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This is the first lecture on the course on stochastic structural dynamics. 

(Refer Slide Time: 00:24) 

 

In this lecture, what I will do is, I will tell what is this course is about and will begin 

reviewing theory of probability, which is the basic mathematical tool required for this 

course. 



(Refer Slide Time: 00:43) 

 

So, let may begin by outlining the scope of this course. Engineering structures are 

subjected to various kinds of loads such as earthquake, wind, waves, guide way 

unevenness for vehicles, and traffic loads on bridges. One common feature of all these 

loads is that they essentially are dynamic in nature. And, another thing that you would 

notice that they are random. 

(Refer Slide Time: 01:28) 

 

So, I need to explain what this annotation means. So, let us begin with the case of 

earthquake loads on engineering structures. 



(Refer Slide Time: 01:37) 

 

See earthquake is a natural phenomenon. Imagine this is surface of the earth. Somewhere 

in the crest of the earth, there will be energy release and this energy gets accumulated 

due to various tectonic processes that take place in the entry of the earth. And, this 

energy release propagates as waves. And, any point on the structure during the event of 

an earthquake, undergoes time dependent displacements. And, associated with that 

displacement, there will be acceleration. So, at any point on the surface of this structure, 

there is acceleration. And, as you know, acceleration is a vector, which can be resolved 

into three components. So, let us call this as x g double dot of t, y g double dot of t and z 

g double dot of t. The g here refers to the fact that I am talking about ground 

acceleration. t is a time variable; and, a dot has we all use in theory of vibrations 

indicates differentiation with respect to time. 

In the event of an earthquake, all structures, which are in touch with the ground, for 

example, a multi storable building frame will be subjected to these accelerations. Due to 

these accelerations, the structure will now displace and these displacements are 

dependent on time. Therefore, the structure not only displaces, it also accelerates. And, 

the inertia of the structure will oppose this acceleration. And, this complex interplay 

between opposition to displacement through the stiffness and opposition to acceleration 

due to inertial properties results in the phenomena of vibrations. So, if you now look at 

one of these components; typically, if we plot the time history of (Refer Slide Time: 

03:58) this ground acceleration, it has an appearance of kind of something like this. So, 



this is acceleration on y-axis. And, these peak values are typically of the order of 0.3 to 

0.4 of acceleration due to gravity. And, the time duration over which these oscillations 

take place is about 30 to about 100 seconds. These are typical; they can be more or less. 

Now, you have noticed that the time history here is random. I am sure, intuitively, you 

would appreciate what that random. When I say it is random, you would appreciate what 

it means. So, in due course, we will make that meaning of that phrase more explicit. So, 

on account of these inputs at the support level, the structure would also oscillate in a 

somewhat similar manner and we say that the structure is undergoing random vibration. 

Predominantly, during an earthquake, it is found that the ground acceleration in the 

horizontal direction, namely, these two will be significantly higher than this vertical 

component. That would mean that in the event of an earthquake, this structure would be 

subject to horizontal accelerations. And therefore, the structure needs to resist horizontal 

inertial forces. And, that is one of the challenges in doing earthquake-resistant design. 

(Refer Slide Time: 05:41) 

 

Let us look at vibrations due to guide way unevenness. So, here what we do is, let us 

consider a simple model for a vehicle. This is one of the simplest model for vibrating 

systems. This is the mass element; this is the damper element; this is stiffness element; 

and, this is the wheel of the vehicle; this is the mass of the vehicle. And, we assume that 

the vehicle oscillates in the vertical direction. And, this vehicle – let us consider what 

happens as it traverses on a road whose surface is undulating. 



Let us assume that this vehicle is moving with the velocity v. Now, if we write the 

equation of motion for this vehicle oscillation, you can easily imagine that this vehicle 

will oscillate due to passage over this rough road. So, if you write the equilibrium 

equation, you can see that it will be of the form – this is a inertial force plus the force in 

the damper; force in the damper would be proportional to the velocity – actually the 

relative velocity between these two points (Refer Slide Time: 07:10). This point is 

moving as u of t; whereas, this point is moving on this rough road. So, at any time t, if it 

is moving with constant velocity, it will be at a distance v t. So, this term will be u of t 

minus y of v t; d by d t of this is the velocity and this is the damping coefficient. 

Similarly, the forced in the spring will be u of t minus y of v t equal to 0. This is an 

equilibrium equation. 

Now, we can rearrange this as m u double dot plus c u dot plus k u is equal to c d by d t 

of y of v t plus k into y of v t. So, this (Refer Slide Time: 08:15) if we take as a forcing 

function f of t, here the nature of f of t depends on the geometry of these undulations and 

also with the velocity with which this vehicle is moving; not only that, the stiffness of the 

vehicle, the damping of the suspension, so on and so forth. So, all of these could be 

uncertain. Consequently, the force that acts on this structure, that is, this vehicle would 

itself be answered. So, we say that this vehicle is undergoing random vibration due to the 

guide way unevenness. 

(Refer Slide Time: 08:58) 

 



Now, we talked about earthquakes and guide way unevenness. So, we could also talk 

about wind. 

(Refer Slide Time: 09:08) 

 

In case of wind, what happens – for purpose of discussion, let us assume that we are 

talking about a tall chimney and wind is blowing in this direction. Suppose if I plot the 

wind velocity along this direction and suppose this is coordinate z, the wind velocity 

profile typically is something like this. So, this is v of z at a time t. It is a snapshot taken 

at time instant t and this is how it varies in space. This is known as the atmospheric 

boundary layer; where, the velocity of wind flow is zero on the surface and it reaches 

steady value as we go higher up in the atmosphere. So, this structure will be immersed in 

this flow velocity. If you now take a point on the structure at an elevation z and plot the 

velocity of wind as the function of time now, z is fixed. So, this will be… There will be 

some mean component about which there will be oscillation. So, this goes on and on and 

on. So, this is velocity. 

Now, if I look at this chimney in plan, (Refer Slide Time: 10:37) imagine that this is a 

cylinder. So, there is a flow past this cylinder and because of which there will be some 

pressure field that will be set up, which acts on the structure. This is the pressure field. 

This pressure field is function of both z and t. And, if you integrate this pressure field 

over this surface, you will get a force. It can be shown that this force is proportional to 

square of this velocity. So, consequently, any erratic behavior of this velocity will 



manifest as a erratic load on the structure. And, we say that this structure is undergoing 

random vibration under wind-induced loads. 

(Refer Slide Time: 11:32) 

 

I talked about uncertainties in loads – earthquake, wind, guide way unevenness. You 

could also imagine what would happen to say a tension-like platform in a ocean or ship. 

You could also imagine other context such as wind flow across an aircraft wing. So, they 

all have a common feature, namely, the loads acting on the structure will be random in 

nature. They are uncertain. This is a first order description of these actions. We will 

quantify them in more precise terms as we go along in the course. It is not only the loads, 

even the structural properties like elastic constants, inertial properties, damping, strength, 

boundary conditions, joints, etcetera are also uncertain. For example, if you take a joint 

in a truss member, say, a lattice girdle bridge truss, we do not know whether it is a 

perfectly pinned end or it is a perfectly fixed end. For mathematical idealization, one 

could assume that they are pinned, but in reality, there could be a partial fixity. So, there 

is uncertainty about the flexibility of the joints. Similarly, boundary condition, typically 

in modeling, we assume they are free or fixed or hinged. But, in reality, they can be quite 

complex. So, they also introduce uncertainties in our modeling. 

Of course, the mathematical modeling itself is subject to uncertainties. To model a beam, 

one engineer may use Euler Bernoulli beam theory; another person may choose (( )) 

beam theory. Similarly, in modeling, energy dissipation characteristics – one person may 



assume proportional viscous damping; another person may model that using friction, 

colon model and so on and so forth. So, in any modeling exercise, the analyst will have 

to take certain decisions. And, these decisions or not canonical in the nature; in nature in 

the sense that these decisions can vary from person to person. So, again there is a 

question of uncertainty in modeling. There is another area of modern structural 

engineering, namely, condition assessment of existing structures. Here again there are 

uncertainty of a slightly different kind. The uncertainties here are on measurement of 

properties of the structure as it exists – measurement of the response of the structure to 

applied actions; the level of degradation that has taken place in the structure, because 

structure has existed for several years before we are actually assessing its conditions, so 

on and so forth. There is yet another source of uncertainties in structural engineering, 

namely, human errors. By very definition, human errors need not have any definite 

patterns; they can be erratic. So, they again are uncertain in nature. 

(Refer Slide Time: 15:08) 

 

Now, the subject of stochastic structural dynamics can be described as here. We can 

view it as a branch of structural dynamics in which the uncertainties in loads are 

quantified mathematically using theory of probability random processes and statistics. 

So, the basic issue here is we recognize that there are uncertainties in our problem, but 

then, we have to quantify. How do we quantify uncertainties? So, the mathematical 

theory that would help us in achieving this – these theories are theory of probability, 

theory of random processes and theory of statistics. The subject of stochastic structural 



dynamics is also known by few other names, namely, random vibration analysis, 

probabilistic structural dynamics. So, we have titled our course as stochastic structural 

dynamics. The important objectives of this course are – we are interested in 

characterizing failure of structures under dynamic loads. How do structures fail if there is 

un…? How do characterize failure of structures if the loads acting on the structure are 

dynamic in nature and they are random? This leads to a question of design of structures 

under uncertain dynamic loads. How do you design? As engineers, we are interested in 

failure and objective of design is to when we say as condition, which leads to failure and 

prevent them in some sense. 

The subject of stochastic structural dynamics also forms an important ingredient in 

experimental vibration analysis. For example, if you are interested in measuring 

frequency response or impulse response functions of linear systems, the measurement 

techniques are founded on principles of random vibration analysis. Similarly if you are 

doing qualification testing of equipment or structures for earthquake loads, there is quite 

a bit of random vibration principles involved in specifying the input and interpreting the 

results. As already said in condition assessment of existing structures, we would need to 

model uncertainties, so that we could take rational decisions. So, this is the overview of 

the course. So, at the end of the course, we should be able to answer typically the 

questions on the failure of structures under uncertain dynamic loads; and, what will be 

the consequence of such modeling on design of the structure. There are certain pre 

requisites for this course. I would except that you would have done a course on linear 

vibration analysis and also you are familiar with some aspects of probability and 

statistics. I would be quickly reviewing some of these topics as much as is needed for the 

course, but it would be helpful if you prepare yourself independently of this review. 



(Refer Slide Time: 18:32) 

 

So, with this preamble, let us start now with questions on mathematical models for 

uncertainty. There are various tools for this. One tool is drawn from the basket of 

probability, random variables, random processes and statistics. There are other tools, for 

example, fuzzy logic, interval algebra, convex models, etcetera. As far as this course is 

concerned, we will be using probability, random variables, random processes and 

statistics. 

(Refer Slide Time: 19:11) 

 



We will begin the course with a review of probability and random processes. There are 

two books, which I am suggesting: the one is by Papoulis and Pillai; other one is by 

Benjamin and Cornell for this review of probability and random processes. So, let us 

begin now by considering how to define probability. In the existing literature, there are 

three definitions: one is so-called classical definition, the other one is what is known as 

relative frequency definition, and third one is known as axiomatic. 

(Refer Slide Time: 20:01) 

 

So, let us start with the classical definition of probability. According to this, the 

definition of probability is as follows. If a random experiment can result in n outcomes, 

such that these outcomes are equally likely, mutually exclusive and collectively 

exhaustive; and, if out of these n outcomes, m are favorable to the occurrence of an event 

A, then the probability of event A is given by m by n. So, this is the definition. So, you 

can quickly understand what these terms mean by considering an example. 

Suppose you throw a die; a die has a six faces and each faces marked with numbers 1, 2, 

3, 4, 5, 6. When I say outcomes are equally likely, what it means is the die is fair; you 

would toss a die; you could expect to get 1, 2, 3, 4 or 5 with equal chance. Mutually 

exclusive means if one turns up, no other number would turn up. So, the occurrence of 

this event will exclude the occurrence of all other events. Collectively exhaustive means 

these n outcomes are all that would happen when you toss a die. You will get 1, 2, 3, 4, 

5, 6; that is all to it. 



Now, let us consider the event of getting an even number on tossing a die. What is n 

here? n is 6; we can get 1, 2, 3, 4, 5 or 6; n is 6. What is m? Of these six outcomes, how 

many of them are favorable to observing an even number? 2, 4 or 6. So, m is 3. So, the 

probability of getting an even number is half. Now, are we satisfied with this definition? 

We could raise some objections. What is meant by equally likely? We are trying to 

define probability and we are already using a notion of probability in saying that 

outcomes are equally likely. So, it is a circular definition. What if not equally likely? If 

the die is not fair, how do we define what is the probability of even number or any other 

event? This definition does not allow for that. For example, what is the probability that 

sun would rise tomorrow? So, if you argue, there are two outcomes: it will rise; it will 

not rise. But, thing is they are not equally likely. So, it would be something like n divided 

by n plus 1; where, n is the number of days or which we have observed that sun has 

risen; that is likely to be answer. It is not certainly half. 

In this definition, there is another problem; there is no room for experimentation. The 

fact that we have seen sun rising for so many years is not allowed for in this. Then, 

probability is required to be a rational number, because you are taking ratios of two 

integers. Those of you, who are mathematically inclined, will take objection to this. 

There are so many irrational numbers between 0 and 1. They cannot be probability 

according to this definition. These are the objections. 

(Refer Slide Time: 23:26) 

 



Now, we will go to the next definition, that is, relative frequency or so-called posteriori 

definition. Here the definition is as follows. If a random experiment has been performed 

n number of times and if m outcomes are favorable to event A, then the probability of 

event A is given by limit of this number of trials going to infinity of m by n. So, you toss 

a die for a very large number of times and see how many times you get head. So, the 

number of times you have got head divided by number of trials is probability of getting 

head. So, this definition is purely based on experimentation. 

Now, there are again few objections that one can take to this definition. It is not clear 

what is meant by this limit here. It is not the limit that we talk about in the calculus. It 

only says that n is sufficiently large. You cannot verify whether this limit in a classic 

sense will not be able to verify that. Other problem here is that we cannot talk about 

probability without conducting an experiment. So, the questions, for example, what is the 

probability that someone meets with an accident tomorrow? Cannot be answered within 

the frame work of this definition; again, here probability is required to be a rational 

number. Now, the two definitions that I discussed – some of fall short of what we would 

like to do in engineering. In engineering, if you want to quantify uncertainty, we better 

have a good definition for probability, which are free from this kind of objections. 

(Refer Slide Time: 25:18) 

 

So, to clarify what I said just now, we will run through an example. Toss a die thousand 

times. Note down how many times an even number turns up. Say we get 548. So, 



probability even number is 548 divided by 1000. Now, here 1000 is deemed to be 

sufficiently large. Therefore, this is an acceptable estimate for probability of even 

number. There is no actually guarantee that as a number of trials increase, the probability 

would converge. Of course, this allows for the fact that die is not fair. I may be tossing 

thousand times a die in a particular manner. And, if I start tossing a different way, there 

could be some systematic changes. So, this sense of convergence is not very clear. 

(Refer Slide Time: 26:08) 

 

So, we now move to a more acceptable definition of probability. That is known as 

axiomatic definition. Here what we do is we begin with certain undefined notions. For 

example, we say that terms like experiments, trials, outcomes – these are the terms for 

which there are no definition. But, we have certain description, for example, experiment. 

An experiment is a physical phenomenon that can be observed repeatedly. A single 

performance of an experiment is a trial. The observation made on a trial is its outcome. 

These are descriptions; these are not definitions in a mathematical sense. 

The word axiom itself… The axioms are statements that are commensurate with our 

experience of the physical world. And there were no proofs for the axioms. So, all truths 

that we derived based on these axioms are relative to the accepted axioms. So, if in 

course of using this theory, if you come across situations where these axioms are 

violated, you have to start a fresh with a new theory. So, these are valid as long as our 

physical experience is commensurate with these axioms. So, there are two things: one is 



what are axioms and other one is what are these so-called primitive notions, which we do 

not actually define systematically. 

(Refer Slide Time: 27:45) 

 

The first technical term in theory of probability is known as random experiment. So, 

random experiment is an experiment such that the outcome of a specific trial cannot be 

predicted; and, it is possible to predict all possible outcomes of any trial. This is the 

definition of a random experiment. Again, we will take up example of tossing a coin. We 

know that we will either get a head or a tail. In any given trial, however we do not know 

beforehand what would be the outcome. If I toss a coin, I know I am going to get head or 

tail. But, in a given trial, I would not know whether I will get head or tail. Therefore, this 

is a random experiment. 

One more important aspect of probability theory can be clarified at the outset. When we 

say that it is possible to predict all possible outcomes of a trial, the scope of the theory 

would be limited to what we envisaged as possible outcomes. Something that cannot be 

envisaged does not exist in the theory. Just to give an example, which is slightly 

exaggerated; when you toss a coin, there are other eventualities like coin may… As it 

falls on the ground, it may stand vertically; or, you may toss a coin with such a ferocious 

force that it can escape the gravity of earth and never return to earth. Then, you will not 

even be able to observe the outcome. So, these are rare events. So, this is one of the 

issues that we talk about when we discussed about rare events like attacks on buildings 



and so on and so forth, which may… or it is very difficult to envisage what will happen 

at the stage of design. If you do not envisage, it does not exist in the theory. 

(Refer Slide Time: 29:50) 

 

So, we have now talked about the random experiment. We come to the next technical 

term, namely, sample space. Sample space is set of all possible outcomes of a random 

experiment. Since we say that outcomes of random experiment in any given trial are all 

known, we assemble them in a set and give a name known as sample space. Again, few 

examples; you toss a coin, there are two outcomes – head or tail; and, we say that the 

sample space consists of head or tail. The number of elements here is the cardinality of 

this set; here it is 2. And, we say that sample space in this case is a finite sample space. 

Similarly, in a die tossing experiment, there are six outcomes; the cardinality is 6 and this 

again is a finite sample space. Now, let us do one more experiment; we will toss a coin 

till head appears for the first time. So, if you get head, you will start. So, one possible 

outcome is on the first trial itself, you will get head. Next one is th, tth, ttth, tttth and so 

on and so forth. The coin will never pass our test; it will be tttttt forever. So, here this is 

accountably infinite set. On the other hand, if we consider another random experiment, 

where we note down the maximum rainfall in a year in a given location, this can be any 

real number. Therefore, this is uncountably infinite sample space, because sample space 

is a real line. 



(Refer Slide Time: 31:49) 

 

These elements of sample space are called as sample points. The sample space can be 

thought of as outcome space also. This is a small exercise here. If you have a set with n 

elements, you can show that the number of subsets from that we can form from these 

elements is actually 2 to the power of n. So, you may try this. We will need this result 

shortly. 

(Refer Slide Time: 32:21) 

 

We have now talked about random experiment; we have talked about sample space. So, 

the next technical term is what is known as event space. Let us begin by considering 



sample space to be finite. When sample space is finite, we say that we define the event 

space as the set of all subsets of sample space. So, for coin tossing experiments, the 

sample space is h t and the event space is h t; the sample space itself and a null set. Null 

set is like zero in a number system; we include that. So, cardinality of b is 2 power of n; 

where, n is cardinality of omega. This is 4 in this case. 

If omega is not finite, what we do is we consider the event space to be a sigma algebra of 

subsets of omega. What is the meaning of sigma algebra? Let us C be a class of subsets 

of omega. If A belongs to omega implies that A complement also belongs to omega. 

And, if A 1, A 2, A 3, A infinity belong to omega, their union also belongs to sample 

space. Then, we say that C is a sigma algebra of subsets of omega. I will just clarify why 

we need this in a valve. The elements of the event space are known as events. 

(Refer Slide Time: 34:08) 

 

We have now introduced a random experiment, sample space and event space. Now, we 

introduce the so-called probability measure P. For every element in B, we assign a 

number between the 0 and 1, such that the three axioms that will be obeyed. The first 

axiom is known as axiom of non-negativity, which says that probability of A cannot be 

negative. For any element in B, you can assign a number, which has to be greater than or 

equal to 0. According to second axiom – axiom of normalization, probability of sample 

space itself should be 1. There is third axiom known as axiom of additivity. If we 

consider sets A 1, A 2, A 3, A infinity from the sample space, so that they are mutually 



exclusive – mutually exclusive means their intersection is a null set, then the probability 

of union of these sets is equal to the sum of probability of individual events. This tells us 

how we can add probabilities. This triplet of sample space, event space and this 

probability measure is called probability space. 

(Refer Slide Time: 35:42) 

 

I talked about sigma algebra; a brief clarification on why it is needed can be made now. 

See if you look at this third axiom, (Refer Slide Time: 35:54) what we are doing here is 

for any sequence of subsets of sample space, we would like to assign probability on 

union of these sets. This union of these sets – typically, we would like also to be an 

event; it has to be a member of the event space. 

When sample space is not finite; for example, as when it is on the real line, there exists 

subsets of sample space, which cannot be expressed as countable union and intersection 

of intervals. Now, actually on such events, we will not be able to assign probabilities 

consistent with the third axiom. So, we would like to exclude them from our 

consideration. So, it is a mathematical (( )) that we have to take into account at the 

outset. And therefore, we insist that the event space should be a sigma algebra of the 

subsets of sample space. If sample space is finite, all subsets of sample space will be in 

the event space; otherwise, we have to exclude some sets, because that is the logic. 
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We have now three axioms, based on which the entire edifies of theory of probability 

will now emerge. We will start with some corollaries. Probability of A complement is 1 

minus probability of A. We will see this and then return to the other one. How do you 

show that? For example, suppose this is the sample space and this is a subset E. What I 

need to show is probability of E complement, is 1 minus probability of E. So, how do I 

do that? You can write samples space as union of E and E complement. Now, E and E 

complement are mutually exclusive. Therefore, their intersection is a null set. Therefore, 

if you write now probability of E union E complement, it will be probability of E plus 



probability of E complement according to the third axiom of probability. This one is 

sample space (Refer Slide Time: 38:25). Therefore, according to the second axiom, 

probability of omega is 1. Therefore, I get probability of E plus probability of E 

complement is 1. Therefore, probability of E complement is 1 minus probability of E. 

So, I am using the axioms to show. I use that axiom in two places here as well as here 

(Refer Slide Time: 38:46). 

Let us now come to the fourth axiom – probability of null set is zero. So, that can be 

shown by using this proof, where we take E as sample space itself. From that, we can 

show that probability of omega complement is a null set is 1 minus probability of E, 

which is probability of omega. Therefore, 1 minus 1 is zero. So, that is how. 
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Now, there is one more corollary, that is, probability of A union B. A is probability of A 

plus probability of B minus probability of A intersection B. The axiom that we had was 

with respect to events A and B, which were mutually exclusive. Now, if they are not 

mutually exclusive, what to do is the question. So, here again, this is sample space; this 

is A; this is B. So, we are interested in probability of A union B. Now, A union B itself 

can be written as A union of this part in B, which is not in A, So, that is, A union A 

complement intersection B. And, these two sets – A and A complement intersection B 

are mutually exclusive, because their intersection is a null set. Therefore, probability of 



A union B is probability of A plus probability of A complement intersection B. This is 

according to axiom 3. 

Now, B itself can be written as this portion, (Refer Slide Time: 40:42) that is, A 

intersection B union A complement intersection B; that means the part of A, which is not 

in B. Again, these two sets are mutually exclusive. So, if you write probability of B now, 

it will probability of A intersection B plus probability of A complement intersection B. 

This is again according to axiom 3. Now, if you combine these equations: 1 and 2, we 

get requisites results; that probability of A union B is probability of A plus probability of 

B minus this. If A intersection B is a null set, we recover the third axiom. Now, the 

second corollary; I will leave it as an exercise. You can use this proof and arrive at proof 

for the second corollary. 
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The next concept that we need to consider is the notion of conditional probability and 

stochastic independence. The definition of conditional probability is here. Probability of 

A conditioned on B is… This is how we should read – this vertical line is to be read as 

conditioned on. So, this is probability of event A, given that B has occurred. By 

definition, probability of A intersection B divided by probability of B with the condition 

of that probability of B itself not zero. A simple example – you take a fair die; it has six 

faces; and, this is a sample space. Now, a die has been tossed and an even number has 

been observed. Given that we have observed a even number, now, I ask the question – 



what is probability of getting 2? So, one approach is what are even…? The event even 

consists of 2, 4 and 6. So, probability of 2 conditioned on even is 1 by 3, because there 

are three possible outcomes here. One is favorable to you; it is 1 by 3; and, die is fair. So, 

this definition yields the probability as 1 by 3. 

In the second definition, we can use the definition of conditional probability. This is 

given by probability of 2 intersection even divided by probability of even. What is 

probability event 2 intersection even? It is 2. So, this is this (Refer Slide Time: 43:17). 

Then therefore, the probability of 2 conditioned on even is probability of getting 2, 

which is 1 by 6 divided by probability of getting even, which is 1 by 2; and, this is 1 by 

3. So, this agrees with this. Now, one thing that we should notice is conditional 

probability actually obeys all the axioms of probability; that is, non-negativity, 

normalization and additivity; that is, probability of A conditioned on B is always a 

number, which is greater than or equal to 0. Probability of sample space conditioned on 

B is 1. And, if you take two sets – A and C, probability of A union C conditioned on B is 

probability of A conditioned on B plus probability of C conditioned on B if A 

intersection C is a null set. 
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Now, using the notion of conditional probability, we can introduce the notion of 

stochastic independence. The notion of stochastic independence tells us how to, when we 

can multiply probabilities. So, let us consider again events A and B. We say that the 



events A and B are said to be stochastically independent if any one of the following 

conditions are satisfied. The first statement is the probability of occurrence of event A is 

not affected by the occurrence of event B. Then, we say A and B are independent. The 

second statement is probability of A intersection B is probability of A into probability of 

B. The third definition is actually a mathematical statement of the first statement – 

probability of A conditioned on the fact that B has occurred, is not affected. It remains as 

the probability of A itself; then, we say A and B are independent. Other definition is if 

probability of A intersection B divided by probability of B is nothing but probability of 

A; then, we say that A and B are independent. All these four definitions are equivalent; 

and, depending on the context, you can use whichever definition, which is convenient. 

We write that the notation that we use is – this notation (Refer Slide Time: 45:52) is used 

to denote that A and B are independent. Now, let us reflect on these definitions for a 

while. The first definition is somewhat verbal and it is not actually going to help us in 

quantitatively verifying if A and B are independent. If we need to verify if A and B are 

independent, we need to find probability of A, probability of B, probability of B given A, 

and probability of A intersection B, and use the definition 2, 3 or 4. This is something 

that we can quantitatively verify. This is independence of two events – this definition. 

We can extend this definition to independence of more than two events. 

Suppose we consider three events: A 1, A 2, A 3; we say that the events A 1, A 2, A 3 

are independent if probability of A i intersection A j is probability of A i into probability 

of A j for i equal to i, j equal to 1,2,3; that means any combination of pair of A 1 and A 2 

you take, this identity (Refer Slide Time: 47:07) should be valid. Not only that; 

probability of A 1 intersection A 2 intersection A 3 must be equal to probability of A 1 

into probability of A 2 into probability of A 3. What this means is, it is not enough if A 

1, A 2, A 3 are pair wise independent. They need to satisfied one more condition that 

when we take all three together, they should satisfied this additional requirement that 

probability of A 1 intersection A 2 intersection A 3 must be equal to this product (Refer 

Slide Time: 47:40). 
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We will consider a simple example. We will toss two coins and we know sample space is 

hh, ht, th and tt; h stands for head; t stands for tail. Now, let us consider two numbers, 

such that their sum is equal to 1. And, I will assign the probabilities as follows. 

Probability of hh is a square; probability of tt is b square; and, probability of ht and 

probability of th are ab. Now, what is sample space omega? It is actually union of these 

three/four events and they are all mutually exclusive. Therefore, I can add the 

probabilities; this is actually a plus b whole square, which 1, because I have put a plus b 

equal to 1. 

Now, let us define two events: E 1 – the event head on the first coin, that is, hh and ht; E 

2 is head on the second coin, that is, hh and th. Now, the question is are E 1 and E 2 

stochastically independent? How do you verify? We will find out the probability. 

Probability of E 1 is probability of hh plus ht, which is a square plus ab, which is a into a 

plus b, which is a, because a plus b is 1. Probability of E 2 is probability of hh and th, 

which is b square plus ab, which is again b. What is E 1 intersection E 2? It is hh. So, 

what is probability of hh? Which is given to be ab. So, now, let us look at probability of 

E 1 intersection E 2, which is ab; is it equal to probability of E 1 into probability of E 2? 

Yes, this is a and this is b. Therefore, varies the conclusion that E 1 and E 2 are 

independent. 



(Refer Slide Time: 49:43) 

 

We can also construct an example, where there are three events, which are pair wise 

independent, but are not independent. So, this is a thought experiment. You can consider 

a fair tetrahedron, which has four faces; and, the four faces be painted as green, yellow, 

black and all three colors together – G Y B. Now, what is probability of Y? It is 1 by 4 

plus 1 by 4, because there is a Y in the fourth face also; this is 1 by 4. Similarly, 

probability of green, blue is half. What is G Y? Which is 1 by 4, which is probability of 

G into probability of Y. What is G B? It is 1 by 4, etcetera. But, what is probability of G 

Y B? Which is 1 by 4, but that is not equal to 1 by 8. So, this is an example that may help 

to you understand what is meant by independence of three events. 
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Now, this is an example that you can try. So, let us consider random experiment 

involving tossing of two dies. So, we define A as even on die 1; B as even on die 2; C as 

sum of numbers on die 1 and die 2. Now, the question is you need to examine if A, B and 

C are independent. 
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Now, we come to a useful theorem known as total probability theorem. To explain what 

this means, we will again consider a sample space; we will consider subsets A i – i 

running from 1 to N and we demand that these subsets constitute a partition of sample 



space. What it means is this A 1, A 2, A 3, A 4, A 5, etcetera are all mutually exclusive; 

that means their intersection is a null set. There are no common elements between any of 

these subsets. And, if you take union of all these A Ns, they become the sample space. 

Now, let us consider a set B; now, the B itself can be thought of as union of the common 

elements between B and A N, the common element between B and N minus 1, so on and 

so forth; common elements between B and A 1, that is, union of A i intersection B. And, 

these are mutually exclusive. Therefore, probability of B will be probability of union of 

A i intersection B by axiom of third axiom of probability. This is sum of the probabilities 

of these A i intersections. Now, for this probability of A i intersection B, I write this as 

probability of B conditioned on A i into probability of A i. So, if you substitute here, this 

statement is known as total probability theorem. 
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This is another theorem, which will be needing, is known as Bayes’ theorem. This is an 

application of… This can be shown to be true by using total probability theorem. The 

statement of this theorem is as follows. Probability of A i conditioned on B is given by 

probability of B conditioned on A i into probability of A i divided by probability of B. 

How do we show this? Probability of A i conditioned on B is given to be this; probability 

of A i intersection B divided by probability of B. And, this itself can be written in this 

form. 



Now, for probability of B i, we will use total probability theorem and write it in this 

summation form (Refer Slide Time: 54:18). Now, this statement is known as Bayes’ 

theorem. But, what it tells you is that imagine you are making an observation of event B 

with a view to characterize probability of A i. Before you have made any observations on 

event B, you would have assigned to event A i, this – probability of A i. This is known as 

a priori probability. Now, you do an experiment; you observe B. Now, given that B has 

occurred, I have gained some information about the phenomena that I am studying. What 

can I now say about probability of A i? So, this is what Bayes’ theorem helps you to… 

This is the question that Bayes’ theorem answers. So, we will stop here for the day. 

In the next lecture, I will introduce a notion of random variables. 


