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Dynamic Programming Water Allocation Problem 
 

Good morning and welcome to this lecture number 15 of the course, water resource 

systems modeling techniques and analysis. In the previous lecture, we have introduced 

dynamic programming. Essentially we started with a representation of multi-stage 

decision problems, and introduced the Bellman’s principle of optimality. 
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If you recall, multi-stage decision problem is represented as shown here. The input state 

at a particular stage n gets transformed to an output state S n minus 1 in this case starting 

with S n. Because of the decision we make X n and this output state forms an input to the 

next stage n minus 1, and that gets transformed because of the decision X n minus 1 we 

make on the state S n minus 1 into S n minus 2, which becomes an input to the next stage 

and so on. Because of the decision we make here X n at stage n, you get a return of R n.  



Now, these returns in water resources problems can be either economic returns, or 

physical returns in terms of the amount of hydropower produced, in terms of the crop 

yield that you have accrued, in terms of the flood control benefit that you get, in tangible 

benefits perhaps and so on. So, the returns are a function of the decisions that you make 

X n at stage n starting with the state S n at stage n. This is how we represent a multi-

stage decision problem, and the optimization we do in dynamic programming, such a 

multi-stage decision problem is based on the Bellman’s principle of optimality.  

Essentially, recall that it states starting with a particular state at a particular at a given 

stage; you must proceed in an optimal manner until all the stages are completed, 

irrespective of how you arrived at that particular state. That means, as long as you know 

the state in a particular stage, you proceed in an optimal manner starting with that state. 

Do not worry about how you arrived at that particular state in that stage. So, given the 

state at a particular stage, you must proceed in an optimal manner until the end of the 

horizon. This horizon can be space; it can be time and so on. 
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We started discussing the water allocation problem. For completeness sake, I will restate 

the problem and then, the stage one computations that we did in the previous lecture, we 

will just go through it again quickly. There are three users. An amount of water available 

of 6 units needs to be allocated optimally among the three users. The return that you get 

from a particular user for a given allocation is given in this table. For example, if you 



allocate 2 units of water to user number 3, you get a return of 8 units. If you allocate an 

amount of 2 units to user two, you get a return of 6 units, allocate an amount of 2 units to 

user 1, you get a return of 12 units and so on.  

So, this table gives the returns that you get for a particular allocation. Look at this. If you 

allocate 4 units of water to user number 2, you get a negative benefit. Typically, this can 

be an irrigation user, which means up to certain point; you keep on increasing the 

benefits and then, beyond that it starts decreasing. In fact, it may become negative, in the 

sense that if you allocate more water than actually needed, you may suffer losses in fact. 

So, this is the type of benefit functions that you you may get. Now, these need not be 

always economic returns. They can be intangible benefits; they can be benefits in terms 

of physical quantities and so on.  
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So, we started this example from stage Stage number 1, where we include only 1 user, 

user number 1. We say that, S 1 which is the state at stage number 1 is the amount of 

water available to be allocated to user number 1, and S 1 can vary from 0 to Q, where Q 

is the total amount of water available. In this case, it is 6 units. So, we solve this problem 

for all possible values of S 1 because we do not know what exactly S 1 will be. We are 

moving in the backward direction. So, we are asking the question, if S 1 is equal to 0, 

how much I should allocate, if S 1 is equal to 1, how much I should allocate, if S 1 is 

equal to 2, how much I should allocate and so on. 



So, we are solving the problem for a known, for a given value of S 1, which is not 

known. We will know the actual value of S 1, only when we solve the complete problem, 

and f 1 star S 1 is the optimized objective function value for a given S 1 at that stage 1, 

where only 1 user is included. So, this is how we solve. We say S 1 is equal to 0, X 1 can 

be only 0. Recall here that X 1 can take on values up to S 1. What we mean by that is, 

that if 3 units of water available, you cannot allocate anything more than 3 and therefore, 

X 1 can go on to take on values between 0 and S 1.  
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So, we ask the question if S 1 is 1, whether we should allocate 0 or we should allocate 1, 

and the maximum benefits are 7 corresponding to an allocation of 1. Similarly, if S 1 is 

equal to 2, you can either allocate 0 or 1 or 2. If you allocate 0, you get a return of 0, if 

you allocate 1, you get a return of 7, if you allocate 2, you get a return of 12 and 

therefore, the maximum benefit is, maximum return is 12. Therefore, the corresponding 

allocation is 2.  
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So, what it states is, that if 2 is available, allocate 2 and you get a return of 12. If 3 is 

available, allocate 3 and you get a return of 50. If 4 is available, allocate 4 and you get a 

return of 16. If 5 is available, allocate 4 and you get a return of 16. Remember, if 5 is 

available, if you allocate all the 5, then you get a return of 50, whereas if you allocate 

only 4, you get a return of 16. Therefore, it says, if 5 is available, allocate only 4. 

Similarly, if 6 is available, allocate only 4. I encourage you to look at the previous 

lecture; that is a lecture number 14 for a detailed discussion on this.  
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We will now proceed to stage number 2. In stage number 2, we are including 2 users 

now, user number 1 and user number 2 together. So, S 2 which is the state at stage 

number 2 is the amount of water available to be allocated to user number 1, and user 

number 2 together, and X 2 is a decision that we are making at stage 2. This is the 

amount of water allocated to user number 2 because you make an allocation of X 2 from 

the available S 2, the amount of water available for allocation at the next stage, which is 

S 1 in this case as we are proceeding the backward direction, will be S 2 minus X 2, but 

we have to solve this example, solve this problem. Already, for all amounts of water 

available here, we have solved the problem in the stage number 1 and therefore, we 

know what the optimal benefit that you get out of an allocation of S 2 minus X 2 is, and 

that is what we pick up. So, we write at stage 2. This recursive relationship you 

understand correctly.  

At stage 2, the optimal benefit associated with the state S 2 is given by maximum value 

of the returns that you get from user 2 for an allocation of X 2, which is R 2 of X 2 plus 

the optimized results, optimized return that you get for an allocation of the remaining 

amount of water, which is S 2 minus X 2 in the previous stage or the next stage in this 

particular case to user number 1. So, what does this indicate? This term indicates here the 

optimized value from previous stage. 



Remember, this is what we have solved already from the previous stage computations. 

This is what we have solved f 1 star S 1, which means given this argument S 1 here; we 

know what the X 1 is star and what the maximum allocation is. Here, Maximum 

objective function value, and that is what we use here. I repeat again, given the state 

which is the amount of water available at stage 2 to be allocated to both user number 1 

and user number 2 together, we make a decision on X 2, which is the amount of water 

allocated to user number 2, we get a return of R 2, X 2. Because of this decision, we are 

left with S 2 minus X 2 for the next user, and we have already solved in the previous 

stage, what should be the optimal value corresponding to S 2 minus X 2, and that is what 

we add here. So, this recursive relationship is in fact a statement of the Bellman’s 

principles of optimality. 

Given the state S 2, at this particular stage, we are proceeding in an optimal manner until 

the end of all the stages, until all the stages are included. So, we are getting the 

maximum value here plus as the result of which, as the result of this allocation, whatever 

state that we end up in, that becomes an input state and for which we have already 

solved, and that is optimized objective function value that we use. Again, S 2 which is 

the amount of water available at stage 2 can take on only values up to Q, which is the 

maximum available water, which in this particular case is 6 units. So, we solve this 

problem for S 2 taking on values 0, 1, 2, 3, 4 etcetera up to 6, and X 2 which is the 

amount of water allocated at for user 2 can go on up to S 2. Let us say, S 2 is 4 units, 

then X 2 which is the amount of water allocated cannot be anything more than 4 units. 

Therefore, X 2 goes on up to S 2.  
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Now, stage 2 computations. Computation is the big word for this. Simple calculation is 

what you understand correctly. Then, any number of stages, you can formulate for a 

given problem. So, S 2 minus X 2, as I said will be the amount of water available for 

allocation at stage 1 and in stage 1, we have only 1 user. So, that is to user 1 and f 2 star 

S 2, this one, this term here is the maximum return due to the allocation of S 2, which 

means together to user 1 and user 2.  

What is the optimum benefit or optimum return that you get from such an allocation and 

X 2 star is allocation to user 2. That maximizes, that corresponds to f 2 star X S 2. There 

are lots, there are large number of possible values of X 2, out of which one particular or 

some of them will lead to f 2 star S 2, and that allocation, we denote by X 2 star. So, this 

is the notation, the DP problems, especially the discrete dynamic programming 

problems, where the variables, state variables as well as the decision variables take on 

only discrete values or typically done through computations.  



(Refer Slide Time: 13:45) 

 

So, let us look at how we write this for stage number 2. For stage number 1, we have 

completed the computations. So, we will start with this is for stage 2. Typically, this is 

the way we write every table. You write the stage number here. So, stage 2 and then, you 

write the recursive relationship. This is called as a recursive relationship, which gives 

you for a given state. In that stage, it gives an expression for the immediate objective 

function value because of the decision that you make here plus the optimized objective 

function value for all the remaining stages together.  

So, f 1 star S 2 minus X 2, X 2 is the optimized objective function value that you have 

obtained in the previous stage of calculations. So, look at this now. S 2 is 0; that means 

we are saying if S 2 is 0, what should be my X 2. X 2 cannot be anything other than 0 

because 0 X 2 takes on values between 0 and S 2. So, S X 2 has to be 0. If X 2 is 0, R 2 

of X 2 is 0. This is the return that we get from an allocation of 0 units to user number 2, 

that is, R 2 of X 2 is what we are writing here and then, S 2 minus X 2. So, 0 minus 0, 

that is again 0, and f 1 star corresponding to S 2 minus X 2, this is picked up from the 

previous stage calculations. 

So, the previous stage calculations we have corresponding to S 1 is equal to 0, f 1 star of 

S 1 is 0. So, we pick up 0 there. This is 0, and if in the case of 0 everything becomes 0, 

so it says that if 0 is available, allocate 0 and you get a maximum return of 0. We look at 

1 and 2 and then, continue. If 1 is available, that means what we are saying is S 2 is equal 



to 1, you can either allocate 0 or allocate 1 at X 2. If you allocate 0, you get a return of 0 

from X 2, from the allocation X 2. If you allocate 1, you get a return of 5. If 1 is 

available, and you allocated 0 to user number 2, how much are we left for the user 

number 1? 1 minus 0, which is 1, that is S 2 minus X 2 and if 1 is available, you know 

what has happened in the previous case, previous stage corresponding to 1. It says that, if 

1 is available here, you allocate 1 and you will get a return of 7. So, this is what we write 

here. So, this is 7 here, 1 0 1. This 7 here is got from the previous stage calculations.  

So, if S 2 is 1 and you allocated 0 to user number 2, you are left with 1 for the user 

number 1 which gives you optimized benefit of 7, optimized return of 7. So, the total 

return corresponding to this combination 0 and 1 will be 7, that is this 0 plus this 7 that is 

equal to 7. So, R 2 X 2 plus f 1 star S 2 minus X 2 that would be 7. Starting with S 2 

equal to 1 if you allocate X 2 as 1, that means, X 2 is equal to 1, you get a return of 5. 

Then, you how much you are left with? 1 minus 1, that is 0, you are left with 0. 

Corresponding to 0, the previous Stage calculations show that f 1 star of 0 is 0. So, you 

get a total benefit of 5 plus 0, which is 5 and therefore, 7 is the maximum value among 

these. So, this is you pick up a maximum among these. So, this will be equal to 

maximum of this term. That is what we have written here. So, this is 7, and it says that, 

that corresponds to 0. So, X 2 star is 0 here. What does it say? It says that, at the 

beginning stage number 2, if you are given an amount of water of 1, then you allocate 0 

to user number 2 is what it says. So, star is 0.  

You look at 2, if 2 is available; you can either allocate 0, R 1, R 2 to user number 2. If 

you allocate 0, you get a return of 0 from user 2. If you allocate 1, you get a return of 5 

from user 2. If you allocate 2, you get a return of 2 from user 2. If you allocate 0, you are 

left with 2 for the user number 1, and the optimal allocation of 2 gives you 12 from user 

number 1. Look look at this. User number 1, you have already solved and you are 

looking at allocation of 2 at user number 2. That gives you a benefit of 12. So, you pick 

up that f 1 star corresponding to this, a value of 2 and that is what you get 12.  

Similarly, if you allocate 1 to user number 2, how much you are left for the user number 

1? 2 minus 1, that is 1 and if you have 1 left there, the optimized value is 7. Optimized 

value corresponding to that stage, which is stage number 1, is 7. Similarly, if you allocate 

2 here when you are left with 0 here, 2 minus 2 is 0, you get are return optimized value 



of 0 here. So, what is the total that you get? 12 plus 0, that is 12, 7 plus 5 that is 12, 0 

plus 6 that is 6, and pick up the maximum of that, maximum is 12. Therefore, it says that 

if 2 is available, you either allocate 0 or 1, both of which gives you a value of 12. Like 

this for all the possible discrete values of S 2, you solve this problem.  
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Then, let us say you go to 5, for example 0 1 2 3 4 5. If X 2 is 0 1 2 3 4 5, then you will 

get corresponding R 2 value. Then, this will be 5 minus 0, 5 minus 1, 5 minus 2 etcetera 

and then, pick up the associated values of optimized returns from the previous stage, they 

will be 16, 16 etcetera like this. So, the maximum value will be 21 out of all these 

allocations and 21, it says that if 5 is available, you either allocate 1 or 2 to user number 

2 and you get a maximum benefit, maximum return of 21. So, like this, you continue till 

you exhaust all possible values of S 2. 

What are all the possible values of S 2? S 2 can be either 0 or 1 or 2 etcetera up to 6. So, 

you complete for all the 6. This completes the calculations for stage number 2 and then, 

you proceed to stage number 3. So, remember in stage number 2, what do we answer? 

We answer the question, that given S 2 which is the amount of water available to be 

allocated to both user number 1 and user number 2 together. How much should I allocate 

to X 2, such that the total return obtained from the immediate allocation X 2 to user 

number 2 plus the optimized return out of the resultant state S 2 minus X 2 at stage 

number 1, these 2 together will be optimized? So, we are moving in an optimal manner 



until the end of the horizon, which includes user number 1. So, this is what we answered 

at stage number 2. 

(Refer Slide Time: 22:47) 

 

Now, we go to the next stage, which is stage number 3. Remember in stage number 3, we 

add 1 more user here, user number 3. So, we have already solved at stage 2, we have 

solved for the amount of water available S 2 here. We know how much optimal benefit 

that we get. So, at stage 3, we are asking the question if S 3 is available for allocation to 

user 3, user 2 and user 1 together. How much should I allocate to user number 3, such 

that the total returns that you get out of this full system is maximized, and that is what we 

write it as a recursive relationship f 3 star of for a given value of S 3 is equal to 

maximize R 3 of X 3.  

You are allocating a value amount of X 3 to user number 3. As a result of which, you get 

a return of R 3 of X 3 plus because you allocated X 3 from an available S 3, you are left 

with S 3 minus X 3 to be allocated to user number 1 and user number 2 together. This 

problem you have solved in the previous stage. In the previous stage, essentially you 

solve for user number 1 and user number 2 for a given value of S 2 and this value of S 2 

comes from S 3 minus X 3, and that is the term that we write here. So, this term here f 2 

star S 3 minus X 2, S 3 minus X 3 is in fact, the optimized value of the objective function 

corresponding to the value S 3 minus X 3, which we have solved in the previous stage.  



So, you pick up from the previous stage the associated value S 3 minus X 3, but there is 

some interesting feature here. In stage number 2, what did we do? In stage number 2, we 

said we will solve this problem for all values of S 2 going from 0 to Q. That is why we 

solved it from 0 for given value 0, 1, 2, 3 etcetera up to 6. When you come to Stage 3, in 

this particular example, all the users are included, and the state variable that is the state 

of the system S 3 is the amount of water available to be allocated to the users included in 

that stage, and in stage 3, all the users are included. Therefore, S 3 will be equal to the 

total amount of water available. S 3 is Q, so S 3 will not take any values other than the 

total amount of water available, which is 6.  

So, when you come to the last user in water allocation problem, such as what I am 

discussing now. When you come to the last user, that is the last stage, the total amount of 

water available is, it becomes the state of the system. So, S 3 will be Q. So, you do not 

solve for various values of S 3, but the given value which is the total amount of water 

available, 6 in this particular case. S 3 is equal to Q and then, X 3 goes on from, X 3 can 

take on any value between 0 and S 3, which is equal to Q in this case. So, this is what we 

solve in the last stage.  
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So, let us see what we do in the last stage. So, this is what I mentioned. S 3 will be 6 

units. X 3 is the amount of water allocated to user 3. S 3 minus X 3 is the amount of 

water available for allocation at stage 2 and stage 2 includes 2 users, user 1 and user 2. X 



3 star is allocation to user 3 that results in f 3 star S 3, much the same way as we did for 

stage number 2. However, remember here that S 3 minus X 3 is available for user 

number one and user number two together. You do not again go to stage 1 now. You 

simply relate it with what you have solved for this stage 2 because in stage 2 

computations, you have already included the optimized value of stage 1. So, when you 

are doing for stage 3 simply look at the previous table and then, pick up the optimal 

values corresponding to a given value of S 3 minus X 3. 
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So, this again we do in the tabular form. S 3 now, takes on exactly 1 value 6 because it is 

a total amount of water available to be allocated to all the users included in stage 3, and 

in stage 3 now, we have included user 1, user 2, and user 3 together. In stage 2, we have 

already solved for user 1 and user 2 together. So, we ask the question, if S 3 is available, 

then, how much should I allocate to user number 3? Should I allocate 0, 1, 2, 3, 4 

etcetera, such that the total return that you get is maximized. So, I get a return, 

immediate return of R 3, X 3 plus because I have allocated X 3 from the available S 3, I 

am left with S 3 minus X 3 for the next stage, which includes 2 users.  

I know how much I get from an available, availability of S 3 minus X 3 at the next stage 

because this is exactly the problem that we have solved in the previous stage. So, this is 

the recursive relationship. So, we do exactly the same way as we did for the previous 

stage. We say if 6 is available, I can either allocate 0 to X 3 or 1 or 2 etcetera. If I 



allocate 0, I get a return of 0 from user 3, return of 1 from user 3, return of 8 from user 3 

and so on. Out of 6, if I look at 0, I am left with 6 for the other 2 users and the other 2 

users corresponding to 6, I have already solved corresponding to 6 the optimal value is 

22 here, I pick up this value 22 and that is we take sum of these 2, that is, this term sum 

that is 22. Look at this 6. I allocate 1 and therefore, I am left with 5. If I allocate 1, I am 

getting a return of 5 where is this available, this data is available right at the beginning of 

the problem. So, if I allocate 1 from user 3, I am getting a return of 5. So, this is the table 

that I am using there. So, if I allocate 1, I am left with 5, and that 5 from the previous 

table, you go to 5 and look at the 2 star of 5, that is equal to 21 and that is what you write 

here 21 and therefore, 21 plus this 5 is equal to 26.  

Similarly, if I allocate 2, I am left with 4 and this 4 corresponds to 20 and therefore, the 

total is 20 plus 8 that is equal to 28 and so on. So, like this, you do it for all the possible 

values of X 3, and you pick up the maximum value out of all these 3, all these 

allocations. So, the maximum value in this case corresponds to 28. Maximum value is 28 

and the particular X star, particular X 3 value that results in this maximum value is 2. 

What I what I mean by that is, it says that if 6 is available, I am sorry 6 is available at 

stage 3, then you allocate 2 to user 3 and you get a maximum benefit of 28. This is in 

fact the maximized value of the objective function after you complete all the allocations. 

Remember you should not add this to the value that you got in the previous table 

associated with any particular allocation and so on because this value that you get has 

already included the optimized value for the stage 2, which has already included the 

optimized value for stage 1. Therefore, when you solve for the last stage in this particular 

case, stage number 3, this is stage 3. When you solve for the last stage, the objective 

function value that you get is in fact, the optimized objective function value for the entire 

problem. Now, from this we need to trace that, though allocations to different users, the 

last table here gives you an allocation of 2 units to user number 3. It says that you 

allocate 2 units to user number 3. So, understand how we trace back the solution now.  
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So, when the third stage is solved, in this particular case, there are only 3 stages. All the 

3 users are considered for allocation. Thus, the total maximum return is 28, which means 

f 3 star of 6, which is the total amount of water available is equal to 28. Now, starting 

with this, we need to trace back. So, just understand how we trace back. 6 is available 

further for allocation to all the 3 users and this table says, allocate 2 to user number 3. 

So, how much are we left? 6 minus 2 which is equal to 4, so 4 units to be allocated to the 

other 2 users together, that is user number 1 and user number 2 together.  

So, we get S 2, which is the amount of water available to be allocated to user number 2 

and user number 1 together is Q minus X 3 star, which is equal to 4 units. Then, you go 

to stage number 2 calculations. So, you are saying that 4 is available. So, S 2 is equal to 

4, go to stage number 2 calculation; look at what is the corresponding allocation for S 2 

is equal to 4. It says that, if 4 is available, you allocate 1 to user number 2. So, from the 

previous table, you pick up the optimal allocation corresponding to S 2 is equal to 4, 

which says that X 2 star is equal to 1. So, from here, you got 6 minus 2 is equal to 4 

available for the previous stage and from the previous stage calculation, it says X 2 star 

is equal to 1. 
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So, 4 minus 1 that will be available at stage number 1, that is S 2 minus X 2 star and that 

will be 3. With this 3, you go back to stage number 1 calculation and look at what you 

should go for S 1 is equal to 3. It says if S 1 is equal to 3, your X 1 star must be equal to 

3. So, this is how you trace back the allocations to all the users. So, you got from here X 

3 is equal to 2, X 3 star is equal to 2, then you went to stage number 2 calculations. You 

got X 2 star is equal to 1, then you went to stage number 1 calculation and you got X 1 

star is equal to 3. So, you got the optimal allocations to user number 1, user number 2 

and user number 3 together.  
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The optimal return that you get from such an allocation is 28 units. So, X 1 star is 3, X 2 

star is 1, X 3 star is 2 and the total return is 28, total maximum return is 28. These we can 

verify from the original table of data.  
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Now, this is the data where say, X 3 star is, I think we got X 3 star to be 2 here and let us 

write down X 3 star is 2, X 2 star is 1, and X 1 star is 3, so 3 1 2, 3 1 2, user 1, user 2 and 

user 3. So, we will go to that table. 3 1 2 is the allocation. 3 is 15, 1 is 5 and 2 is 8. So, 15 

plus 5 plus 8, that is 28. That is the maximum return that you get. Simply look at this 

table. If you wanted to get to these particular allocations, what you have to do is, you 

will have to exhaustively enumerate. For example, 6 is available. You may say, 0 6 0, 

then 0 4 2, 0 2 4 and so on. Like this exhaustively you have to enumerate, but the 

Bellman’s principle of optimality makes such an optimization very simple because at 

every stage, we are only looking at the computations of the previous stage.  

So, every time you look at, you relate that present stage calculations with what we have 

done in the previous stage, and that is how the computations becomes simple. So, this is 

the way we trace back the solutions after you solve the problem for including all the 

stages. So, you included all the users and then, solved at the last stage. You solve the 

problem for the total amount of water available from which you get the allocation to be 

made to that last user that was included in this particular case user 3. Then, you will go 

to the next stage of computation knowing that from an available amount of water Q, you 



have allocated X 3 star. Therefore, for the remaining users which are all included in the 

previous stage, you have an amount of Q minus X 3 available and go to the previous 

stage computations, pick up what you should do corresponding to this amount of water 

available and so on. So, like this, you keep tracing back the solution. 
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So, let us look at what we have done in this simple discrete dynamic programming 

problem. You have a given problem let us say, n variable problem. You divided that into 

different stages. So, n variable problem you have now divided into n stages, each of 

which having only 1 variable to solve. In this particular case of water is a user allocation 

problem that I just solved. You had 3 users, therefore 3 allocations, X 1, X 2 and X 3. If 

you have formulated a, let us say, it was possible for you to formulate LP problem, then 

it would have been a 3 variable problem. This you divided into 3 different stages, stage 

number 1, stage number 2 and stage number 3.  

At each stage, you solve for exactly 1 variable. In the first stage, you solve for X 1. In the 

second stage, you solve for X 2 and from the X 2, arising out of X 2, you know what the 

total return is. At stage 3, you only solve for X 3. So, at each stage, you are solving for 

exactly 1 variable. So, what was the 3 variables problem? You converted into a single 

variable problem to be solved 3 times. Every stage, at each stage, you have a policy 

decision. What are the policy decision in our allocation problem? The amount of water 

available to be allocated at that particular stage is the policy decision.  



Similarly, at every stage, you have a state of the system at that stage. When we had user 

number 1, we defined S 1 as the state. As the state of the system at that particular stage, 

this example is the amount of water available to be allocated to all the users included in 

that stage. Let say S 1. S 1 is the amount of water available to be allocated to user 1, S 2 

is the amount of water available at stage number 2 to be allocated to all the users 

included in that stage in this particular case will be user number 1and user number 2 

together.  

Similarly, S 3 is the amount of water available to all the users included in that stage, 

which is user number 1, user number 2 and user number 3 together. So, at every stage, 

you have a state variable and in the user, in the water allocation problem, the state 

variable simply corresponds to the amount of water available. So, the main 

characteristics of the dynamic programming are that n variable problem has been 

decomposed into n stage problem. Each Stage you are solving for only 1 variable in this 

particular case and 1 variable can be 1 vector, one decision vector and at every stage, you 

have a state of the system and at every stage, you make a policy decision.  

The policy decision in the water allocation problem is how much to be allocated to that 

particular user. For stage number 2, you are making a decision on X 2, in stage number 

3, you are making a decision on X 3 and stage number 1; you are making a decision on X 

1 and so on. So, at every stage you have a policy decision, at every stage you have a state 

variable which completely describes the state of the system, at every stage you have an 

immediate return that comes out of that. So, these are the characteristics of the dynamic 

programming. 

The articulation of the problems to fit the dynamic programming algorithm or dynamic 

programming structure is in fact an important aspect of dynamic programming. As I 

mentioned in the last class, a given problem you need to look at what are the stages can 

we look into different stages and can we identify the state of the system, can we 

completely describe the state of the system at every stage, can we identify what is the 

policy decision and so on. 
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Now, one requirement for for this multi-stage problem is that the state must be able to 

transform this state from one stage to another stage. What I mean by that is, let us say, 

you are in stage number n here, and this is stage number n minus 1. The state starting 

with a particular state S n, we must be able to get the state S n minus 1 for a decision that 

you take in this particular stage. This is the stage n and you are making a decision X n 

because of which the state gets transformed to S n 1. This is called as the stage 

transformation. So, you must be able to write the recursive relationship, you must be able 

to identify the state transformation.  

What are the state transformation in water allocation problem? We had user 2 state 

number stage number 1, stage number 2 (()) finds your S 1. So, simply S n minus X n 

and in specific problems, the state transformation will be specific to that particular 

problem. For example, when we go to operation problem, this may be different. We look 

at the capacity expansion problem, this may be different and so on, but it involve that 

transformation of a state at a particular state, which defines the (()) for the next stage. So, 

this is called as the state transformation.  
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So, you write the relationship state transformation and then, we have the concept of the 

recursive relationship. Now, the recursive relationship identifies the optimal decision at 

stage n f n of S n for state S n. So, this is the state S n in the stage n, given the optimal 

decisions at each state at stage n minus 1, there is the previous stage for which the 

calculations would have been already done. For example, in the water allocation problem 

we are proceeding in this direction. In stage 1, we had 1 user. We would have solved the 

problem and come to stage 2. When you come to stage 2, you have to relate the optimal 

decision which is for a given S 2, for the state S n, that is S 2 here, given the optimal 

decisions for each state at stage n minus 1.  

So, stage 1, we would have solved for each possible state at that stage, and that is what 

we relate it with the optimal decision at stage n. Look at this expression now, f n of S n is 

the optimized objective function value at stage n and X n is the decision that we are 

making. So, when we write maximize over X n, this has to be read as maximize over X n 

and X n can be a vector. You may have a several decisions to make, but in the water user 

allocation problem, we had exactly one decision, namely the water allocated to the user 

at that stage n. So, f n of S n is equal to maximize over X n. That means you are making 

a decision on X n. Now, this term you understand correctly. R n of X n is the immediate 

return that you get at that stage because of the decisions that you make on X n. So, you 

make a decision of X n, you get a return of R n of X n at that stage. Associated with this 

decision now X n, you have to relate this f n to f n minus 1.  



Now, this decision X n taken on the state S n transforms the state of the system to the 

previous stage, from this current stage to the previous stage and that transformation is 

given by t of S n, X n. Now this t of X n, S n is the state transformation equation. We 

will call it as state transformation. So, it is in fact, a function. It will be a function of S n, 

which is the state at that stage n and X n, which is the decision that you are making given 

the state S n. Now, the identification of the state transformation is an important concept 

here and that depends on the type of problem, actually the feature of the problem itself. 

Say for example, in the water allocation problem, we wrote this as the recursive 

relationship. We wrote as f n of S n at any given stage S, stage n here.  

What are the state variable? A state variable was the amount of water available at that 

particular stage n. We wrote this as maximize over X n. Let us say, n was 2 second stage 

and X 2 which has the water allocated to user number 2 and you get a return associated 

with that decision X n plus f n minus 1, which is if we are looking at stage 2, f 1 n minus 

1 will be f 1 of S n, which was the amount of water available to be allocated at stage 

number 2, which consisted of 2 users, namely user number 2 and user number 1. Because 

you allocated X 2 there, what is the amount that is left for user number 1, which is stage 

number 1? It will be S 2 minus X 2. So, that is an idea there and therefore, the state 

transformation for the water allocation problem is simply S n minus X n. So, this is how 

we define the state transformation for a given problem.  

In the water allocation problem, I repeat the state transformation is simply S n minus X 

n. So, if you have several users, every time you relate this with the previous stage. 

Identification of the state transformation is an important exercise in writing the recursive 

relationship. Different types of problems will have different state transformations as we 

will see in the next problems that I will discuss. For example, the reservoir operation 

problem may have mass balance or continuity starting with a particular storage in a 

particular time period. You may want to relate it with the storage in the next time period, 

which in the backward direction will correspond to the previous stage and so on.  

So, depending on the type of the problem, you must identify the state transformation. 

State transformation essentially indicates the transformation of the state starting with S n 

in stage n to state S n minus 1 in stage n minus 1 because we are relating it to stage n 

minus 1 in the backward direction. Once you identify the state transformation, it is easy 

for you to write the recursive relationship and writing the recursive relationship is the 



single most important feature of a dynamic programming, that is, identification of the 

recursive relationship is the single most important exercise that you do in dynamic 

programming.  

Once you identify recursive relationship, the problem becomes very simple because in 

the discrete dynamic programming problem, state S n are discrete decisions, X n are 

discrete and therefore, once you write the recursive relationship correctly, all you have to 

do is solve this recursive relationship for various values of S n and each value of S n 

corresponding to a number of discrete values of X n. So, that is the concept of a state 

transformation and the recursive relationship. Now, there is a requirement here, which is 

often over looked and we tend to mechanically solve the problems. See what does this 

mean. This means that the objective function is in fact separable. That means, what we 

have been doing at stage n and what we have done at stage n minus 1 can be separated 

with one set of decisions taken at each of the stages, which means, which indicates that 

the objective function must be separable. 
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For example, look at this kind of function. I will say X 1 square plus X 2 square plus 

etcetera X 1 square. This I can break it into different stages. At each stage, I will 

consider only 1 of the variables. So, I will solve for X n, then I will solve for X n minus 

1 etcetera. So, this is the separable objective function. However, I have some function 

like this. So, this is separable. Let us say, I have a function like this, X 1, X 2 plus X 2, X 



3 plus X 3, X 4 and so on. If I have some such system, although I have different terms 

associated with different stages, I will still break it into different stages, but the objective 

function is not any stage. Let us say, this is dependent on the previous variable X 3, 

which appears in both the stages. Therefore, this is not sufferable and therefore, these 

problems are not to be formulated as dynamic programming problem.  

So, one requirement is that the objective function must be separable and optimal 

decisions, so finally, what we do is, progress from one stage to another stage and then, 

complete all the calculations, complete all stages. Once you reach the final stage, you get 

the optimal objective function value and from that, you trace back to solution. So, the 

optimal decisions are traced back. Now, the solution moves backward or forward I say 

here. There are certain problems where you need to move only in the backward direction 

because the last stage, let us say, you are talking about time horizon. You may fix the 

boundary conditions to say, at the end of the last time period.  

So, that time period boundary conditions may be known and then, starting with that, you 

may proceed backward or your initial storage condition. Initial storage condition in the 

case of a reservoir operation problem may be known, in which case you count from 

backward, in the backward direction and then, when you do the last stage calculation, 

you will use this condition that you satisfied. If on the other hand, you are looking at the 

shortest route problem let us say, then you may, it may be advantageous to proceed in the 

forward direction. So, you may either proceed in the backward direction or the forward 

direction. 
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However, your definitions of the state variables and the decision variables must be clear. 

What I mean by that is, that given a particular problem, you may either proceed in this 

direction that is you may specify X 1 various values and solve for this and then, go to 

this, the second stage for various values of S 2, you solve for these 2 together and so on 

or you may want to proceed in this direction, in which case you may start with S n minus 

1 and related to S n. Similarly, S n minus 2 related to S n, S n minus 1 and so on. So, 

depending on the physical problem that you are solving, there may be advantage to either 

move in this direction or in the backward direction.  

I will give another example of reservoir operation, where the direction of movement will 

become clearer. If we place one type of boundary condition so to say, that is at the end of 

the time period if I fix the storage, it may be advantageous to move in certain direction. 

If at the beginning of the time period you fix the condition, it may be advantageous to 

move in another direction and so on. So, much unlike the linear programming problems, 

there is some articulation that is involved in the dynamic programming formulations. It is 

not just an algorithmic way of solving as we did in the linear programming problem.  

You must understand the physical problem correctly; see whether you can divide the 

problem into several numbers of stages, at each stage you are making exactly one policy 

decision and that is related with the previous stage computations and so on. So, you must 

make sure that the objective function is in fact separable and you are able to write the 



recursive relationship, you are able to write the state transformation equation from 

relating the transformation of the state from one stage to the next stage. In fact, the state 

transformation, the way you are able, you are writing the state transformation will also 

decide in which direction you would like to proceed in the computation.  

So, the backward direction as well as the forward direction, you can move depending on 

the type of problem, and the Bellman’s principle of optimality is valid in both the cases, 

but the way we state, may be slightly different. It is essentially the given the state of the 

system you must proceed in an optimal manner, whether you are proceeding in the 

backward direction or in the forward direction does not matter. All it says is do not worry 

about how you are arrived at particular state; you must proceed for starting with that state 

in that stage, you proceed in an optimal manner. So, this is the governing principle of 

dynamic programming.  

In the next lecture, I will cover using the dynamic programming an important example 

for in water resources, that is, the reservoir operation problem. So, next lecture, we will 

start with the reservoir operation problem, we will solve with dynamic programming and 

then, see how we use this discrete dynamic programming problem for single reservoir 

operation. We will take it as an example and then in the subsequent lectures, we can talk 

about what we call as steady state operation and so on. So, this is the first example that I 

will be dealing with reservoir operation.  

So, I will give some introduction to what we mean by reservoir operation, what are the 

decisions that we need to take, how we define the state variables and so on. So, 

essentially in today’s lecture, we completed the water allocation problem that we took up 

in the last lecture, and we saw how we formulate the state transformation equation, how 

we formulate the, how we write the recursive relationship that relates computations from 

one stage to the next stage and so on.  

Remember, in the type of problems that we are solving at any given stage, you just relate 

computations with what we have solved in the previous stage. So, just look up the 

previous table for the solution, pick up that particular objective function value and plug it 

in here. So, like this from one stage to the next stage to the stage, next stage, your 

computations proceed. However, you have to store all the stage computations until you 

complete all the stages. It is not that the moment I solve this stage computations, I will 



discard all the others, except I will return the previous one because only the previous one 

is not necessary.  

Finally, you will have to trace back the solution and therefore, the computations that you 

have done right from stage number 1 to all the stages until this point stage number n have 

to be retained because finally, when you solve the last state computation, you have to 

trace back and the trace back involves tracing back solutions in all the stages. We will 

see what it implies in terms of computer memory, in terms of the computer time and so 

on. When I deal with other problems, we will discuss that feature. So, we will continue 

the discussion on dynamic programming in the next lecture. Thank you for your 

attention. 


