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In this lecture, we continue with discussion on two-dimensional random variables, before 

that, we will quickly recall what was that we discussed in the last lecture. We discuss the 

description of two random variables, in terms of their joint probability distribution, 

function joint probability density function; then, we extended the notion of conditional 

probability that we earlier defined for two events, to the case of two random variables, 

that led to the definitions of conditional probability density function, distribution 

function and expectations; these also helped us to define independents of two random 

variables. 

Now, based on the properties of joint probability density function, we could also define 

joint expectations, joint characteristic functions, joint moment generating functions and 

so on and so forth. And one of the such characteristics that we discussed in the last 

lecture was correlation function, we should that, this correlation coefficient is bounded 



between minus 1 and plus 1; with the bounds plus 1 and minus 1, corresponding to the 

case of linear relationship between X and Y, and r equal to 0 implying uncorrelatedness; 

and if two random variables are independent they are automatically uncorrelated. We 

also discuss the problem of functions of random variables, that is, given two random 

variables in and that description of their joint probability density functions, if we 

introduce two more random variables as functions of the original two random variables, 

how to obtain the joint probability density function, we will continue with that. 
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We will now consider an example where X and Y are jointly normal, they are 

uncorrelated, therefore they are independent; they have 0 mean and unit standard 

deviation. And we introduce a transformation r is square root of X square plus Y square 

and theta is tan inverse Y by X. So, the problem on hand is to find the joint probability 

density function of this random variable r and theta. 
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This transformation is a came to the polar coordinate transformation from Cartesian to 

polar coordinates, x is r cos theta and y is r sin theta. So, given that, x and y are jointly 

Gaussian, and they have 0 mean and unit standard deviation, the joint probability density 

function is as for this equation, and the variable capital r and theta take values in 0 to 

infinity and 0 to 2 pi. 

Now, in this example, it turns out that it is easier to determine 1 by J, then J itself that 

can be demonstrated, by considering this relation, x is r cos theta and y is r sin theta; so, J 

will be dou x by dou r is cos theta, and dou x by dou theta is this, dou y by dou r is sin 

theta, dou y by dou theta is r cos theta, and this leads to the value of 1 by J as r. 
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Now, the joint density function R theta is given by p X Y (x, y) divided by this J, 

evaluated it at x equal to r cos theta and y equal to r sin theta. Now, if you make these 

substitutions, we get the joint density function to be r by 2 pi exponential minus r square 

by 2, with r taking values from 0 to infinity and theta taking values from 0 to 2 pi. 

If you are now interested in finding the marginal probability density function of r, then 

we have to integrate this function with respect to theta, where the limit 0 to 2 pi. 

Similarly, if you are interested in finding the marginal probability density function of 

theta, we have to integrate this joint density function with respect to r or the limit 0 to 

infinity. 
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So, if you do that, the marginal density function of R is obtained as 0 to 2 pi p R theta r 

theta d theta, and if this integration is perform, we get the probability density function of 

r to be of this form. And this type of random variables, a random variable with this type 

of probability density function is known as a Rayleigh random variable. 

Now, the probability density function of theta can be evaluated by finding this integral, 

that is integrate with respect to r the joint density function; if you do that, we get p theta 

of theta to be 1 by 2 pi and theta taking values from 0 to 2 pi, that means, the probability 

density function is constant over this interval and such random variables are known as 

uniformly distributed random variables. 

Now, if you multiply the marginal density functions p R of r given by this and p theta of 

theta given by this, we recover the joint probability density function p r of theta that 

would mean, the random variables R and theta are independent. 
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Now, a typical plot of a Rayleigh random probability density function of a Rayleigh 

random variable is as shown here; it has one peak, it takes values from 0 to infinity. And 

similarly, a typical plot of a typical uniformly distributed random variable is shown here; 

this is distributed uniformly between 0 and 1. So, in a way, we are talking about 

Cartesian to polar coordinates, so if we have Gaussian models in Cartesian space, in the 

polar coordinates space the amplitude that is capital R will be Rayleigh distributed in the 

face, will be uniformly distributed. 
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Next, we consider one of the classical transformations, widely used in simulation work, 

namely the Box Muller transformation. Here, we consider two random variables X and Y 

which are independent and uniformly distributed in 0 to 1. We introduce two random 

variables capital U and V, given by these relations, and the problem on hand, is to find 

out the joint probability density function of U and V, ln is the logarithm. 
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So, based on the given functional relationship between U and V, and X and Y, we can 

derive the roots of the equation; firstly, we will write, square this, and square this, and 

add it, we get x in terms of U and V as exponential of minus u square plus v square by 2. 

Similarly, if we divide v by u, I get tan 2 pi y, from which it y emerges as 1 by 2 pi tan 

inverse v by u; that means, we have now found out x and y in terms of U and V that is 

one of the first steps in implementing the problem of transformations. 
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Next, in this example also, it turns out that it is easier to find 1 by J, then J, and this 

computation of the derivatives, that is dou x by dou u dou x by dou v dou y by dou u and 

dou y by dou v, lead to this expression; from this we get 1 by J as this function. 

Now, from this, we can deduce since x and y are uniformly distributed, it follows that P 

UV (u, v) is nothing but this J minus and we get this as a joint density function. Again to 

find marginal density of u, we can integrate over v, and to find marginal density of u, we 

can integrate over v, and we can verify that U and V are standard normal random 

variables; each has 0 mean and unit standard deviation and they are independent. From 

this, it also follows that U and V are independent. 

This transformation has an important application in simulation of random numbers on 

computers, where using certain algorithms we can simulate uniformly distributed random 

numbers digitally on a computer and these transformations can be used to find simulate 

Gaussian random numbers, from the basic uniform distributed random numbers. We see 

more of this later, when we consider problems, we consider application of Monte Carlo 

simulation methods, to solve uncertainty propagation problems. 
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Another example, here I consider again X and Y to be standard normal 0 mean unit, 

standard deviation and uncorrelated, therefore independent also. And we introduce, now 

the random variables U is equal to X square plus Y square and V is equal to X by Y. The 

problem on hand is to determine the joint probability density function of U and V and 

check if U and V are independent. 
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Now based on the given functional relationship between U and V, and X and Y, we can 

infer that U takes values from 0 to infinity and V takes value from minus infinity to plus 



infinity. Now, we can see here, that x is given by v y, and u is, if you substitute that, here 

we get y square into 1 plus v square. Therefore, Y square emerges as u by 1 plus v square 

and x square is u v square by 1 plus v square. Now, we can find the Jacobean, from this 

expression we get Jacobean as this, and in terms of v, we are getting here. 
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And now, if we consider the joint density function of u and v, in terms of the joint 

density function of X and Y, it can be shown that, this is the requisite joint density 

function. 

Now, the marginal density function of u can be obtained by integrating this over v, and 

we get an exponential distribution, actually sigma here is 1, that was a data, but here I 

have included a general case, so sigma can be taken as 1 here. Similarly, if we now find 

the marginal density function of v, we integrate from 0 to infinity, because u takes values 

from of 0 to infinity and we get this density function; this density function is known as 

Cauchy, I mean, this variable is known as a Cauchy random variable. 

Again, if I now multiply p U of u and p V of v, we see that it turns out to be the same as 

the joint density function of u and v, from which we infer that U and V are independent; 

so, U is exponential distributed and V is Cauchy distributed. 
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Next, we consider another example, where there is a slight variation in the way the 

problem is post, here we consider two random variables X and Y, with a given 

probability density function p XY (x, y), and we introduce the transformation U is equal 

to X plus Y, and the problem on hand is to determine the probability density function of 

u; this does not fit into the type of problems, that we have been discussing so far, because 

here we are dealing with one function of two random variables; so, the method that we 

have outline just now, is not immediately applicable. Now, the strategy that we adapt is 

we introduce a dummy variable, that means, we will introduce another function of X and 

Y, and consider the joint density function of the given random variable, and this newly 

introduced dummy variable. 
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So, this is a given function U is equal to X plus Y, now I introduce a dummy random 

variable V is equal to Y; so, this J for this is 1 and p UV (u, v) is actually p XY (x ,y), y x 

evaluated at u minus v and y evaluated at v. 

Now, once I determine the joint probability density function, I can now find out the 

marginal density function of U, which is indeed the function that we are looking for this 

is minus infinity to infinity p XY u minus v v d v, this is the answer to the question that 

we originally post. Now, additionally if you assume now, that X and Y are independent, 

this joint density function can be expressed as product of the marginal. So, this integral 

can now be written as p U of u is p X of u minus v into p Y of v d v; this kind of 

integrals are known as convolution integrals and they can easily be solved using 

transform techniques like Laplace transforms. This is also will be seeing, when we 

encounter vibration problems will be seeing that, this type of integrals appear there also. 



(Refer Slide Time: 15:05) 

 

As an example of this particular case of summing two random variables, we now 

consider two random variables X and Y which are exponentially distributed, that means, 

p X of x is a e raise to minus a x and p Y of y is b e raise to minus by with x and y taking 

values from 0 to infinity. Now, we define the function U is X plus Y. So, the problem on 

hand is to find the probability density function of U. Again, we introduce the dummy 

variable V equal to Y and this is the expression that we got just now. 
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Now, p Y of v is given by b into exponential minus beta v into p X of u minus v d v. 

Now, we have to fix this limit of upper limit, bearing in mind the property of this density 

function. Since p X of u is an exponential distribution, that is p X of x is exponential 

minus a x for x between 0 to infinity, it implies that p X of x is 0 for negative values of 

X. 
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So, consequently p X of u minus v will be 0, whenever u minus v is less than 0. So, this 

implies that in the upper limit here, I should right u instead of infinity, because this 



function is 0 for negative values of u minus v. So, with that modification, now if we 

proceed and evaluate this integral, this is a straight forward exercise, we get the marginal 

density function of u to be given by this expression. 
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So, I have shown a simple plot of the marginal density of X and Y, these are exponential 

density functions and this is the density function of U. So, summation of random 

variable, if you are dealing with summation of random variables, you have to use 

convolution integrals, to evaluate the resulting probability density functions. 
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Now, so far we have discussed the problem of describing two random variables; now, 

this can easily be generalized to characterize more than two random variables. Suppose, 

if you have a now a set of random variables i, x 1, x 2, x 3, x n, now we introduce the 

definitions here, on what are known as n-th order joint probability distribution function 

of X tilde. This is defined as probability of intersection of the events X i less than equal 

to X I, this function is known as the n-th order joint probability distribution function; 

associated with that, we can also define in n-th order joint probability density function. 

This is the n-th derivative of this probability distribution function with respect to the 

states x 1, x 2, x 3, x n. 

Again we can generalize the notion of expectation for n-dimensional random variables, 

and if we now consider expected value of g of X tilde, where g of X tilde is a non-linear 

function, in general of the random variables x 1, x 2, x 3, x n; this is given by the n fold 

integral, this an n fold integral g of X tilde p, X tilde, X tilde. Here again we can give 

specific meanings to g of X and obtain requested characteristic of this vector of random 

variables given, again n-th order joint density function, we can get lower order joint 

density functions by integrating the n-th order density function with respect to the 

pertinent states. So, a set of n random variables is completely specified in terms of the n-

th order joint probability distribution function or n-th order joint probability density 

function. Again, we can define moment generating functions characteristic functions in 

n-dimensions that is a reasonably straight forward exercise. 
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As an example of this idea, we will consider multidimensional Gaussian random 

variables. Let us consider a vector random variable X of dimension n, that is X 1, X 2, X 

3 X , there are n random variables. Let m i be the mean of each of this random variables. 

And by taking two random variables at a time, we can define the covariance of these 

random variables, and I defines C i j as the covariance between the random variable X i 

and X j. This is given by expectation X i minus m i, this is X j minus m j and it is clear 

that C i j is C j i. And therefore, if we now assemble, this as a matrix C transposed would 

be same as C. 

Now, if we assume that C inverse exists and if we consider x to be a realization, this x 

vector x 1, x 2, x n to be a realization of this random variables x 1, x 2, x n, we now 

introduce a notion of a n-dimensional Gaussian probability density function. This vector 

random variable x 1, x 2, x 3, x n is said to be Gaussian distributed, if it is joint 

probability density function, it takes this form. Notice, here n is appearing, here C is the 

covariance matrix, that just which we defined just now; this is determinant of C to the 

power of half and the mean vector, that is, this m is appearing here and these states x, x 

1, x 2, x 3, x n takes values from minus infinity to plus infinity. 

So, the parameters in this joint probability density function are this mean vector m and 

the covariance matrix C. So, a n-dimensional Gaussian random variable, now can be 

completely described in terms of its mean vector and covariance matrix, because if you 

are given the mean vector and covariance matrix, I will be in a position to write down the 

n-th order probability density function, which constitutes the complete description of n- 

dimensional Gaussian random variable. 
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We could see as specific cases of this n-dimensional joint density function, what happens 

if n equal to 1, so as we should, we recover the first order probability density function, 

that means, a marginal density function of a multidimensional Gaussian random variable 

continues to be Gaussian. 

Similarly, for n equal to 2, we consider two random variables X 1, X 2, and we can write 

down the covariance, can be written down in this form, and this is sigma 1 square is the 

variance of X 1, row is the correlation coefficient, sigma 2 is the standard deviation of 

random variable X 2; so, based on this, I can evaluate the determinant of C and the 

inverse of C. And if I now substitute this into the expression for n-th order density 

function, this is the form of the two-dimensional joint probability density function of X 

and Y. There are five parameters, here sigma 1, sigma 2 standard deviation of the x 1 and 

x 2, rho is the correlation coefficient, m 1 and m 2 are the mean of x 1 and x 2 

respectively, and x 1 x 2 takes values from minus infinity to plus infinity. 
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We will need some properties of vector Gaussian random variables in due codes, so we 

could look into those issues right now. Suppose, we are given a set of correlated 

Gaussian random variables, the question is how to transform them into a set of 

uncorrelated Gaussian random variables? It turns out that, there exist linear 

transformations which achieve this requirement. 

So, to illustrate that, we will consider the n correlated Gaussian random variables and the 

expected values are here written as mu i and C i j is the covariance between X i and X j. 

Now, associated with each X i, now I introduce a standard normal random vary i, that is 

X i minus mu I divided by sigma i. Clearly, expected value of X i prime is 0 and variance 

of X i prime is 1. So, if I now write the covariance matrix for X i primes, sees mean is 0, 

that are not to be same as correlation functions, so this will be a matrix which is 

symmetric, and along the diagonal, I get 1, because these are standard normal variables 

and this is a fully populated square symmetric matrix. 

Now, if we now transform, introduce a transformation Y as some T transpose X prime, 

where T is a transformation matrix, the expected value of Y would be still 0, and you 

want covariance of Y, it is Y Y transpose which will be given by this T transpose C 

prime T. So, the question that we are looking for is, we are trying to answer is, what is 

this transformation T, so that, this matrix T transpose C prime T is diagonal; if that 

happens, then we would have transform the correlated Gaussian random variables into 



uncorrelated Gaussian random variables. This transformation is linear and linear 

transformation of Gaussian random variables preserves the Gaussian property. 
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Now, how to select this T, to do this way borrow the result from linear algebra, we 

consider the Eigenvalue problem associated with the matrix C prime, C prime alpha is 

lambda alpha. As we know that the Eigenvalues are given by roots of this so-called 

characteristic equation, C prime minus I lambda equal to 0; this originates from the 

argument, that we do not want inverse of C prime to exist, for example, if C inverse 

exist, I can pre-multiply this equation by C inverse, and C inverse C prime inverse into C 

prime will be identity matrix, and from that it follows alpha equal to 0 is the only 

solution possible. 

We do not want that, that is actually C prime minus i lambda, not C prime matrix C 

prime minus i lambda, its inverse should not exist, if it exist alpha equal to 0 is a trivial 

solution which in were not interested; therefore, we do not want that inverse to exist and 

the condition for that is this determinant should be 0. 

So, this leads to n Eigenvalues i equal to 1 to n, C prime is symmetric real valued and it 

is positive definite; so, we get n Eigenvalues and associated with each of the Eigen value, 

there will be an Eigen vector and the ith Eigen value and Eigen vector, the so-called ith 

Eigen pairs satisfy this equation; similarly, the jth Eigen pairs satisfy this equation. 

Actually, this Eigen vectors have a property known as orthogonality property to show 



that, what we do is we pre-multiply this equation by phi j transpose and we get this; and 

we pre-multiply this equation by phi i transpose and I get this. 

Then I transpose both sides of this equation, so a b transpose is b transpose a transpose, 

using that relation, I get phi J transpose C prime phi i is this. Actually, here we will be 

getting C prime transpose, but C prime being symmetric, C prime is same as C prime 

transpose. Now, subtracting these two equations, I get the relation lambda i minus 

lambda j into phi j transpose phi i is 0. 

Now, if lambda i is not equal to lambda j, it follows that phi j transpose phi i is 0 for 

every i not equal to j. From this, it follows phi i transpose C prime phi j is 0, for i not 

equal to j. Therefore, we select now this phi, such that phi transpose C prime phi is 

actually an identity matrix, we can normalize the Eigen vectors; so that, the matrix of 

Eigen vectors is capital phi is the matrix of all the Eigen vectors, and the normalization 

of the Eigen vectors is done in such a way, that phi transpose C prime phi is I. This phi 

matrix is we take to be the T matrix that we are looking for, if you do this, then we 

would have uncorrelated, the correlated Gaussian random variables. 
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In a similar way, we can consider certain inverse problem associated with transformation 

of random variables, so far what we have done is, we consider a random variable X and a 

transformation g of X, Y is equal to g of X, given g and specification of X we want the 

probability density function of Y. Here, the question I am asking is, I have Y is equal to 



g of X, we have given the probability density function of X and the definition of this 

function g, what is probability density function of Y, this is a question we have consider 

till now. 

We can now ask the question, given the probability density function of X and given the 

probability density function of Y, how to select this function g, this is a problem that we 

will be facing, when we have to simulate random numbers on a computer following 

prescribe probability density function, so this is an inverse problem here. So, we will 

consider a simple problem; now, given a Gaussian random variable, how to transform it 

into a specified non Gaussian random variable, for example, let X be a Rayleigh random 

variable, this is a probability density function of a Rayleigh random variable, this is a 

probability distribution function. 

Now, if we now take a Gaussian random variable Z, 0 mean and unit standard deviation, 

what transformation I should apply on Z, so that, the resulting random variable will have 

this density function. Now, the proposition is that function should be 1 minus 

exponential minus X square by 2 sigma square is phi of X; please notice here, that this 

function is similar to the probability distribution function of X and this capital phi 

denotes a probability distribution function of Z, that means, phi of u is 1 by square root 

of 2 pi minus infinity to u exponential minus s square by 2 d s. This is actually a 

relationship between two random variables and it is not relationship between two 

probability distribution functions. Now, the question now is given the probability density 

function of Z, what is the probability distribution function or density function of X; so, to 

do that, we have to find root of X in terms of z and I get this. 
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Now, we claim that if you follow this transformation X is going to be Rayleigh 

distributed; this is the transformation that I am looking for. 

Now, we can now verify quickly, you have to find the derivatives, we have found the 

root, now we have to find the derivatives; now, if you differentiate these with respect to 

Z, we get, first you differentiate this with respect to X, and then d x by d z must be equal 

to the derivative of probability distribution function with respect to Z, which I denote as 

a lower case phi, and this is the probability density function of the unit standard normal 

random variable; that means, phi of Z is 1 by 2 pi e raise to minus Z square by 2, this is a 

normal probability density function. So, if you use that relation, it turns out that the 

probability density function of X is in the Rayleigh, this, what we are trying to 

demonstrate. 
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So, generalization of this is let X be a random variable with a probability distribution 

function P X of x. Now, what transformation I should apply on Z, which is normal 

random variable, with 0 mean and unit standard deviation; so that, the resulting random 

variable X will have this requisite target probability distribution function. The answer to 

this question is a transformation, that we have to consider is P X of X is phi of Z. Notice 

again, that this is not a relationship between two probability distribution functions, it is 

relationship between two random variables. Z is standard normal; X is a target random 

variable with distribution function given by P X of x as given here. 

Now, you differentiate this with respect to x, and this is a, this is a density function, 

normal density function, and use it in the formula for probability density function of the 

transform random variable, we recover the target probability density function. So, on a 

computer, it is easy to generate uniformly distributed random numbers, and from that, we 

can always simulate other forms of random numbers, using this kind of rules of 

transformation of random variables. 
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How about this problem for two-dimensional random variables; now, let capital X 1 and 

X 2 be two non-Gaussian random variables, with a joint probability distribution function 

P 1 2 x 1 x 2 and joint probability density function lower case p 1 2 x 1 x 2. The marginal 

probability distribution functions are here, the marginal density distribution functions are 

here and these are the density functions. 

Now, we introduce two random variables U 1 and U 2, which has standard normal and 

independent. According to Rosenblatt transformation, if you now make the 

transformation P 1 of X 1 is phi of U 1, and P 2 of X 2 condition on X 1 is phi of U 2, 

and using this prescription for given values of U 1 and U 2, if you compute X 1 and X 2. 

The joint density function between X 1 and X 2 will be conforming to the specified joint 

distribution function that you are looking for. 
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The proof of this I leave as an exercise is outlined here. Now, we move on to an 

important set of results, in the context of sequence of random variables; these are 

questions on limits of sums, products and extremes of sequence of random variables. So, 

we will begin with discussion on models for sums. There is a theorem known as central 

limit theorem, which helps us to characterize the probability density function of sums of 

random variables, as a number of random variables being sum become large. 



So, according to this theorem, if X i, X 1, X 2, X 3, X n, form a sequence of independent 

identically distributed random variables, this phrase independent identically distributed, 

we call it as IID sequence; if, so X i is form an IID sequence with expected value of X i 

being mu and variance being sigma square; this mu and sigma square are common to 

each one of this X 1, X 2, X 3, X n because there identically distributed and they are 

independent. 

According to the central limit theorem, if you now consider the random variable X 1 plus 

X 2 plus, so up to X n minus n mu, normalize with respect to sigma square root n; this is 

a new random variable that we introduce, and if we ask the question, what is probability 

of this random variable being less than equal to a of this event as n becomes large. 

According to central limit theorem, the probability distribution function, this is nothing 

but the probability distribution function of this ratio evaluated at a approaches the 

probability distribution function of a Gaussian random variable, with 0 mean and unit 

standard deviation. 

What this, the secret tells us is, if there is a random phenomenon which is a consequence 

of addition of several causes, in such a way that none of the individual causes dominate 

over the other. The resulting phenomena can be modeled as being Gaussian in nature; 

this is a loose statement, loose translation of what this theorem tells. 

Now, just as we have a limit theorem for sums, we can also have a theorem for products 

under certain situations; again, let us consider the sequence of random variables X 1, X 

2, X 3, X n, again there IID sequences, but these random variables take only positive 

values, that mean, probability of any of these X i being less than or equal to 0, is 0. 

Now, we define the product Y is X 1, X 2 ,X 3, X n according to this theorem for 

products, the probability density function of this product as n becomes large, approaches 

the probability density function of a log normal random variables; this U of y is the U 

side step function, which is 0 for negative arguments of y and it is 1 for y being positive; 

this is not surprising, because if you were to take logarithm of Y, we will get log of X 1 

plus log of X 2 plus log of X n, which is again a summation mechanism coming into 

play. So, on the logarithms, if you apply the central limit theorem, we show that, that 

logarithms are normally distributed, and consequently, the density function will have the 

so-called log normal density functional form. 
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To illustrate this, we can consider a simple example, where I consider this, I call this as 

sum as sum subscript n of X 1 plus X 2 plus X n minus mu n by sigma square root n, I 

will take that this exercise are uniformly distributed between 0 to 1 and their independent 

and identically distributed. If you were to perform this transformation, and plot the 

probability distribution function of this sum as a function of n, which is shown here; the 

rate line here is the probability distribution function of a Gaussian random variable. 

So, black one is the uniform distribution straight line, with n equal to 2, we see that this 

black line is gentling moving towards the normal probability distribution function curve; 

so 2, 3, 4, 5 already were pretty close to the Gaussian curve and mind you as starting 

with uniform distribution. 

So, in this particular case, although it says this n the central limit theorem says that, the n 

should go to infinity, we see that even with n equal to 5, we have a reasonable match 

between the Gaussian probability distribution function and the probability distribution 

function of this sum. 
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So, this is also illustrated in terms of histograms, I will explain this later when we do 

lecture on Monte Carlo simulations, but we can you quickly see what it means. Imagine I 

have randomly distributed numbers, say uniformly distributed, that is N equal to 1, it 

look, it appears in this form; this histogram appears in this form. With N equal to 2, if I 

plot the histogram of the sum of the two uniform distributed random variables, it 

assumes a kind of triangular shape; with N equal to 3, it starts moving towards the 

Gaussian density function, and with N equal to 5, we are pretty close to a Gaussian 

density function; so, this is a kind of a visual illustration of what is central limit theorem 

is trying to tell us. 
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There exist an another class of, important class of limit theorems and their associated 

with extremes. As engineers, we are always interested in highest and the lowest, highest 

loads maximum wind velocity, highest magnitude of earthquake, highest value of peak 

ground acceleration. Similarly, when we characterized strength, we are interested in 

minimum, what is the lowest strength, what is the lowest stiffness, so extremes always of 

interest to engineers; in fact, earthquakes and cyclones and waves etcetera, are all 

manifestation extremes of certain environmental processes. 

Now, we will consider what happens to extremes of sequence of random variables, and 

consider the question, what happens to the highest value as the number of random 

variables becomes large, and the lowest value where random variables becomes large. 

We begin by considering two random variables X and Y, with a specified joint 

probability density function. I now, define the function Z as maximum of X, Y, so we 

will now consider what is the probability density function of Z. This function is not 

differentiable, so we cannot use a rule of transformation of random variables that we 

discussed, we cannot find j and invert this relationship etcetera; so, we have to use 

certain other arguments. 

Now, what is a probability distribution function of Z, is it probability of Z less than equal 

to z, that is, probability of maximum of X and Y being less than equal to z, this means, if 

highest value is less than z, both X and Y will be less than z or in another words, we are 



considering the intersection of the event X less than or equal to z and Y less than equal to 

z. So, the probability distribution that we are looking for indeed is the joint probability 

density function of X and Y evaluated at z. Now, if X and Y are independent, this is joint 

distribution function, can be expressed as product of the marginal distribution functions 

and I get this; now, if there identically distributed, this gets squared. Now, they 

associated probability density function can be obtained by differentiating this with 

respect to z, I get 2 P X of z p X of z; this is the probability density function of maximum 

of X, Y. 
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Now, if we generalize this and consider n random variables and if we assume X 1, X 2, 

X 3, X n to be to form an IID sequence and we consider the maximum of this sequence 

and define that to be Z. The probability distribution function of z will be the nth power of 

the probability distribution function of X. And from this, I get the density function is 

derivative of this n into this, to the power of n minus 1 and then derivative of this is the 

density function. 
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Same question now can be asked on minimum, we have consider maxima, now if I 

consider z as minimum of X, Y, now here, we consider probability of Z greater than 

equal to z, this must be 1 minus P z of z. This is minimum of X, Y greater than equal to z 

and this is nothing but 1 minus p X of z into 1 minus p Y of z, if X and Y are 

independent. And if they are identically distributed, it becomes square of that, so 1 minus 

p z of z is square of this and P z of z is therefore 1 minus this. Now, the density function 

can be obtained by differentiating this with respect to z and we get this expression. 
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this again can be generalize for a sequence of n IID sequence of n random variables and 

we can get distribution function and the density function 
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The question is now, what happens as n becomes large, so let us consider X i again to be 

an IID sequence and I define now two random variables Z and Y, one is a maximum of 

X I, another one is minimum of X i. We already shown that P Z of z is this and p Y of y 

is, this question is what happens as n tends to infinity. More interesting questions, can we 

characterize Z and Y, if even, if I do not know everything about this X 1, X 2, X 3, X n; 

no matter, what are this details of X 1, X 2, X 3, X n are, there any generic limiting 

forms for these extremes, and also n may not be known, you may not be knowing on 

what values of n, you are talking the maximum or minimum.  

If you now look at these expressions as n becomes large P X of z, takes values between 0 

and 1, therefore, if you go on raising that to the power of n, as n becomes large, it goes to 

either 1 or 0; at the very end, it is 1 everywhere else it is 0; similarly, the minimum also 

would go to 0 and 1, that means, a kind of degeneracy occurs and this does not contain 

any information on details of these exercise, no matter what are the X 1, X 2, X 3, X n 

the maximum and minimum will have this distribution function. This is a degenerate 

form, but it turns out that, there are under certain situations, there are non-degenerate 

asymptotic distributions possible for the extremes. And this based on the hypothesis 



known as stability hypothesis, I will not be getting into details of that, but I will briefly 

mention what it is. 
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If you now consider the probability distribution density function of the underlying 

random variables, if the tails are decaying exponentially, see highest values of random 

variable is, you have to seek its property in the tails of the probability distribution 

function; the right hand tail gives a highest and low left hand tail gives a lowest. So, if 

the tail decays exponentially, we get Gumbol distribution, if tail decays as polynomial 

we get Freshet distribution, and if tail is bounded we get, what is known as Weibull 

distribution; so, these three are the canonical extreme value distributions. 
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There are some details of the probability distribution functions, of these three random 

variables. This is how a Gumbel random variable looks like, it is probability density 

function; this is a probability distribution function. This is a Weibull random variable, 

this is a density function; this is a distribution function. 
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Actually, that if you consider a sequence of say Gaussian random variables, you can 

show that the sequence of Gaussian random variables, the highest value maxima is 

attracted to a Gumbel distribution, that means, the Gaussian random variables lie in the 



basin of attraction of Gumbel random variables, as far as their highest is concerned; 

similarly, lowest also will be associated with the Gumbel model for the lowest value. 

Exponentials the domain of attraction is Gumbel for maxima, for minima, it is Weibull 

for Cauchy, it is Frechet for both maxima and minima and so on and so forth; so, these 

are the theorems in mathematical literature which helps us to prove this statements. 
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So, I have tabulated the properties of this Gumbel and Weibull and Frechet distributions, 

this will be available in the files. The last topic that I will be discussing in the context of 

random variables is the application of Bayes theorem; we have seen the Bayes theorem 

in the context of events. Now, we will now consider the statement of this theorem in the 

context of random variables. 

So, let X be a random variable and A be an event. Let us assume that A is an observable 

and X is not observable; X is a hidden variable, A is something that you can observe. 



Before we make any observation on A, we can have a model for X for its probability 

distribution function or density function. The question is after making an observation, 

that is A, what can we say about the model for X, that means, how can we update the 

model for X, after we have observed A. 

So, this is a typical question in say finite element model updating or whenever you make 

a model mathematical model for phenomena, and you then have the opportunity to 

observe the some samples of those phenomena, how do you update your mathematical 

model, which was made before you made any observations. 

So, this is quick recall of the definition of conditional probability, where we are 

considering event a, and this probability this event X taking values from X to x plus d x. 

And we can show that, this is given by p X of x conditioned on A into probability of A 

divided by the probability density function of x. 
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Now, if you take in this, the limit of d x going to 0, we get and carry out few simple 

manipulations, we get the result that p X of x conditioned on a is given by this 

expression, where this is probability of a conditioned on X equal to x into p X of x. This 

is the so-called apriori model for X, before measurements on A were made; this is the 

posterior model for X, after A has been observed. 
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So, this can be summarized as here, we are interested in modeling x, but where in a 

position to observe the event A and the objective of observing event A is to learn 

something about X; if that is a case, p X of x would be your apriori model, and this is a 

posterior model and this is where the experimental observations are contain; this is useful 

in structural health monitoring and some of the problems that we may consider later. 
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The interpretation for this probability of a conditioned on X equal to x, you can be 

offered as follows say, if Y be a random variable that is observable and dependent on X 



and if y 1, y 2, y n, are the observations made on Y, we defined this function, that is 

probability density function of Y evaluated at y i which are observed, given X is equal to 

x and we call this product as the likelihood function. 

So, these functions represent the wisdom contained in our observations and we call it as 

likelihood function. And gnomonical lecture is p X of x is the posterior probability 

density function. This is the apriori probability distribution density function, L is the 

likelihood function and N is the normalization constant needed to ensure that the area 

under this curve is 1. With this, we will conclude the discussion on random variables. 


