

that if you ignore the losses, you will get a lower storage, but physically if you construct 

this storage, you will not be able to meet those demands, because there are losses. So, 

you have to account for losses, and then you will get a higher required storage. 
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Now, there are some certain points here; that you should note, one is that we wrote the 

equality in the the storage continuity in the equality form 1 minus a t into S t plus Q t 

etcetera. We wrote it for all t. So, if you look at this set of constraints, all of these are 

equality constraints, in the linear programming algorithm, in the simplex algorithm, 

recall that whenever you have an equality constraint, what do we do, we put an artificial 

variable; and therefore, associated with all of these equality constraints you may have 

artificial variables, and the equality constraint must to be met exactly, because if you 

have less than or equal to constraint, you have certain flexibility that the left hand side 

can be less than the right hand side; and therefore, you have flexibility. 

If you have greater than or equal to you still have flexibility, because you can make the 

value to be greater than any any value, greater than the right hand side value; and 

therefore, you have the flexibility whereas, when you put the equality constraint in 

optimization problems in general, it creates some problem when you have large number 

of equality constraints like like this, because the left hand side has to be exactly equal to 

the right hand side for all these constraints; and sometime and in fact, often times you get 

infeasibility when you have large number of equality constraints, typically in reservoir 

operation problems or reservoir sizing problems, when you have continuity in the 

equality form unless you account for the spills explicitly, and make this exactly equal to 

the right hand side in some sense, you will almost always end up in getting a in feasible 

solution. 



And therefore, we need to rewrite the equality constraints in some other form, which is 

more friendly for the linear programming. Let us see, what we do that, what we do here, 

so you must understand that a large number of equality constraints in linear 

programming will cause problems; and therefore, we need to account, we need to rewrite 

the equality constraints in some form, which is, which will make the linear programming 

give us feasible solutions for the same type of constraints. 

 So, what we do there is in your earlier formulation, we said that R t will be equal to D t; 

although, the problem that I solved, I put R t greater than or equal to D t, because I 

wanted a feasible solution, but in general what we say, we specify the demand and say 

that R t must be equal to D t; and therefore, in the continuity equation, I would written R 

t, what we do is we put this condition, but put extra additional additional constraints 

saying that R t should be greater than or equal to D t. 

 And therefore, suddenly I mean, incorporating flexibility here; that means, instead of 

saying R t to be exactly equal to D t, I am saying R t should be greater than or equal to D 

t, I specify the demand and say that release must be greater than or equal to demand 

therefore, you are incorporating the flexibility here. So, this is one way of doing. So, this 

will ensure the demand in every period is satisfy to the fullest and any additional amount 

that you have will be put in to R t here. So, at least you are able to meet the demand and 

any additional amount will be put in to the term R t here; that is how you avoid the 

problems created by a set of equality constraints. 

(Refer slid Time: 40:49) 



  

Then the other one is that you put D t, which is a demand, but make the left hand side 

greater than or equal to the right hand side, instead of saying exactly equal to the right 

hand side, you make it greater than or equal to the right hand side. What does that mean, 

you started with let say that you assume, you understand this way, you started with the 

particular storage, added the inflow to that took out some amount D t and accounted for 

the losses. So, you end up with one end of the period storage that is the left hand side.  

Now, this end of the storage, I will make it greater than or equal to the actual end of the 

period, actual beginning of the period storage for the next time period. Suddenly, we are 

putting some flexibility into the mathematical statement of that; what happens to the 

additional amount, the additional amount will be accounted for as a spill. So, this can be 

greater than or equal to the right hand side, this is what we are stating mathematically; 

although, physically we will see that the additional amount will come as spill. I will tell 

you, what what that spill will be. 
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So, we will write this problem in using this formulation of the constraints as minimize K; 

that will remain as it is, this is the objective function, subject to 1 minus a t plus Q t 

minus L t minus D t greater than or equal to 1 plus a t into S t plus 1.So, instead of 

equality constraint here, I making it as greater than or equal to and S t less than or equal 

to K. 

In the solution, then the mass balance will be met only by accounting for spill. So, if you 

look at the solution and then do the mass balance; that is S 1 plus Q 1 minus all the 

losses etcetera must be equal to S 2. If you do that mass balance, it can be satisfied only 

after you account for the spill and that spill will be equal to whatever is the left hand side 

minus the right hand side. So, this is the difference minus K, which is the capacity. If it is 

positive, which means, what that the additional amount; if it is greater than the capacity, 

then it will be accounted for as the spill; otherwise 0. So, this is how you can meet the 

storage continuity equation. 
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We also have another way of doing it, we can specify spill explicitly; this is the 

overflow. So, typically what happens is as I said your reservoir capacity comes up to K 

and then additional amount, we put it as spill. So, we are putting another variable (( )) 

spill as on additional variable. 

(No audio from 43:48 to 43:54) 

Now, if you try and I encourage you to try this, this expression for your continuity 

equation, without modifying the objective function, I will tell you, why this modification 

is necessary, let say that you try this form of the continuity equation, what we are saying 

here is; that you meet the demand exactly, L t is known; Q t is known; S t is the decision 

variable; S t plus 1 is the decision variable; a t is known. 

And therefore, 1 plus a t and 1 minus a t are known; and we are saying spill t, we are also 

putting S t is less than or equal to K t and all that all other constraints are remaining as 

they are. So, S t is less than or equal to k. So, from this what we are saying is that the 

storage must be limited to k; however, I am also putting a spill t here, if you do not 

modify the objective function, what will happen is, even when storage is less than K, let 

say that your storage was here, even then the spill t may have a non negative value, non 

zero value in fact, because there is no other mechanism by which the linear programming 

algorithm knows that it should not give a non zero value to spill t, when storage is less 

than K.  



To make sure that the spill t, which is actually the overflow will occur only when 

absolutely necessary, which means that only when the storage has reached the maximum 

storage, only then the spill should occur to ensure that what we do is, we say minimize 

K, which was our original objective function plus I will put an arbitrary large number, 

and then penalize the spill t. 

 So, what happens even if you put any value to spill t, because of this large number, the 

objective function values suddenly shoots up and therefore, there is a penalty associated 

with it, because we are talking about minimization objective function. So, we are 

actually penalizing the spills in the objective function by putting a large number M and, 

because is a minimization problem any value other than 0 to spill will shoots up the 

objective function and which is penalize actually, because you are looking for a 

minimization problem. So, this is another way of handling this. 
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So, we know now that the storage continuity equation, which the evaporation losses can 

be handled by several means, one is simply put the equality constraints, but make R t 

greater than or equal to D t; and another is make the left hand side greater than or equal 

to the right hand side and so on. So, there are three ways of doing it, there is also yet 

another way by using the integer variable and so on, but right now you just be aware that 

the storage continuity equation and in fact, several other constraints that we may get in 

more complex problems, where you have a large number of equality constraints for 



example, you may want to include the soil moisture balance, where the soil moisture at 

the end of the time period must be equal to all the continuity mass balance etcetera that 

takes place during the time period and therefore, you will have large number of equality 

constraints. 

Whenever, you have such large number of equality constraints, the linear programming 

generally gives infeasible solution, because the values have to be met exactly and these 

have to be, these values must be consistent across different time periods in an exacts 

sense, the left hand side has to be exactly equal to the right hand side; and therefore, 

large number of equality constraints must be in general avoided in the linear 

programming problem, and this is these are some of the ways by which you can avoid 

the large number of equality constraints.  

Now, what we will do is. So, for what we did, if that we are looking for a minimum 

capacity of the reservoir; that is minimum required capacity of a reservoir to meet a pre 

specified demand pattern that is D t you have specified, demand during time period one, 

time period two, etcetera, you have specified that for a given sequence of inflows Q 1, Q 

2, Q 3 etcetera Q t is known for a given rate of evaporation e t e 1 e 2 e 3 etcetera these 

are rates of evaporation. So, these are known; for a given area capacity relationship, you 

know the contour levels, as the storage increase is how the area changes you know that 

through area capacity relationship. So, for all of these given data you are looking for the 

minimum capacity of the reservoir to meet this demand patterns. So, this was our 

problem, this was the capacity determination problem. 

Now, we will pose the problem slightly in a different way, let say that you have a given 

reservoir size or you are examining a given reservoir size, you want to ask the question, 

what is the maximum demand, constant demand? That you can meet from this given 

reservoir for a given sequence of inflows and for associated losses and so on. So, from 

the problem of capacity determination, we graduate a step further, and then ask for what 

is the minimum? What is the maximum demand, constant demand? That you can meet 

from the reservoir for a given sequence of inflow, which means your capacity is fixed, 

your flows are fixed, and you are now asking the question, what will we the maximum 

demand that you can meet from maximum constant demand; that you can meet from 

such a reservoir. 



Now, this maximum constant demand that you can meet over all periods; that means, R 1 

equal to R 2 equal to R 3 etcetera or if you want D 1 equal to D 2 equal to D 3 etcetera 

the demands are all same across the time periods. And we are looking for the maximum 

demand that can be met such maximum demand from a given reservoir, such maximum 

constant demand that can be met from a given reservoir is called as a yield of the 

reservoir.  

So, we now talk about storage yield functions; that means, for a given storage the 

hydrologist fixed anyway, we are talk that I mean by inflow pattern is fixed, we are 

talking about for a given storage, what is the maximum constant demand that you can 

meet. Let us pose this problem and look at, how we determine the storage yield function? 

So, the storage yield function will give us corresponding to a given storage, what is the 

maximum constant demand that you can meet across the time period; that is what is 

called as the storage yield function.  

Now, once we are aware of the linear programming formulations for the reservoir sizing, 

you can play around with several of these aspects, you change the objective function to 

reflect what you you need in terms of the problem statement and so on. You can also 

play around with the constraints and and so on. So, you can in the broad framework that 

we talked about just now in the specific framework, you can incorporate large number of 

flexibilities to answer specific questions. So, we will use the similar formulation in terms 

of the constraints, the constraints remain the same, but will change the objective function 

now. In the earlier formulation, we looked at minimization of K a; that is the active 

storage minimization of K a subject to capacity; that is the storage continuity and so on. 

We are now looking for maximization of a constant demand or constant release.  
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So, we will write, this as Maximize R. So, from R t now I have gone to R, which is the 

constant release in all periods within a year subject to the continuity. So, the continuity 

remains the same S t less than or equal to K remains same; S t plus 1 is equal to S 1; this 

is again the same same constraint, as we wrote there except that the K is known now. 

In the earlier case demands were known, now demands are not known. So, this is the 

decision variable. And S t and S t plus 1 these are also decision variables. So, look at this 

formulation, we are looking at maximize R, remember I am not writing R t here, because 

R1 is equal to R 2 is equal to R 3 etcetera will be the same as R. So, I will write 

Maximize R subject to the storage continuity equation, in the continuity equation, I will 

write this not as R t, but as R, because I am saying R 1 is equal to R 2 etcetera R t capital 

T is equal to R; these are a constant demand.  

(No audio from 54:57 to 54: 04) 

And we write all other constraints. So, the formulation simply becomes maximize R 

subject to this and we are doing this for a known storage, known active storage. So, this 

is how we obtain the storage yield function, then what we do, we solve this for a given 

storage, we get a particular R, we increase the storage, we get another R, as we increase 

the storage obviously, your yield should increase. So, keep on increasing the storage and 

then generate the trade off, not really the trade off, generate the relationship between 

storage and the yield. So, this is what we do in formulating the storage yield function. 



So, essentially will maximize R subject to the continuity equation and all other 

constraints are there. 
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So, the LP formulation, we got earlier constant storage capacity of 600 million cubic 

meters; that was in the last example where you got 617.928 will use the same data and 

then look at this was 617.something will use the same data, and then look at the 

Maximize, Maximization of R. So, we we write this, and specify K for various values, 

not necessarily this value ,what we generally do is that we start with some small value of 

K look at the associated yield increase the K the yield increases; keep increasing the K in 

certain intervals; the yield keeps on increasing, but beyond the certain point, the yield 

becomes constant, because that will determine the inflow limitation; that situation will 

determine the inflow limitation, as I keep saying that the total demand that you can meet 

in a deterministic formulation cannot be more than what is available. 

So, you have Q t some of Q t and minus the losses. So, what is available to (( )) is simply 

Q t minus losses; the total demand that you can meet irrespective of the size of the 

reservoir, irrespective of how high you build the reservoir is only limited to what is 

available to you, namely the sigma of Q t minus the losses and therefore, beyond the 

certain point, even if you increase the storage; the yield remains the same. 

So, this is what we will examine, start with some amount of some minor some storage 

look at the R that is the maximum R that is all that for a given K, and then look at the R, 



increase K, look at the R again etcetera like this for various values of K you solve this 

problem, and then you get a relationship something like this. You you may have K here, 

you may have R here, and for given K, it may increase, and then it may start becoming 

increase, it may become constant at this point. And in fact, this will be from 0. So, this 

will be the storage yield function, this constant maximum release is called as the yield of 

the reservoir. So, we will solve this example in the next class, and then see how we 

formulate the storage yield function. 

So, essentially then in today’s lecture, we looked at the LP formulation that we had 

introduced in the previous lecture, we looked at how you account for the storage 

dependent evaporation losses. So, starting with the continuity equation that we write 

without the evaporation, we include the evaporation as storage dependent losses for 

which you need the area capacity relationship, how the area that is the water spread area 

varies with the capacity; now, by approximating the area capacity relationship beyond 

the dead storage with the with the line, with the state line. You can formulate this in the 

linear programming form. 

And we have seen, how to rewrite the storage continuity equation accounting for the 

storage dependent evaporation losses, and then we use that in our LP formulation to get 

the minimum active storage, then we compare the minimum active storage that we obtain 

with the minimum with the evaporation losses accounted and without the evaporation 

losses accounted, remember that if you do not account for the evaporation losses, the 

storage requirement will be always smaller. 

And therefore, but it will not be accurate that towards end of the lecture. I have just 

introduced the concept of storage yield function, where to meet a constant release or the 

constant demand for a given pattern of inflows for a known storage capacity is what will 

be interested in. So, this we discussion will continue in the next class, specifically 

solving the example that example of the formulation; that I just mention and generate a 

storage yield function for a given site, storage yield function will be dependent on the 

hydrology, which is a Q t; as well as on the demand pattern. Thank you for your 

attention. 

 


