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We have been discussing the development of certain descriptors of random processes, 

which help us to model failures of randomly vibrating systems. So, in this lecture, we 

will be discussing more on envelope and phase processes associated with a given random 

process. Before that, we quickly recall what we have been doing; we have solved this 

problem of characterizing, the number of times a level alpha is crossed in 0 to T, by a 

random process X of t and this is a counter that we setup and this lower case n (alpha, t) 

gives a rate or crossing of level alpha. And when X of t is a Gaussian random process, 

we have been able to characterize, the some of the lower order moments of these rates. 

We also ask the question on number of peaks above a given level alpha and again we 

setup a counter and were able to characterize its properties for Gaussian random 

processes. Based on certain heuristics assumptions, we also derived the probability 

density functions of peaks for both narrow banded and broad band processes and this 



was the expression that we obtained. Here, epsilon is a bandwidth parameter that helps 

us to characterize with other processes, narrow banded, broad banded or somewhere in 

between, we also characterize the so-called fractional occupation time, that is the fraction 

of time, that a random process spends above a level alpha in a given duration 0 to T and 

we were able to derive its expected value, for a Gaussian random process. 
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I also talk briefly about the notion of envelope and phase processes, during the last 

lecture. So, we consider, for example, an un-damped free vibration of a single degree 

freedom system and the equation of motion is x double dot plus omega square x equal to 

0 and if system start from initial conditions x naught and x naught dot, we can write this 

solution as x of t is R cos omega t minus theta, where R is the amplitude of x of t and 

which is the function of the initial conditions and the natural frequency of the system. 

Similarly, the phase angel theta is the function of initial conditions and the natural 

frequency and this R has a property, that it is greater than or equal to modulus of x of t 

for all t and this is called the envelop of x of t, in this case. 

Similarly, for a damped free vibration problem, we could show, that the response can be 

written as e raise to minus eta omega t R cos omega d t minus theta, where R is again 

described in terms of system natural frequency damping and initial conditions and the 

quantity R into e raise to minus eta omega t, can be thought of as the envelop for this 

response. Now, if the same system is driven harmonically, again we can show, that the 



response in steady state can be written as X s t, which is a static response into a dynamic 

magnification factor into cos omega d t minus theta and this quantity X of s t into DMF 

can be thought of as the envelop of response for this system. And similarly, theta is the 

phase angle for this system and it is dependent on system natural frequency damping and 

the driving frequency. 
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Now, what happens is the system is now driven by an arbitrary force f of t, can we get an 

envelope representation for the response, in this case. So, we start with the case, where 

the system starts from rest, that initial displacement is 0, initial velocity is 0 and we 

assume that system is under damped. So, the complete solution of this equation is given 

by the Duhamel integral 0 to t h of t minus tau into f of tau d tau and the h of t minus tau 

is given by the first two terms here and f of tau is an excitation. Now, what we could do 

is, we can expand this sin omega d t, this term and write it as sin omega d t cos omega d 

tau minus cos omega d t sin omega d tau f of tau d tau, now the integration with respect 

to tau; therefore, terms involve in time can be pulled out of this and I can write this 

integral as A of t into sin omega d t plus B of t into cos omega d t, where A of t and B of 

t are these integrals, A of t is the 0 to t 1 by omega d e raise to minus eta omega t into cos 

omega d tau d tau f of tau d tau and similarly B of t is given by this. 
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So, from this expression, we can proceed further and write x of t as R of t cos omega d t 

minus theta of t. Here, A of t, that is, that integral just now I showed, is written as R of t 

into cos theta of t and B of t is written as R of t sin theta of t. So, R is square route of A 

square plus B square and theta is tan inverse B by A; so, that would mean, even in this 

case, we can write the response in terms of an envelope R of t and a phase theta of t. So, 

this kind of representation is quite useful in characterizing the dynamic response and 

question would naturally arise, how to use such descriptions in charactering random 

processes. In alternative interpretation for the envelope can be obtain by considering R 

square of t as x square of t plus x dot square of t divided by omega d square. 
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So, this damped naturally frequency can be approximated by the un-damped natural 

frequency and we can write for omega n square k by m and you can rewrite this as 2 by k 

into k x square by 2 plus m x dot square by 2. Therefore, R square of t can be taken to be 

proportional to the total energy, which is sum of kinetic energy plus potential energy. 

Now, whenever x dot is 0 or whenever x is maximum, R of t passes through the 

maximum values of x of t, that is, R of t is x of t, whenever x dot of t is 0; the condition x 

dot of t equal to 0 is the condition for x of t to reach its extreme values, so that would 

mean, R of t passes through extreme of x of t.  



If x of t is a sample of a narrow band process, R of t passes through all the peaks; so, we 

can expect that since we have already studied peaks, you could expect that properties of 

an envelope and properties of peaks, in some sense would be similar, but that has to be 

actually verified; in fact, when we characterize the probability density function of peaks, 

we had used a heuristics argument which was not mathematically rigorous, but we could 

obtain an expression for probability density function of peaks which could prove useful, 

if it is acceptable. But doing the course of the following discussion, we will show that by 

following a more rigorous approach, we can show that R of t indeed shares some of the 

properties of the PDF of peaks that we obtained heuristically. 
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To clarify, the notion of an envelope further, we can consider a signal x of t is A into 1 

plus epsilon cos omega m of t into cos omega t; the blue line that you see here is actually 

this function x of t. Now, if you look at the multiplier A into 1 plus epsilon cos omega m 

t, that is shown in the red line here. This is the actually the envelope, this is e naught of t 

is A into 1 plus epsilon cos omega m t which multiplies cos omega t and this line is 

minus of that. So, there are pairs a pair of curves, which actually bound the function x of 

t; this green line shows only this component E of t which is A epsilon cos omega m t, 

this part, a into epsilon that is a green line. So, you can see that, this is much slowly 

varying than the x of t itself and it bounds the x of t; therefore, if you are interested in 

highest values of x of t and so on and so forth, it may be much easier to study an 

envelope than the blue line. 
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So, now, we will pose this question, how do we generalize the notion of the envelope and 

phase to describe random processes. So, again you see, this is the sample of a narrow 

band process, so the envelope should pass through, you know something call, it will 

release to should pass through all this peaks, that is what intuitively we expect, but now 

we need to formalize this notion. 
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If you look at the plot of x dot of t verses x of t, a narrow band process has this type of 

character, it does not fill up the entire space, it occupies, you know, certain space which 



is not, if x of t is a broad band process, it will simply fill up this space; so, this another 

feature that we need to bear in mind. 
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Now, to obtain an envelope representation for a random process, we begin with X of t, 

let it be a zero mean stationary Gaussian random process and we will represent this 

random process, in terms of a Fourier series as shown here. This we have discuss in one 

of the earlier lecture, I am recalling what we discussed; here a n and b n are random 

variables and we can assume them to be normal distributed zero mean and say standard 

duration sigma n; a n and b n are mutually independent and identically distributed; so, 

that properties clarified here and using these properties, if you want, say, mean of X of t, 

you take expected value of this; we know expected value of a n is 0, expected value of b 

n is 0; therefore, expected value of X of t is 0. 
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Similarly, we can find the auto covariance expected value of X of t into X of t plus tau 

and we can show that, that auto covariance is given by a function, which is function of 

only tau, that would mean, the process is a wide sense stationary random process, but 

since X of t is Gaussian, because a n and b n are Gaussian and we are adding Gaussian 

random variables X of t also would be Gaussian and therefore, X of t is the strong sense 

stationary process. 

(Refer Slide Time: 12:08) 

 



(Refer Slide Time: 12:53) 

 

Now, I also shown in the previous lecture, that if we now start with a power spectral 

density function made up of a set of Dirac delta functions and if we compute the auto 

covariance of this, it has this form by using the Fourier transforms and if we compare 

this form with the auto covariance of the signal, that we just now described. We can see 

that, these two definitions will agree, if sigma m square is chosen to be this; that means, 

for the process that we described here, this process the power spectral density function 

will be of this form. So, if we are given a continuous power spectral density function like 

this and if we discretize this into… If you discrete frequencies, we can represent a 

Gaussian random process, in terms of a Fourier series with random amplitudes; so, that 

is, the, you know result that I will be using shortly. 
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Now, before I proceed, we can also notice that there is an alternative representation 

slightly different from, the one that I described just now. So, to clarify that, let us 

consider X of t to be a zero mean stationary random process, defined as X of t n equal to 

1 to infinite A n cos omega n t minus theta n; here, this A n are deterministic constants, 

they are not random variables, the only quantity, that is random on the right hand side are 

this theta 1, theta 2, theta 3, etcetera we assume that these theta n are form an iid 

sequence of random variables with a common probability distribution function, which is 

uniformly distributed in 0 to 2 pi.  

Now, let us study the property of this random process; suppose, you are interested in 

mean of X of t, you have to take expectation of X of t and to do that, if you expand this 

cos omega n t minus theta n using this identity, we can show that, this expected value is 

given by this expression, where the expectations of cos theta n and sin theta n need to be 

evaluated and since theta n are uniformly distributed in 0 to 2 pi, these two integrals are 

0, that would mean, mean of X of t is 0. 
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Now, following the definition of auto covariance of X of t, we find now the expected 

value of X of t into X of t plus tau. So, since A n are deterministic and theta n are iid 

sequence, we can manipulate this expression and show that, the auto covariance is indeed 

given by A n square cos omega n tau summed from n equal to 1 to infinite; so, this 

process also has a similar structure of auto covariance as we studied just, where there 

was summation of A n cos omega n t plus b n sin omega n t, where A n and B n were 

random. Similarly, the Fourier transform of this, which will give the power spectral 

density, will also be a sequence of Dirac delta functions centered at omega n; so, the two 

representations at the level of auto covariance and psd yield the same results. 
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So, X of t in this case, again is a wide sense stationary random process and we can show 

that X of t is Gaussian, because we are adding random variables which are identically 

distributed and which are independent and we can expect that X of t would be Gaussian 

indeed, that would be the case and therefore, even this process, would be a strong sense 

stationary process. Now, based on these definitions of X of t, we can now introduce the 

notion of envelope and phase process for a random process; this definition follows the 

one that is, proposed by Rice’s in nineteen forties. So, we begin by using the Fourier 

representation X of t is n equal to 1 to infinite a n cos omega n t plus b n sin omega n t 

and A n and B n are Gaussian random variables mutually independent and omega naught 

is one of the basic frequencies, that is the parameter in this model. 

We rewrite this terms cos omega n t sin omega n t as cos of omega n minus omega r t 

plus omega r t; similarly, b n sin omega n minus omega r t plus omega r t, where omega r 

t, omega r is a central frequency, we will clarify the meaning of this in due course. Now, 

I can now manipulate this expression, I can expand this cos of omega n minus omega r t 

plus omega r t using cos of a plus b identity; so, I rewrite this expression in this form. So, 

the first term correspond to the first terms correspond to this and the second term 

corresponds to this; now, the summation is on n, therefore terms involving omega r can 

be pulled outside. 
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So, I can rewrite this as coefficient of cos omega r t is collected in one place, that is what 

is contended in this braces and coefficient of the sin omega r t is collected in one place. 

so the first term inside the brace, I call it as I c of t and the second term, I call it as I s of t 

right, where I c of t and I s of t are indeed this summations as depicted here. I c of t is 

again a Gaussian random process, because a n and b n are Gaussian and I s of t by the 

same argument is also a Gaussian random process, having zero mean and you can show 

that stationary also. 
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Now, I c square of t, if you mean is 0 so for variance if you want to find it is expected 

value of I c square of t, you can show that this is same as the variance of x square of t, 

similarly I s of t is given by this and based on this we can show that variance of I s of t is 

again equal to x square of t. 
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Now, I now introduce this substitution I c of t is a of t into cos theta of t; I s of t a of t 

into sin theta of t, where a square is I c square plus I s square and theta of t is tan inverse 

I s by I c; using these notation, now I am able to write as X of t as a of t cos omega r t 

plus theta of t; a of t is the envelope process associated with X of t theta of t is the phase 

process associated with X of t; a of t is square route of plus I c square plus I s square, that 

would mean, it is a non-linear transformation on to Gaussian random processes, so a of t 

would be non-Gaussian. Similarly, theta of is a non-linear transformation on ratio of two 

Gaussian random processes; therefore, theta of t also would be non-Gaussian. Omega r is 

a central frequency associated with X of t; so, this is the envelope representation for a 

random process. 
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We will quickly consider the alternative representation that we used, where X of t a was 

written as n equal to 1 to infinite A n cos omega n t minus theta n, where A n were 

deterministic. Here again what I will do is, I will rewrite this as cos of omega n minus 

omega r t minus theta n plus omega r t; again expand, collect terms which multiply cos 

omega r t and sin omega r t and I will be able to write this as E c of t into cos omega r t 

plus minus E s of t into sin omega r t; these are again two summations E c of t is this 

summation, first term and E s of t is a second summation, these are again stationary 

random processes, having properties quite similar to that of X of t. 
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Now, if I now introduce the notation E c of t is a of t cos theta of t and E s of t is a of t 

sin theta of t, I can write X of t as a of t into cos omega r t minus theta of t, where a of t is 

square root of E c square plus E s square, which is the envelope process; theta of t is tan 

inverse E s of t divided by E c of t, this is the phase process. So, using the two alternative 

representations, we get similar representation for the envelope; they may differ in some 

details, but in essential in essential they are quite similar. 
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The question now is we have defined envelope and phase processes, they are non-

Gaussian, even when X of t is Gaussian. So, we are we seem to be making the problem 

complicated, the notion of envelope and phase processes would be useful, if we can 

determine their probability distributions. The basic idea is that, envelope varies lot more 

slowly than the parent process, therefore, describing a slowly varying function is easier 

than describing a rapidly varying function; so, that is a basic expectation, but that 

expectation would be met, only if we are able to determine the requisite probability 

distribution functions of these two random processes. 

A random processes is completely described in terms of its joint probability distribution 

and density functions and unless, we are able to say something useful about damp. This 

notion of envelope and phase which essentially introduces non-linear transformation on 

the parent process, likely to be not helpful, but fortunately the problem of finding 

probability distribution of envelope and phase processes is solvable, especially when X 



of t is a Gaussian random process and we will see later, that this could be done even for a 

few non-Gaussian random processes. So, to see that, we will start with the following 

definition; we introduce two quantities A of t and B of t, which are random processes and 

we define X of t as A of t cos omega t plus B of t sin omega t and further more we put A 

of t is R of t cos phi of t and B of t is R of t sine phi of t, so X of t itself now can be 

written in the form of R of t cos omega t plus phi of t, where R of t is square root of A 

square plus B square and phi is tan inverse B by A. 
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By definition, we say that R of t is amplitude process envelop or amplitude modulation 

of X of t, they are all synonyms; phi of t is also is called a phase process or phase 

modulation of X of t; omega is known as a carrier frequency or carrier frequency or 

central frequency. Now, what is the problem, now the problem is we started with 

definition of A and B, suppose, we are given the joint probability distribution function of 

the process A of t and B of t, can we find the joint probability distribution function of R 

and phi, which is envelope and phase.  

So, we know A is R cos phi and B is R sin phi; this transformation of random variables 

can be handle using the rules of transformation of random variables, this is not very 

complicated, so we find the Jacobean or its inverse and we show that this is J 2 power of 

minus 1 is 1 by J is R and consequently, we get P of R phi as r P A B (a, b) with a and b 

evaluated r cos phi n r sin phi n. If A and B are jointly Gaussian, I can right the two- 



dimensional probability density function, in terms of standard deviation of A standard 

duration of B and correlation coefficient between A and B and in that, is of this form ,we 

are taking that A and B have zero mean. 
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So, now we can substitute this expression into this identity and try to get the probability 

density function between joint probability density function of r and phi and if we do that, 

we get this expression, which is a joint probability density function between r and phi. If 

we want the marginal probability density function of r, you have to integrate the joint 

density function between r and phi with respect to phi; r takes values from 0 to infinity, 

phi takes values from 0 to 2 pi. Similarly, you want marginal density function of phase, 

this is 0 to infinity P R phi r , phi dr and phi varies from 0 to 2 pi; so, the problem is in, 

in some sense, the, at this level is solved. 
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Indeed for the this particular joint probability density function, we can evaluate these 

integrals and we can show that, the envelope process, the first order probability density 

function has this form and the phase process has this form; it is not uniformly distributed 

between 0 and to 2 pi, in that sense, is not there it is always characterless, it has some 

properties. Now, this I naught is a Bessel’s function of the first kind and this distribution 

we called it as a generalize Rayleigh distribution; so, r is a generalize Rayleigh random 

variable and phi is a generalize beta random variable; this is a beta distribution. This I 

naught incidentally is the definition of I naught is displayed here, it is integral 0 to 2 pi 



exponential of b cos theta d theta is 2 pi I naught of b, where I naught of b is a modified 

Bessel’s function of argument b and order 0. This is a tabulated function, so you can 

obtain the value of I naught of b with reasonable effort. 
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We can now consider a special case, where we can assume that a and b are uncorrelated 

and they are identically distributed with same stand deviation. In this case, the joint 

density function is given by this, because here moment r a b becomes 0, some of these 

terms drop of and it is possible to simplify that and we get this expression. Now, cos 

square plus cos square phi plus sine square phi is 1, therefore we really get an expression 

which is lot simpler than the case when r a b is not 0. And if we now find the marginally 

probability distribution function of r, we get Rayleigh random variable and if we find the 

marginal distribution of the phase angel, we find that the phase angle is uniformly 

distributed and also, we can show that, the envelope and phase are statistically 

independent. 
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So, mind you this is for this special case, where a and b are uncorrelated and sigma a is 

equal to sigma; the more general result has been obtained previously. As I said at the 

beginning of the lecture, envelope and peaks share common properties, because envelope 

passes through all the maximum values of X of t and therefore, it is not surprising, that 

for the envelope, we obtained a Rayleigh probability distribution function, because the 

same result was obtained earlier by studying peaks and by using heuristic argument, a 

valid for narrow band random processes. The heuristic approach based on which we 

derived the Rayleigh model for the peak distribution, thus in a way stand justified since 

using a more rigorous argument; we have arrived at Rayleigh model for the envelope, in 

a way, that the ad hoc assumption that we made seen to be justified. 
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Another important thing that we should notice is the first order probability distribution of 

properties of amplitude and phases are independent of the choice of central frequency. 

We can ask slightly more involved questions, for example, can we find the joint 

probability distribution function of R of t 1, R of t 2, phi of t 1 and phi of t 2, that means, 

R of t is a random process, can be determined the second order probability, characteristic 

second order moments or second order probability density function; so, to do that, we 

consider X of t, at t 1 and t 2, so I get A of t 1 cos omega t 1 plus B of t 1 sin omega t 1 

and so on and so forth. So, the quantity A of t 1, A of t 2, B of t 1 and B of t 2 are related 

to R of t 1, R of t 2, phi of t 1 and phi of t 2, through these four equations. So, we will 

consider this as A 1, B 1, A 2, B 2 and R 1 phi 1, R 2 phi 2 and we rewrite this, in this 

from and the here, again this is the problem of transformation of random variables, we 

are considering this transformations at two time instance, there are four random variables 

transform to produce four more random variables; so, we can apply the rules of 

transformation, we need to evaluate the Jacobean, which is determinant of a 4 by 4 

matrix and in this case, it terms out, that the some of the intermediate steps are displayed 

here, 1 by j turns out to be R 1 into R 2. 
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Therefore, now, the joint density function between r 1, r 2, phi 1 phi 2 is obtained in 

terms of joint density of a 1, b 1, a 2, b 2 using this identity r 1 r 2 is 1 by j and we for a 

1, a 2, b 1, b 2 we have to use these transformations; so, from this, if I want now the joint 

density second order probability density function of the envelope process. This can be 

obtained by finding the marginal density of this joint density, we need to integrate with 

respect to phi 1 and phi 2 over 2 to 2 pi; actually, this strictly speaking, this has to be 

written as t 1, t 2, because r of t is a random process and we are considering two time 

instants. Now, if x of t is a Gaussian random process with zero mean and a and b become 

Gaussian; in fact, this integration can be done and one can show, that the second order 

probability density function is indeed given by this joint density function. These details 

can be worked out, that I leave it as a matter of an exercise for you to verify. So, any 

case, the basic result, is that, we are able to find out first order and second order 

probability density functions of envelope and phase process, although I have displayed 

here the result for the amplitude process, you can also get the second order probability 

density function of phase process also by a similar exercise, where I integrate from 0 to 

infinity, this quantity with respect to r 1 and r 2. 
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Now, in our studies on level crossing and peak etcetera, we found that, if X of t is a 

random process, the number of times the level alpha is crossed depends, if you want 

characterize, that we need to get the joint probability density function between the 

process and its derivative; so, that leads us to the question, if I am now interested in 

finding, for example, the number of times the envelope process crosses a level alpha, 

then I will need the joint probability density function between the envelope and its 

derivative at the same time instant; so, it is a fairly complicated question, mind you A of 

t is a non-Gaussian random process. Now, however the nature of transformations 

involved are not very complicated, therefore a solution to this could be obtained and that 

is what I will briefly out line. So, I have A of t is R cos phi of t, B of t is R of t sin phi of 

t, from this, if I now evaluate A dot of t it will be R dot cos phi minus R phi dot sine phi 

of t. And similarly, B dot will be R dot sin phi of t plus R of t phi dot cos phi of t, that 

mean, I am differentiating sin phi of t and I get these terms. 

So, there are now four random variables which are transformed through a set four non-

linear equations leading to four new random variables and we can now do the address, 

the problem of finding the joint probability density function of ( Refer Slide Time: 

35:00) p R R dot phi phi dot, all of that evaluated at the same time instant t, this is 

doable, you have to now evaluate the Jacobean, which is 1 by j, in this case, which is 

determinant of a 4 by 4 matrix and we can go through this calculation; initially, it may 

look quit complicated, but you should notice that, there are several zeros in this and the 



expansion of determinant is lot more simple, then what it appears at the first side and you 

can show that, 1 by j is indeed r square. So, I have shown some intermediate steps to 

assist you in verifying this. 
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So, we have this now the formal solution, joint density of r r dot phi phi dot evaluated at t 

is given, in terms of r square which is 1 by j p of A A dot B B dot, where a b a dot b dot 

are related through these relations. So, in principle I have obtained the four-dimensional 

joint probability density function between r r dot phi phi dot; now, if I want only r joint 



density function of r r dot, I have to carry out a twofold integration with respect phi and 

phi dot these are tedious, but do especially if certain simplifications are made on 

properties of A of t and B of t. Now, if A of t and B of t are zero mean Gaussian 

stationary random processes, such that A square expected value of A square expected 

value of B square are equal and that we have seen a while before, that there indeed equal 

for A X random process X of t and if we further assume that, A of t, A dot of t, B of t and 

B dot, B dot of t are independent and we impose a condition expected value of A dot 

square of t and B dot square of t is sigma 1 square, which is not the variance of the 

velocity derivative process, it is something different. 

We can now consider, for example, if we take now X of t A of t cos omega t plus B of t 

sin omega t, X dot of t, I can write in this form and we can actually evaluate X dot square 

of t, which I need here as sigma X square is equal to sigma m square plus omega square 

sigma X square, where sigma 1 square is related to, you can show this, this is sigma 1 

square, where in evaluating this, you will see that A dot and B dot are sitting here and 

that is why we get sigma 1 square here. 
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Now, I leave it as an exercise fairly, Langley exercise, for you to verify that this fourth 

order join density function is given by this; you have to verify whether these statements 

are true. The range of r is 0 to infinity r dot is minus infinity to plus infinity phi is 0 to 2 

pi phi dot is minus infinity to plus infinity. You can, after determining this, you could 



find the marginal density of r r dot by integrating from 0 to 2 pi for phi, minus infinity to 

plus infinity for phi dot and if you do this, you get this non-Gaussian two-dimensional 

probability density function; you could also determine the second order probability 

density function of phi phi dot evaluated at same time t. 

There is one research paper by Langley in 1996 which appeared in journal of sound and 

vibration, where some of these issues are discussed in greater detail; so, if you would like 

to solve this address, this exercise, attempt this exercise, I would encourage you to go 

through this paper. 
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Now, as I said at the beginning, if we know the joint density function between process 

and its time derivative and the same time instant, we can characterize the number of 

crossing of level alpha by the envelope process R of t, I mean, we can characterize, in 

fact, the average rate of crossing of level x i by the random process R of t, where the 

crossings are taken to be with positive slopes is given by this expression and we could 

use the result, that we derived just now and show that, the this rate is indeed given by 

this expression; please notice that, R of t is non-Gaussian, so this expression is not 

similar to what we got for a Gaussian random process slightly different. 
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Now, one more thing that we should notice is when we are talking about crossing of 

level alpha by a random process X of t, if a process is narrow banded, the crossings tend 

to occurring clumps, what does it mean. Now, you consider this blue line, which is you 

can say that is a sample of narrow band process and suppose, you have interested in 

crossing of this level alpha, now you follow the crossing of this red line by the blue 

curve, here there is one crossing and you see that moment one crossing occurs, there are 

four crossings, after that, there is a line, you weight here for this time and again there are 

crossings; similarly, here crossing is in a clump, so this is known as clumping. Whereas, 

you look at the envelope here, this crossing, the next crossing with positive slope occurs 

here, that means, the time between two crossings is well separated for the envelope 

process than for a narrow band process. 

Now, what is the signification of this result; when we were modeling the number of 

times the level alpha is crossed by the propose X of t, we proposed the use of a Poisson 

random variable, that counting process be modeled as a Poisson random process was our 

preposition. In Poisson model, we, the events are taken to be independent. Now, the 

assumption of independents is more likely to be valid, for an envelope than for the parent 

process, because for a parent process, moment this is cross, that there, it going to be 

several crossings, that would mean, this crossing and this crossing are unlikely to be 

stochastically independent, there is a element of dependence, because they occur in 

clumps; whereas, here for the envelope, there is no such restriction, because a time spent 



between two successive crossings is longer and therefore, the assumption of 

independence is likely to be more acceptable here. 
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Later on we will see that their implications of these features; to characterize is clumping 

effect, we define what is known as clump size and that is the average clump size is 

defined as the ratio of rate of crossing of level x i with positive slopes by the parent 

process to the rate of crossing of the same level, by the analog process with positive 

slopes and for the process, that we have been studying Gaussian random process, the 

expression for this is obtained as shown here. So, as I said, the Poisson model for number 

of level crossings is more appropriate for R of t than for X of t. 
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Now, we now move to the description of random process by at another criteria, we 

consider now the time required by X of t to reach a level alpha for the first time. So, 

quickly let us recall, suppose this is X of t, the blue line is X of t, this is X of t and the 

red line is the level alpha. For this trajectory, the time required for X of t to cross alpha 

for the first time, we shown by this pink line; for the next realizations, this crossing 

occurs fairly early and the time required for first occurrence of crossing is much less, 

whereas here it takes quite a long time or in another words, for every sample realizations, 

if you observe the time required for first crossing of level alpha, you will see that those 

observations can be interpreted as outcome of a random experiment and therefore, that 

itself is a random variable. 
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So, we probably is, therefore, we introduce that as T f of alpha, that is time required for 

crossing of level alpha for the first time, is a real valued random variable taking values in 

0 to infinity. Now, the question is, given the complete description of X of t can we 

characterize this random variable, can we obtain its probability distribution function or 

its movement or what we can do about it; this problem is known as the problem of first 

passage problem, barrier crossing problem or out crossing problem, they are all 

synonyms and it is a very important problem, in the study of reliability of dynamical 

systems, because this time for first passage can be interpreted as a life time of the 

system. So, the level alpha could be the crossing of some prescribed stress metric at a 

given point and if that stress test is level crossed, we define that as failure, so how much 

time the structure takes to cross that level for the first time; so, that tells us what the life 

time of the structure is. 
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Now, we use now Poisson model for this number of crossing of level alpha by 0 to T, 

this we have seen earlier. So, X of t is a random process and alpha is a level and we 

assume that, the threshold level alpha is high, so that the crossing is a rare event and 

crossing times are mutually independent. And under these assumptions, we show that, 

we can use the model that N (alpha, 0, T) is a Poisson random variable with this 

probability distribution function. The parameter lambda here is a rate of crossing of level 

alpha and for a random process, this we have already determined to be N of expected 

value of N (alpha, T) and we have derived this for Gaussian random process and also for 

the envelop process. If X of t is a stationary Gaussian random processes with zero mean, 

we have shown that, this is the expression for this rate parameter lambda. 
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So, the probability distribution function for the number of times the level alpha is 

crossed, that is probability that N equal to k, is given by this expression essentially the 

Poisson module with alpha lambda the parameter lambda given in terms of expected 

value of N (alpha, T). 
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Now, what is its relation to the problem of first passage times; now, if you look at 

probability of first passage time being greater than or equal to t, this probability is same 

as the probability, that there are no crossings of level alpha in 0 to t or in other words, 



probability that crossings with positive slopes of level alpha is actually equal to 0; if the 

first passage time is greater than t, this should be equal to 0. Now, we have no postulated 

a model for it and this is what we get, in terms of rate of crossing of level average rate of 

crossing of level alpha; from this, now we can get the probability distribution function 

which is 1 minus P of t of f alpha greater than or equal to t; mind you, that this lower 

case t, which appears here is actually the state variable now; t f is a random variable, t is 

a state variable and this is a distribution function which is given here. If you want the 

probability density function you have to differentiate that with respect to t, this lower 

case t and we get this as the model for the probability density function for the first 

passage time. So, what are the parameters involved here, the level alpha the variance of 

the parent process, the variance of the derivative process and of course, the time t with 

the state. 
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This is actually nothing; this density function actually corresponds to the probability 

density function of an exponential random variable. So, probability distribution function 

is 1 minus e exponential minus lambda t and probability density function is lambda into 

exponential minus lambda t, where lambda is this rate. So, the expression just now I 

showed, this expression is essentially this written with lambda in these places. So, T f 

under these hypothesis, that is a using Poisson model for level crossings, we get 

exponential model for the first passage time; we could, of course evaluate moments of 



this first passage time its variance and so on and so forth, for example, the expected 

value of first passage time can be shown to be given by 1 by lambda. 
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Now, what happens if X of t is a non-stationary zero mean Gaussian random process; so, 

let us consider that, let X of t be a non-stationary zero mean Gaussian random process 

with auto covariance R x x (t 1,t 2). Now, we have solved this problem, how to find the 

average rate of crossing of level alpha by the process X of t, this is the problem that we 

have considered before and we got this is a expression, that we need to solve and we 



have shown that, this rate is given by this fairly complicated formal. The parameter 

sigma x, sigma x dot and r which is the correlation coefficient are all now time varying; 

so, this rate itself is time varying because process is non-stationary. 
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Now, how do you, I, find the first probability distribution function of the first passage 

time here; we had one minus exponential of minus lambda t, where lambda was a 

constant, now, we have to replace it by an integral it is one minus exponential 0 to t, this 

rate into d tau. So, this is fairly involved, because parameters inside, that are, that are 

present in the expression for a n X plus are function of time which characterize the non-

stationary trend of the random process X of t and that need to be evaluated, I mean, that 

integration has to be performed over time, to evaluate this probability distribution 

function. So, obviously this is doable, but it is more complicated than the case of a 

stationary random process. 

So, the problem of first passage time therefore can be tackled, if you can correct as level 

crossing problem. So, when we started talking about level crossing problem, this 

connection to first passage time was not very obvious, but if you now trace back the 

argument, that we have used we started with level crossing problem and for high levels 

of crossings, we use Poisson model and based on Poisson model, now we are able to 

solve the problem of first passage times. 
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Now, one of the assumption that we made as I mention, this is the important assumptions 

that is crossing times are mutually independent; now, we noticed, when I discussed about 

clumping facts in narrow band random processes, the assumptions that crossing times are 

mutually independent is unlikely to be valid for a narrow band process, because of this 

occurrence of clumps, but on the other hand, for the same process, the envelope process 

can be thought of as, I mean, this assumption of crossing times being mutually 

independent is likely to be more valid for envelope, because the time difference between 

crossings are longer and a more random for envelope process. 
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So, based on that, we could look at first passage time for envelope process R of t; so, we 

have actually derived this rate for a actually for a specific case; in general, since we 

know the expression for the join density between the envelope and its time derivative, in 

principle, this rate can be evaluated, but for under certain simplified assumption, we have 

shown that, this rate is given by this; therefore, the first passage time of this non-

Gaussian random process right, this a fairly complicated question, has been tackled and 

we get this model for first passage times. This is much likely to be, much more realistic 

than the previous model that we obtained here. 
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Now, in the next lecture, I will be considering the most important descriptor, namely the 

maximum value of a random process in a given time interval 0 to T, this is what 

primarily we are interested in engineers; suppose, we are considering time duration of 

say 0 to 1 second and we are interested in the highest value of X of t, this black dot 

shows, that number for this realization; this is for the second realization; this is for a third 

realization. Clearly, for different realization of X of t, this highest value can be thought 

of as an outcome of a random experiment; therefore, it is a random variable itself and it 

is a continuous random variable. So, the problem is, given the complete description of X 

of t, what is the probability distribution function of this extreme value. 

I will show in the next lecture, that the solution to this problem is again intimately 

connected to the problem of level crossings Poisson model for level crossings for high 



levels and the solution of first passage problem; all these are inter linked and this is what 

we will consider in the next lecture and we will conclude this lecture at this stage. 

 


