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Good morning and welcome to this the lecture number 20 eth of the course Water 

Resource Systems Modeling Techniques and Analysis. So, in the previous lecture, I just 

towards the end of the lecture, I introduced the Reservoir System specifically, the storage 

zones that we have; we have the flood control storage, we have the live storage from 

where the water is withdrawn, and you also have the dead storage to accommodate the 

sewage load, sediment deposition and so on; before that we completed our earlier 

discussion on multi-objective optimization.  
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Recall that we talked about the weighting method, where we assign weights to individual 

objective functions Z 1, Z 2, etcetera up to Z p are the p objective functions. We assign 

weights to these, and generate non-inferior solutions or the Pareto optimal solutions. 

Now, the assignment of weights to the objective functions is the judgmental issue; and in 



fact, what we typically do is that we generate large number of solutions; in fact, we 

generate the say frontier, among different objectives for different sets of weights, and 

then you screen out the alternatives. That is what we typically do in multi-objective 

optimization with weighting method.  

Then we also considered the constraint method, where we maximize one of the 

objectives in a maximization problem; we maximize one of the objectives subject to 

constraints placed on the other objectives. Let us say, you are maximizing Z j, one of the 

objective, you pick it up pick up, and then maximize that; subject to Z k greater than or 

equal to L k, some minimum value we assign to each of the constraints, and this is we 

are stating that the solutions are acceptable only if these objectives are met to that 

minimum (( )); and that through that method, we generate Pareto optimal solutions or the 

non-inferior solutions. We solved to… solved a simple example, by which these two (( )) 

in the last lecture.  

Towards the end of the lecture, we started introducing the reservoir systems; you just 

recall that we had typically a flood control storage to accommodate the flood volumes, so 

that the downstream flood discharges are attenuated - the peak flood discharge 

downstream of this is attenuated. Then we have the active storage, from which we 

actually derive the water; so, this is the storage from which the water is withdrawn. And 

in most of the problems dealing with reservoir systems, we will be discussing the active 

storage zone; and dead storage as I just mentioned, is essentially to accommodate the 

sediment deposition, and also to provide storage for recreation and hydro power, 

providing head for hydro power and so on.  

So now, we will continue the discussion on reservoir systems; as I mentioned in the last 

class, the first level of problem set we deal with in reservoir systems are the deterministic 

problems, where the sequence of inflows is known, and also the sequence of demand set 

you would like to meet in a many situations they are known, also there are variations or 

variance of this problem where you may want to maximize the demands and so on; so, 

we will come to that later; but in general, the there is no uncertainty associated with 

either the inflows or the demands or the reservoir capacity itself - reservoir storage itself. 

So, these are called as deterministic problems. So, the first level of deterministic problem 

that will consider is the one associated with determining the reservoir storage. The 

problem here is that you have a known sequence of flows, and then you would like to 



determine, what is that minimum storage capacity that is necessary to meet a certain 

demand? 
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Let us say, this is the stream; and you have a site for the reservoir. The stream sequence 

Q t - this is the flow sequence, and this is known; and that is why we call it as 

deterministic inflows. (No audio from 05:14 to 05:25) So, you know the flow sequence, 

and you know, let us say that you would like to build this demand, this reservoir for 

beating a certain set of demands and these demands are also known; that is pre-specified. 

So, you ask the question to meet this set of demands, what is the minimum capacity that 

you need to provide; minimum reservoir capacity that you need to provide at this 

location, knowing the flow sequence and knowing the demand sequence. It is obvious 

that if your demands in all the periods are lower than the flows. 

Let us say that Q t was always greater than or equal to D t for all t. In such a case, there 

is no need for a reservoir; simply you draw the water and supply the demands. The need 

for reservoir arises; mainly because you want redistribute the water among several 

periods. In certain periods, Q t was greater than or equal to D t, but in certain other 

periods, Q t is smaller less than or equal to D t; and therefore, you store the water in 

those periods in which Q t was in excess, that is the flow was in excess; that excess flow 

you store, and supply the water during the deficit periods. So, you are actually 

redistributing the flows among the time periods in a year, if you are talking about early 



operation. So, when you are redistributing these flows, you would look at the periods in 

which the maximum deficit occurs, and that maximum deficit is what you have to 

provide through storage. So, that is the principle on which we decide the storage 

reservoir capacity. So, you are looking for that minimum value of the reservoir storage 

that needs to be provided to meet these demands from a given supply; that is the problem 

of determining reservoir size.  

There is one more issue here. Let us say that the sum of Q t or average of Q t over the 

time period is greater than or equal to average of demand or let us say, simply we will 

put sum of Q t is greater than is greater than or equal to sum of D t, as I said. Then you 

can this is supply is greater than the demand, therefore you will be able to meet the 

demands, by providing a certain capacity of the reservoir. So that, the time distribution is 

maintain. So, the reservoir essentially, ensures the time distribution of the flows; (No 

audio from 08:39 to 08:46) that is why you provide the reservoir. Let us say, your sum of 

Q t over all the time periods, let us say you are talking about monthly time periods over a 

year. 
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And sum of Q t over all t is less than or equal to sum of D t; that means, the demands - 

the total demands that you are talking about is less than is greater than the total supply. 

Then no matter what capacity of the reservoir you provide, you will not be able to meet 

these demands during all the time periods; so, this is not feasible. (No audio from 09:28 



to 09:35) In a in a deterministic sense, where you are talking about deterministic flows 

and deterministic demands, so, your total supply, if it is less than the total demand, no 

matter what kind of capacity you provide, it will not be able to it will not be able to meet 

the demands as specified. So, these the things will keep in mind, when we go to reservoir 

systems. 
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So, the problem now is that we are talking about Reservoir sizing problem, where we 

would like to determine the minimum required capacity of a reservoir at a particular site, 

where the flow sequences are known, and you are specifying the demand sequences; to 

meet that particular demand sequences, given the flow sequences, what is the minimum 

capacity that we need to provide? And we are talking now about the live storage 

capacity. So, whenever, I am talking about reservoir sizing in the in the context of a 

deterministic flows, we are only specifying the live storage capacity.  
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So, required storage capacity, this is actually the live storage capacity. We are talking 

about live storage here or the active storage capacity for given inflows and demand. 

Now, when in the deterministic inflow scenario, let say that you have 20 years data; 

assume that you have 20 years of inflow data or flow data; and you are doing it on a 

monthly time scale. So, this is 20 into12; so, these are months; so, 20 into12 values you 

have.  

In the deterministic case, what we generally do is that we assume that this sequence itself 

repeats. So, these 20 years is observed data, and we say that this a sequence keeps on 

repeating, next 20 years, next 20 years etcetera. But typically what we do is, we solve 

this over one year period with average flows. So, we take let us say, June average over 

the 20 years and put it as June flows, July average over the 20 years and put it as July 

flows and so on. And construct a one year sequence, and then solve for that one year 

sequence, the minimum required capacity and so on.  

So, typically the time periods that we consider need not be calendar years or calendar 

months; it need not be a calendar year, it can be let us say three seasons, you may have 

three seasons. So, month may a year may consider, may consists of three seasons or you 

may have 6 time periods, consecutively 6 years you may have; and so therefore, you may 

consider 6 time seasons periods or 6 years, every year two seasons; like this 12 periods 

you may have and so on. So, it the reservoir capacity determination actually, depends on 



the purpose for which purpose with which you would like to operate the reservoir. So, it 

may be, the time periods may be seasons, time periods may be years, time periods may 

be months, etcetera. So, you use the associated sequence of flows and the corresponding 

sequence of demands. And the principles of determining the size remain the same, as we 

will discuss presently. 
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A classical approach, which is to be practice much before the computers came and so on; 

is the ripple or the mass diagram - ripples approach or the mass diagram approach, where 

you may have learnt in your basic hydrology or water resource course; this is as 

cumulative inflow will not do any exercise among on this. But you just, see how we 

determine using the mass diagram; you plot the cumulative inflows. So, this is the 

cumulative inflow diagram, this line that you are seeing is the cumulative inflow 

diagram. And then, you have a constant release R t, you place a line with the slope as R t. 

This is the constant release, it is not changing from time period to time period; and this is 

the cumulative inflow diagram; on that you place this constant release line, that is the 

slope of this line is R t, you place it just tangential to the maximum, the there is a 

cumulative inflow line.  

And then wherever the maximum deficit occurs, that will give you the reservoir capacity; 

obviously, what we are talking about is, you are you keep on making the releases at the 



same rate, and then your reservoir is filling like this; so, the flow is coming like this; and 

then the maximum deficit is what you have to supply through the storage. So, the 

maximum deficit corresponding to this constant release line with the inflow line - 

cumulative inflow line, that is what we will give you the reservoir capacity; and this is 

the classical ripple diagram or the mass diagram; however, now with the advent of 

computers, and then very nice elegant algorithms etcetera. This is slightly outdated now; 

but this is the basis on which we start.  

Obviously, here accounting for time varying demands or time varying releases, and also 

accounting for evaporation losses etcetera, becomes quiet involved. In fact, time varying 

demands we accommodate by taking the cumulative differences Q t minus R t in each 

time period; and then looking at the maximum deficit that occurs from the peak to the 

trap and so on. So, anyway we will not worry too much about this, this is just as a 

background you must know that, this is how the reservoir storage use to be computed 

before the computers came by simple graphical methods. 
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We will go into a simple analysis through which you can determine the reservoir 

capacity, and this is the Sequent Peak algorithm or the Sequent Peak Analysis. Now, 

essentially the principle remains the same; that is what is that you are looking at? You 

are looking at filling the maximum deficit that is likely to occur in a given sequence of 

flows to meet a given sequence of demand. So, essentially you keep looking at, how 



much is the deficit during this time period, how much is the deficit during the next time 

period, and so on. So, typically in a flow sequence, there will be certain critical period, in 

which continuously the deficits will be occurring; and that is the critical period which 

determines what is the maximum storage that is necessary, what is the storage that is 

necessary.  

So, we capture in the sequent peak algorithm; we capture that critical period in the given 

sequence of flows and compute the deficit. Now, this critical sequence may occur 

towards the end of the sequence, critical period may occur at the end of the sequence. 

What I am mean by this is? That let us say, you have 5 years of monthly data, and based 

on this 5 years of monthly data, you would like to determine what is the reservoir 

capacity required. So, you have 60 months of data; now in the 60 months of data that you 

have, it may so happen that the last few months, let us say from 40 th 45 eth month to 60 

eth month that may constitute a critical period.  

In which case, it is better, in fact it is prescribed that you run this algorithm, which are 

presently discuss over 2 cycles. You had 5 years of data; you run that over 1 cycle, but 

you have still not reach the correct critical period, because it is occurring at the end of 

the sequence. You append the append the sequence again to this end of the first cycle and 

run it for 2 cycles, so that, you capture the critical period correctly; by critical period, I 

mean the period, in which the deficits keep on occurring and you are you want to capture 

the maximum deficit, and that maximum deficit in fact, corresponds to the required 

storage.  

Keep in mind always that the storage is provided essentially to offset the deficits that are 

occurring. So, how much minimum storage that is required, that corresponds to the 

maximum deficit that occurs; and that is what we do in sequent peak algorithm. You 

capture the critical periods, in which continuously the deficits are occurring; you keep on 

accumulating the deficits, and that kind of that amount of storage is what you have to 

provide; that is the basis of the sequent peak algorithm.  
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 Let us write the sequent peak algorithm in a mathematical notation. So, what we do is, 

we define K t as K t minus 1, which was the required storage or required maximum 

required deficit, the deficit that occurred in time period t minus 1 plus R t, which is the 

required release, R t in this case is the required release; it is defined here; and Q t is the 

inflow. So, essentially what we are doing is, R t minus Q t if positive, this R t minus d Q 

t is the deficit; you wanted R t, but only Q t is available. So, R t minus Q t is the deficit. 

To that, we add whatever was the deficit earlier, and that we call it as K t. So, K t is K t 

minus 1 plus R t minus Q t if positive, why if positive? If let say Q t is very high 

compare to R t, and K t minus 1 plus R t minus Q t is negative; it means that the release 

R t can be met with available storage, and therefore you do not need any additional 

storage, that is the idea there. And therefore, if it is positive we put K t as K t minus 1 

plus R t minus Q t; and if it is negative, we set it as 0.  

Now, we begin the computations by K naught equal to 0. So, we set K naught equal to 0, 

and then we compute K 1, knowing R 1 knowing Q 1; then for the next time period, you 

put K 2 is equal to K 1, because K t minus 1, K 1 plus R 2 minus Q 2 and so on; like this; 

you keep on continuing. So, you get a sequence of K t, when we do this. Sometimes it 

will be 0, because Q t may be higher in that particular time period. You get a sequence of 

Q t, you pick up the maximum of the K t, and that is the required capacity, we put it as K 

star or required capacity. Now, in the form that I have expressed here, we are neglecting 

losses. So, we are not accommodating evaporation losses for reasons that I will tell 



presently. This expression here K t is equal to K t minus 1 plus R t minus Q t if positive, 

and 0 otherwise. 
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We write it in a simplify form a form, like K t is equal to maximum of 0 or K t minus 1 

plus R t minus Q t, which means that if it is less than 0, this is negative, so you pick up 

this one. And as I said, you pick up the maximum among the K t values, and that gives 

you the capacity. Remember always that you are looking at the maximum deficit period, 

including the storage that is necessary during the previous period. So, with the storage 

that is already provided during the previous period, if you are able to meet the demand 

here, then it is not a deficit period.  

And therefore you look at continuous deficits, which keep on adding to your storage 

requirements; and then pick up that particular value of K t, which is maximum among all 

these K t values that use thus computed; and that is in fact the minimum storage that you 

need to provide - minimum live storage. At this point, we are not worried about the dead 

storage or the flood control storage, they are different topics all together; we will not 

touch them at this point in time. 
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Now, let us say that you are doing the computations, you started with K 0 is equal to 0, 

and then computed for one cycle, and you ended up with let us say, you had 6 time 

periods, so at the end of 6 time period, you got K 6 as 0; then if you append this 

sequence again, what will happen the sequence will simply repeat; the computations will 

simply repeat; because you started with 0 - K 0 is equal to 0 and you ended up again at 

the last time period, you are again ended up with 0; therefore, thus whole sequence will 

repeat, if you repeat it for the second cycle. Then thus the computations for the second 

cycle are not necessary.  

The computations for the second cycle are necessary, if at the end of the last time period 

in the sequence, you do not end up with the K t is equal to 0 for that particular time 

period. In which case, the critical period may occur towards the end and towards the 

beginning, and therefore you need to repeat it for the next cycle. So, a maximum of two 

cycles you repeat, and even when you are repeating for the second cycle, at any 

particular time period, if you get the same value of K t as you got in the first cycle for the 

same time period; then again the sequence will repeat. So, at that point, you can 

terminate the computations, as I will presently show in the example.  

So, this is what we do in the sequent peak algorithm; simply start with k naught is equal 

to 0, every time you add the deficit that is likely to occur, and if you are able to meet the 

deficit with the storage that we already provided, there is no storage requirement for that 



time periods etcetera. Like this, every time period you compute the storage requirement, 

as a as a deficit that is occurring during that time period; accounting for the storage that 

is already provided; and then pick up the maximum of such K t values, and that is the 

minimum storage that you need to provide to meet the particular demand pattern that you 

have specified for the given inflow sequence. 
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Let us take a simple example, to demonstrate this point; there are 6 time periods here; 

and there are these are the inflows 4, 8, 7 etcetera, in some consistent units, and these are 

the demands 5, 0, 5 and 6 etcetera. As you can see, if you did not have a reservoir, what 

will happen here is, there is a deficit here; you cannot meet 5 units of demand; whereas 

there is an excess here, but there is no demand. So, this would have just gone. There is an 

excess here, you met 5 that is the 2 unit, which would have just gone, if you did not have 

a reservoir. So, you essentially provide the storage to store this excess amount of water to 

meet the requirements during the deficit time periods; there is a deficit here; there is a 

deficit here etcetera.  

So, meet that you use this excess amount of water to meet the deficits occurring in some 

other periods. That is the idea of storage; how much of storage is to be provided is what 

we will check now. In this particular case, always whenever you want to examine the 

reservoir size of the reservoir, first check the total inflow versus the total demands. If 

your total demands are higher than the total inflows, no matter what kind of capacity you 



provide, you will not be able to satisfy those demands. So, the total demands must be less 

than or equal to the total inflows. In this particular case, the total inflow is equal to total 

demand, as you can verify both are equal to 24 units. And therefore, all you are going to 

do is distribute the inflows and accommodate the storage, so that, you are able to meet 

the demands in all the time periods. That is the idea with which we carry out the Sequent 

peak algorithm.  
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So, this is typically done in a very simple tabular manner. Remember, we are neglecting 

the losses here, neglecting evaporation and c pad losses and so on, simply assuming that 

all the inflow is available to meet the demands. So, in the first time period, R t is 5, Q t is 

4; this is the data that I am using R t is 5, Q t is 4; and we start with K t minus 1 is equal 

to 0, this is the starting value; and then we compute this term, K t is equal to K t minus 1 

plus R t minus Q t, R t minus Q t. So, this is 5 minus 4; this is 1; and this K t minus 1, 

this K t becomes K t minus 1 for the next time period.  

So, when you go to the next time period R t is 0, Q t is 8, K t minus 1 is 1, therefore 1 

plus 0 minus 8 that is negative, and therefore this becomes 0; we are doing this, this 

computation now; this is 0; and this 0 becomes K t minus 1, R t minus Q t; this is 2; and 

again it is negative; and therefore it becomes 0; and this 0 becomes K t minus 1 here and 

so on. So, here you look at this computation, this is K t minus 1 which is 0; R t which is 

3; minus Q t which is 3; and therefore this becomes 3. So, we are using this expression.  



Like this, you keep on doing this until 6 - time periods 6; you had periods 6 periods in 

this example. So, you compute up to 6. At the end of the 6 time period, you look at K t. 

If this K t was 0 here, what you get here is 0, then what would have happen? For the next 

time period, K t minus 1, you would have put 0, and the same sequence here 5, 4, 0, 8 

etcetera. So, the sequence would have repeated, and therefore you will terminate the 

computations here, if you get a 0 here, at the end of the 6 eth time period in this example.  

But because it is not 0 here; it means that, it may mean that the critical time period is in 

fact, happening at the end of the sequence; and therefore you go to the next sequence. So, 

you again do this calculation for the second cycle. So, what do we do? We repeat the 

same flow same demands etcetera with this K t minus 1 now. And therefore, you get a 

value of 10 here; that means, you are putting this is 9 plus 5 minus 4 that will be 10, and 

this 10 comes here, you get a K t of 2, and this 2 comes here you get a K t of 0, etcetera.  

You look at time period 4; you got a value of 3 here; at time period 4, you again got a 

value of 3. If you keep repeating, then from this point onwards, the computations will 

repeat, the calculations will repeat, because K t minus 1 will become 0 here. And 

therefore, these K t is that you get will keep on repeating; therefore you can stop at this 

point particular point. So, if you get the same K t value in the second cycle for a 

particular time period, as you got for the same time period in the cycle number 1, you 

stop the computations.  

If you get a value of 0 for K t, at the end of the first cycle, you stop the computations. 

Then you look at all the K t value that you got, and pick up the maximum value that you 

got, and that is the reservoir capacity. So, in this particular case, the reservoir capacity is 

10 units. So, essentially what did we do, we had the inflow sequence for some time 

periods; these are 6 time period; you had the associated demand sequences, you kept on 

calculate seeing what is the deficit set is occurring, and then in the critical period as you 

can see here, this is the critical period in fact, 3, 3, 9, 10, 2; these defines the critical 

period; and the maximum K t value actually occurs in the critical period.  

So, just show that you do not miss the critical period, you typically carry out the 

computations in 2 cycle, for 2 cycles, over 2 cycles; and the computations may not be 

necessary for 2 cycles, if either at the end of the first cycle, you get a K t value of 0 or as 

you are going into the second cycle, a particular time period you get the same K t value 



as you got for the same time period in the first cycle; then you stop the computations. So, 

this is how the sequent peak algorithm works.  

And then, you pick up the maximum of the K t values, this is in fact the minimum 

storage that is necessary, minimum live storage that is necessary, to meet the particular 

demand patterns - demand sequence for the given inflow sequence. So, in this particular 

case, you get a storage of 10 units. Very simple procedure, however, it is not really 

applicable or it is not so easy to apply, when you want to include the evaporation losses. 

Evaporation losses will be a function of the storage at a any given time period, because 

the storage will decide on the surface area of the water, and associated with the surface 

area thus evaporation losses will take place.  

Therefore, for a realistic assessment of the storage that is necessary, you have to 

necessarily account for storage dependent losses, both evaporation as well as c pad 

losses. And that is not very straight forward in sequent peak algorithm, although I must 

mention here that Lele of… (No audio from 33:46 to 33:53) Let me write that in 1987, 

he has modified the sequent peak algorithm (No audio from 34:10 to 34:17) to provide 

for the evaporation losses. But it is again, as I mentioned, the mathematical programming 

tools or the optimization tools that we have learnt earlier like linear programming 

etcetera. They become very handy, when we want to include the evaporation losses. 
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Now, what we will do is, also there is another case where sequent peak algorithm is not 

readily adaptable. You talk about one single reservoir here, but in many cases, what 

happens is that you may be talking about reservoir capacities necessary in at several 

locations, like this location number 1, location number 2, location number 3 etcetera. 

Simultaneously, you would like to determine the reservoir capacities, such that some 

total demands are met including the demands at the individual reservoirs and so on. So, 

in such cases, sequent peak algorithm becomes quiet cumbersome and quiet in elegant 

and unwieldy, and therefore, we do not go with such algorithms. However, the as the 

background to determining the reservoir capacities, you must know the sequent peak 

algorithm as well as the mass curve. 
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Now, we will go to sequent peak algorithm that is the reservoir capacity determination 

using linear programming. We have studied the linear programming earlier, and then 

now, what will do is, we will apply the linear programming for obtaining the minimum 

requires capacity to meet a given set of demands for a known sequence of inflows; that is 

a problem now. Whenever, we are talking about reservoir systems, the first constraint 

that needs to be met - first set of constraints that needs to be met is the one related with 

mass balance; that is you are talking about time periods like this. 

Let us say that you have as in the previous example, you had 6 time periods, t is equal to 

1, t is equal to 2, etcetera; t is equal to t - last time period, like this you had. So, the mass 



balance has to be met from one time period to another time period. So, we are writing the 

storage continuity relationship between one time period to another time period. 

Typically, starting with the known storage, if you have a given inflow and take out 

certain amount of release, and take out the losses, what will be the storage at this point? 

That will govern the storage continuity. You recall what we did in the dynamic 

programming exercise for reservoir operation. Similar thing is in fact, the exactly the 

same mass balance equation is what we use in determining the reservoir capacity. 

So, whenever we are talking about reservoir systems, the storage continuity has to be 

satisfied from one time period to another time period. And this becomes the major 

constraint in the LP problem. So, in the LP problem, we pose the optimization as 

follows. We want to minimi we want that particular storage, which is the minimum 

storage, which satisfies all the continuity constraints, S t plus Q t minus R t, where R t is 

the demands, which are known; minus L t for example, the losses that are taking place 

should be equal to S t plus 1; that is the storage at the end of the time period. So, these 

sets of constraints to be satisfied for all the time periods, and then you are looking at that 

particular storage, which is the minimum storage.  

We will write that in mathematical form, but you remember there will be two sets of 

constraints; one relates to the storage continuity, another relates to the maximum storage. 

So, you are looking for let us say, a storage of K, which is the minimum storage that is 

necessary; and at at no time, your storage should be more than that particular K. So, that 

is the maximum storage constraint that is the capacity. And then you are pre-specifying 

the demand patterns D t. So, this is the problem now. We will see, how we state the 

problem. 
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So, we are looking at the minimum value of K a, this is the active storage; subject to the 

mass balance which is S t; there are two consecutive time period t, t plus 1. So, S t is the 

storage at the beginning of this time period, Q t is the inflow that is coming during this 

time period, R t is the release that are gone out of this time period, and L t is the losses 

that are taken place in this time period. And therefore, you define S t plus 1, which is the 

storage at the time period, t plus 1. This is the simple mass balance; then at any time 

period your S t should be less than or equal to K.  

Now, this is the storage that you are looking for; this is actually a decision variable, S t is 

also a decision variable; S t should be always less than or equal to K, this is the capacity. 

You are looking at active capacity therefore, the storage at any time period must be less 

than or equal to K a. This is for all t; this also for all t; then you have non-negativity; 

obviously, S t should be greater than or equal to 0, and K a should be greater than or 

equal to 0; Q t is known, R t is known, L t we will see how to specify or L t is also 

known, you assume that L t is known, these are the losses. S t is the decision variable 

therefore, S t plus 1 becomes a decision variable, K a is a decision variable.  

So, for a given sequence of flows and for a given sequence of demands, you are 

determining that particular value of K, which is a which is the minimum storage that is 

necessary to meet this demand patterns. That is the idea here. And this constraint ensures 

that your storage is never above the capacity. So, this is the capacity K a, you are talking 



about. So, the storage that you are computing, S t should be always below K a, that is 

what this constraint says.  

Now, this is the optimization problem that you write, and you can solve it using linear 

programming, because these sets of constraints are linear; for example, here you would 

have written S t minus Ka less than or equal to 0, which is the linear constraint; and 

therefore, you can use linear programming to solve this problem. Now, there are some 

nuances associated with the loss, because this loss here will be also a function of the 

storage. We will see in the subsequent portion of this lecture or perhaps the next lecture 

how we account for this L t as a storage dependent loss. For the time being, what will do 

is we will take up a simple example, neglecting these losses, and then see how we get 

this capacity K a. 
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Now, R t is the release, these are all the definitions, as I said S t and K a become the 

decision variables in all the LP problem. So, we will take the same example, as we did 

earlier using the sequent peak algorithm. So, we use the same example, we got a capacity 

of 10 units here. Let us take the same example, and again neglect the losses. So, these are 

the inflows, these are the demands as in example 1 using the sequent peak algorithm. We 

will write a linear programming problem here.  
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There are 6 time periods, we are looking at minimize K as objective function, subject to 

the continuity equations. So, S 2 is equal to S1 plus Q1 minus R1, Q1 is 4, R1 is 5. So, 

S1 plus 4 minus 5 should be equal to S2. Now, this set of constraints is essentially the 

mass balance, I am writing it as S t plus 1 is equal to S t plus Q t minus R t, neglecting 

losses. And therefore, when I am writing this for t is equal to 1, this becomes S2 should 

be equal to S1 plus Q1, which is 4 minus R1, which is 5 is equal to S2. Like this, you go 

S2, S3, S4, S5, S6, then when you are writing for t is equal to 6, the S7 becomes S1, 

because as I said you assume that the same sequences repeat. So, this is t is equal to 1 to 

6, t is equal to 1 to 6, 1 to 6, t is equal to 1 to 6, etcetera.  

So, at the end of 6 time period you are going into time period 1. So, the storage at the end 

of the time period 6 is equal to the storage at the beginning of the time period 1, which is 

S1. So, this is how you write the storage continuity equations, and always pick up the 

flows. So, this is for t is equal to 1, t is equal to 2 etcetera, t is equal to 6. So, 6 storage 

continuity equations by picking up the flows and the releases or the demands from the 

data that is given, and you write the conditions like this. Then you have the set of 

constraints S t is less than or equal to K. So, the storage at any time period must be less 

than or equal to the K that you are obtaining from the optimization problem. And that is 

what you do here; S1 is less than or equal to K, S 2 is less than or equal to K, etcetera.  



This is the rather long way long hand way of writing this, a model; there are very simple 

ways of writing depending on the software that we use; we will worry about all those 

things later, but this is the complete model. There are 6 time periods, you write the 

continuity for the 6 time periods; and, write also the associated storage limitations, and 

then you are looking for minimize K. So, you are looking for that particular value of K, 

which meets this set of demands, for this given set of inflows, and meeting the reservoir 

continuity equations, and meeting the reservoir capacity constraints; this is the model; we 

solve this and you get the solution like this. So, you get K is equal to 10, which is the 

same as what you got for the sequent peak algorithm.  

As the solution earlier, algorithm and these are also associated with a beginning storage 

of S1 is equal to 1, this comes as the solution; these are optimal solutions. And once, S1 

gets fixed, all other storages also get fixed S 2, S 3, S 4 etcetera. So, this is the solution 

that you obtain, when you solve this example. How do we solve this example? You can 

use any of the available routines, for example, we use a routine called LINGO - Linear 

and General Optimization; this is a software. It is available for educational purposes, for 

free download from this from the LINDO Systems Softwares. And they it is a very 

simple software to use; in fact, Matlab also has softwares to solve optimization 

problems; you can use any of those, and then solve such problems. So, this is the solution 

now. Now, what did we do in this, we have ignore the losses, and wrote this continuities 

simple in simple fashion ignoring the losses. Now, we will graduate further, and start 

looking at inclusion of evaporation losses.  



(Refer Slide Time: 48:13) 

 

Now, the evaporation losses will depend on the storages. You understand this part 

correctly. Let us say that, in time periods t, this was your S t; now typically, the storage 

will have a contour level like this, and this is the reservoir storage. So, this is the water 

spread area. So, if you look from top, the water spread area, we look something like this. 
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And now this will be the water spread area, and this continues as and this is in the plan 

section. So, you are looking at this area now - water spread area, this is the exaggerated 

point, and in the section you are looking at the storages like this, this is the storage value. 



So, at any given time period t, let us say this was S t, this corresponds to this water 

spread area which may be this, this may be A t we will call it as A t, this is the area of 

water spread. And this area of water spread depends on the contour levels, at that point, 

like I showed here. So, it will depend on how the contours are changing. Let us say, St St 

becomes St plus 1 here, then the area of water spread will be corresponding to this. So, in 

the time period t, the storage changes from t St to S t plus 1.  
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Let us say, this is the time period t, you had a storage S t at the beginning of the time 

period that changes to S t plus 1 at the end of the time period; and therefore, the area 

changes from A t to A t plus 1, because as the storage changes the area of water spread 

changes.  
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Now, the evaporation losses are dependent on the cross section area. So, what do we 

have? We have the rate of evaporation e t. Let us say, e t is the rate of evaporation; and 

this will be typically in depth units millimeters, and specifically we may have pan 

evaporation rates or actual majority evaporation rates etcetera. So, it is in depth units, 

when you multiply e t by A t, this you get it in volume units, and this is the total loss. 

However, what happens is, because t is an interval, you had one storage here, and 

another storage here.  

So, to reckon the total losses that happen during this time period t, what we do is we take 

the average storage S t plus S t plus 1 divided by 2, this is the average storage during the 

time period t; during in this time period t; we calculate the area associated with this 

average storage, and that average area or the area associated with the average storage, we 

use on e t to compute the evaporation loss during the time period t. So, this is what we do 

in accounting for storage accounting for the losses as storage dependent losses. 

So, essentially we look at the area associated with the average storage S t plus S t plus 1 

divided by 2; and then use that area to get the total evaporation loss during the time 

period t. Now, when we are doing this, we use some simple methods of a accounting for 

this accounting for the evaporation losses, because we are interested also in making the 

relationships linear. So, at this point what I am discussing now is, in this type of LP 



model, how do we account for storage dependent evaporation losses is the question that I 

am discussing now. 
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For the storage dependent losses, you need the surface area corresponding to a given 

storage, and these are typically given by what are called as area capacity relationship, 

and these are available for a given side; that means as your storage grows as your storage 

increases, how the area surface area increases or how the surface area changes is 

provided by the area capacity relationships. Typically, the area capacity relationships are 

non-linear like this. So, this is the area capacity relationships. But for use in linear 

programming, we cannot have the non-linear relationships or it is slightly cumbersome to 

use the non-linear relationships, we can also have the piece-wise linear relationship and 

so on, but what we do is that we approximate this with the straight line, beyond the dead 

storage.  

So, this is the dead storage, and the area capacity relationships beyond the dead storage 

level is approximated by a straight line, and then we convert that use this straight line 

relationship and express the evaporation losses as storage dependent losses. We will do 

this exercise in the next lecture. So, essentially in today’s lecture, what we did is, we 

started with the sequent peak algorithm for determining capacity of the reservoir, the 

minimum required capacity, and we are talking about the live capacity of the reservoir. 

To meet a certain demand sequence for a known inflow sequence, and in the sequent 



peak algorithm, essentially what we do is, we capture that critical time period in the 

sequence, and if it is not available in the first sequence, you do it two cycles; so that, you 

capture the critical period, and compute the deficit in Samson’s and Reckon or a Reckon 

the reservoir capacity as the maximum of such deficits. However, inclusion of 

evaporation losses in the sequent peak algorithms and also accounting for several 

reservoirs, simultaneously will be cumbersome and therefore, we look at the 

optimization problems.  

In the optimization problems, we seek solutions to the minimum required capacity K. So, 

that is why we wrote the objective function as minimize K, subject to the continuity 

equations that is S t plus 1 is equal to S t plus Q t minus R t, simple mass balance 

equation, neglecting the losses, and subject to the maximum storage constraint; that is S t 

should be less than or equal to the capacity itself. So, this becomes are very compact 

linear programming problem, and remember there R t is pre-specified. So, S t plus 1 is 

equal to S t plus Q t minus R t when we write, R t will be pre-specified as the demands. 

So, you want to meet the demands R t and then you look at that minimum capacity 

requirement.  

We solve the example using a 6 period problem, in which the sequence of inflows are 

specified, sequence of inflow is specified as well as the sequence of demand is specified; 

we saw that you get the same capacity of 10 units. Then towards the end of the lecture, 

we are just talking about, how to incorporate storage dependent losses in the continuity. 

Now, the evaporation losses will depend on the water spread - area of water spread. And 

the area of water spread itself will be changing as the storage changes, because it 

depends on the contour levels - the ground levels.  

So, you are actually looking at how much of area of water spread exist corresponding to 

a given storage, and this relationships is given by the storage area capacity relationship 

or area storage relationship. And we at any given time period t, we look at the average 

storage S t plus S t plus 1 divided by 2, and look at what is area of water spread 

associated with the average storage during this time period, and then use the rate of 

evaporation, and obtain the total loss as storage dependent loss. And we will do this 

exercise in the next lecture and rewrite the continuity equation by accounting for storage 

dependent losses, and reformulate the LP problem looking at the storage dependent 



losses. So, we will continue this discussion in the next lecture. Thank you for your 

attention.  


