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Good morning and welcome to this the eighth lecture in the course of stochastic 

hydrology or if you recall in the last class last lecture, we discuss the extreme value 

distributions specifically the extreme value type of one distribution, which is also called 

as the Gumbel’s extreme value distribution. This is generally used for the maximum 

values for example, you may be interested in the peak flows maximum rainfall etcetera; 

then we also covered the extreme value type three distribution for minimum values, this 

is also called as the Weibull’s distribution; recall that we use the Weibull’s distributions 

specifically for low flows of minimum rainfall minimum water quality and so on. 

Then we went on to discuss the topic of parameter estimation, where given a pdf we 

would been interested in getting the parameters from a given sample values. In this we 

discussed three methods, the method of matching points there from the available data 

observations we reduce certain probabilities for example, probability of X being greater 

than equal to a certain value is equal to let say 0.8 or some such thing and then 



depending on the number of parameters that you have for the pdf, you deduce various 

such probabilities. Let say you if you have two parameters, you deduce two probabilities 

from the available observations and equate it to the theoretical probability that would 

result from the use of that specific probability distribution by equating, these you will be 

able to get the parameters of that particular distribution. The method of moments we take 

those many moments of the pdf as you have the number of parameters for example, if 

you have two parameters, you take consider the first two moments of the pdf, the first 

moment being the expected value of the random variable itself the second moment you 

take about the mean and therefore, you define the variants. 

In the method of in the you generate those many moments as you have number of 

parameters solve those equations and then get the parameters from the sample in the 

method of maximum likelihood which will again review today you take you define what 

is called as the likelihood function, which is based on the sample values X 1 X 2 X 3 

etcetera, X n; and then you look at those parameter values of the pdf, which will 

maximize this likelihood. So, essentially the principle there is what is that set of 

parameters? We are looking for that particular set of parameters that will maximize the 

likelihood of obtaining the sample X 1, X 2 etcetera X n which has in fact, been realized 

that is the idea there. 
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So, in the maximum likelihood method we define the likelihood function as f of x 1 theta 

1 theta 2 etcetera , theta m where theta I are the parameters into f of x 2 theta 1 theta 2 

etcetera theta m and so on until x n. So, this we define it as multiplication of f of x i 

theta1 theta 2 etcetera theta m then we look at those parameter values theta I which will 

maximize the likelihood function thus defined. So, we maximize the likelihood function 

with respect to theta I so, we take the first derivatives of the likelihood function with 

respect to theta I for all I equate them to 0, thus generating m equations we solve these m 

equations to get the associated theta I values that is the principle of the maximum 

likelihood function maximum likelihood method. 
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Let us consider a example in the last class, we discussed one simple example of the 

exponential distribution, which has a single parameter lambda. Now we will take another 

distribution which has a single parameter beta, the pdf is given by 2 beta root of beta by 

pi x square e to the power minus beta x square, which is defined for x varying between 

minus infinity to plus infinity. 

So, we formulate the L of beta remember we have a sample x 1 x 2 x 3 etcetera and we 

are a numerating the p d f at those given values of x i and then taking the product of 

these f of x defined over defined at that particular x i and then we are calling that as a 

likelihood function. So, we define the likelihood function is equal to 2 beta into beta by 

pi x 1 square into e to the e to the power minus beta x 1 square into etcetera like this 



every time we take the x value to x 1, x 2, x 3 etcetera up to x n, and then define the 

likelihood function. So, you have n terms here; so this would be 2 to the power n beta to 

the power n and beta by pi to the power n by 2, because it is a square root here and then 

you have n such terms so, beta by pi to the power n by 2, then look at the n values of x i. 

So, x 1 square into x 2 square into x 3 square etcetera, etcetera. So, I write that as pi of I 

is equal to one to n x i square then e to the power minus beta x 1 square plus x 2 square 

etcetera. So, I write this as e to the power minus summation I is equal to 1 to n beta x i 

square so, this in a simple form we write it as 2 to the power n beta to the power there is 

a n here and n by 2 here. So, I write it as beta to the power n plus n by 2, then pi to the 

power minus n by 2 corresponding to this term into the product I is equal to 1 to n, this 

term remains the same, and this term remains the same this is a likelihood function. 

Now, we are looking for those values of beta which maximize this likelihood function 

recall that in the last class I mentioned about the log function the log of a log of m 

particular argument will have the maximum value at the same value corresponding to 

that argument where the argument itself would have had the maximum value, what I 

mean by that is log of a function is a monotonous function monotonic function and 

therefore, it will have the maximum value at the same point where the function itself 

would have the maximum value therefore it is sometimes advantageous to take the log of 

likelihood and then maximize the logarithm of that function specifically, when you have 

exponential functions like this. So, we take the log of the likelihood function from this 

you write the log of likelihood function as see we are looking at this point. So, we are 

taking the logarithm on both sides. 



(Refer Slide Time: 08:04) 

 

So, we write this as n log 2 plus n plus n by 2 log beta minus n by 2 log pi because we 

had a pi of pi to the power minus n by 2 plus logarithm of the product I is equal to 1 to n 

x i square minus beta i is equal to 1 to n x i square. Beta is the only parameter, so we 

differentiate this function log L of beta with respect to beta and equated to 0. So, when 

you differentiate with respect to beta the only terms containing beta will appear here, so 

n plus n by 2 by 1 by beta, you are differentiating with respect to beta minus x i square 

summation of x i square you are again differentiating with respect to beta those terms 

which do not contain beta will vanish from here. And therefore, you get after 

simplification beta cap is equal to 3 n divided by 2 into summation i is equal to 1 to n x i 

square. 

So, essentially what we did is given a pdf? We formulate the likelihood function for the 

sample, which is realized which is x 1, x 2, x 3 etcetera x n, and then depending on the 

nature of the likelihood function sometimes we take the logarithm of the likelihood 

function and maximize the logarithm of the likelihood function in this particular case we 

did take the logarithm and because we are maximizing we take the first two differential 

the which is a necessary condition first differential with respect to the parameter equated 

to 0 and solve for that parameter. If you had more than one parameter seen this case what 

you would have done? You would have differentiated the logarithm of this likelihood 

function with respect to each of the parameters and therefore, and thus generating those 



many equations as you have number of parameters solve all of them to get those 

parameters. 
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Now, we come to an interesting result called as a Chebyshev inequality see, what we did 

just now is to estimate the parameters. So, we had a probability distribution function 

given probability density function given and then we were estimating the parameters. 

Now, once we estimate the parameters for a given sample you have the complete 

description of a probability density function and therefore, the c d f cumulative 

distribution function in place and then you would have talked about various probabilities. 

So, so far we have been talking about probabilities associated with a given density 

function or a distribution function. Now, there will be situations, where you would be 

interested in not so much on the probability of a particular event itself as in the 

deviations of that particular random variable, and you do not have information on the 

probability underline probability density function or the probability distribution function. 

So, the Chebyshev inequality lets first state it, and then see the significance of this the 

Chebyshev inequality states that a single observation selected at random from any 

probability distribution will deviate more than k sigma from the mean with a probability 

less than or equal to 1 by k square more formally we write this as probability of the 

absolute value of x minus mu being greater than equal to a specified value k sigma k 

time sigma will be less than or equal to 1 by k square. So, here we are interested in what 



is a maximum probability with which a given value of x will differ from its mean by 

more than k sigma, let us say more than 1 sigma 2 sigma 1.5 sigma etcetera. So, we are 

interested in how far is a deviation what is the maximum probability by which it will 

differ from a its mean on either side. So, it can be either x minus mu may be positive or x 

minus mu may be negative on either side what is the probability that it will deviate more 

than k sigma? 

Now, the Chebyshev inequality places an upper bound on this probability and that is 1 by 

k square remember this result is irrespective of the probability distribution and therefore, 

it becomes handy when we are when we want to place higher limits or the upper bounds 

on the probability of this particular deviation and this becomes quite handy in certain 

situations. For example you are talking about the stream flow stream flow and you have 

the mean value you do not have the information on the probability distribution and you 

would be intersected in what is the probability that the stream flow will deviate from the 

mean by 1 sigma 2 sigma and. So, on and you will be interested in the maximum 

probability. So, that maximum probability is given by bone by k square. So, in many 

situations the Chebyshev inequality becomes is a very handy result to use in applications 

when you do not have information on the underlying probability distribution itself, but 

you would be interested in getting the maximum probabilities of the deviations from the 

mean. 
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Let look at a simple example where we are considering the mean annual stream flow for 

river being given as 135 million cubic meters and it is a standard deviation is 23.8 

million cubic meters remember these values we would have got from the sample. So, we 

would have estimated the mean to be 135 million cubic meters and the standard 

deviation to be 23.8 million cubic meters. Now we will be interested in what is a 

maximum probability that the flow in a year will deviate more than 45 million cubic 

meters from the mean these kind of questions should be of course, of practical relevance 

because knowing the mean we may be interested in a seeing how low the flow can go or 

what is a maximum probability that the flow will deviate by 45 million cubic meters. 

From this on either side, because you would like to plan for water resources utilization 

the stream flow utilization based from such information and therefore, you will be 

interested not so much in the probability density function or the probability distribution 

functions themselves, but you would be interested in what will be the maximum 

probability of such an event happening. 

So, we will use the Chebyshev inequality which states that probability of the absolute 

value of the deviation x minus mu being greater than equal to k sigma will be less than 

equal to 1 by k square. So, here we are saying that k sigma is equal to 45, because we are 

saying, what is the maximum probability that the flow in a year will deviate more than 

45 million cubic meters. So, we are saying k sigma is equal to 45 so, k into 23.8 which is 

the sigma standard deviation will be equal to 45 and therefore, k will be equal to 1.891 in 

this particular expression and therefore, we write this as probability of the deviation the 

absolute value of the deviation being greater than equal to 45. I write this as probability 

of the absolute value of the deviation being greater than equal to 1.891 sigma and from 

the Chebyshev inequality this should be less than equal to 1 by k square 0, this should be 

less than equal to 1 by 1.891 square which is less than equal to 0.28 which means we are 

saying that the probability that the mean annual stream flow. The annual stream flow will 

deviate more than 45 million cubic meters from the mean is less than equal to 0.28 this is 

a result that we obtain from the Chebyshev inequality. 

So, one is specifying a probability density function obtaining its parameters using any of 

the three methods that we discussed and then from the probability density function, 

which is thus defined completely by estimating the parameters from the sample you talk 

about various probabilities; whereas the chebyshev inequality does not bother about the 



probability distribution from which the sample has been drawn, but you have the 

estimates of the mean and the standard deviation from which you talk about the 

maximum probabilities or the upper bounds on the probabilities of the deviation of x 

minus mu on either side. 
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Now, we will look at another important topic where we are discussing about the joint 

variations of two random variables in our initial classes typically the second lecture, we 

discussed about the joint density function and subsequently the conditional density 

function and the marginal densities and so on. When we are talking about the two 

dimensional random vectors, we will now introduce the moments of the two dimensional 

random vectors with a specific purpose recall that the first the nth moment of a single 

dimensional random variable we define this as x minus mu to the power n that is the 

integral minus infinity to plus infinity x minus mu to the power n f of x dx, this is a nth 

moment about mean of the single dimensional variable and from this by putting n is 

equal to 2 what did we obtain we obtain the variants. So, sigma square was x minus mu 

to the power 2 f of x dx. 

Now, when you have two random variables x and y which are jointly distributed random 

variables with f of x y as the joint p d f now we define analogous to the single dimension 

random variable we define the r, s moment of this two dimensional random variable as 

double integral minus infinity to plus infinity x minus mu x to the power r, y minus mu y 



to the power s, f of x y dx dy. So, this is the definition of the r, s moment of a two 

dimensional random variable analogous to the nth moment of the single dimension 

random variable. When r is equal to 1 and s is equal to 1, we call this moment as the 

covariance so, in the case of single dimension random variable when n is equal to 2 we 

called that as the variance. So, in the case of two dimensional random variables when r is 

equal to 1 and s is equal to 1 that is 1 1th moment is what we are talking about that is 

defined as the covariance. 
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So, we write the covariance of X and Y as double integral minus infinity to plus infinity 

x minus mu x, y minus mu y, f of x y dx dy we call that what is your expected value? 

expected value of let say I write this as g of x comma y in a two dimensional random 

variable case this is nothing, but minus infinity to plus infinity the function g of x comma 

y into the p d f the joint pdf x f of x y d x d y this is how we define the expected value of 

a function we use that definition, and then our function here is x minus mu x into y 

minus mu y this is a function of x and y and multiplied by the joint density function f of 

x y and with respect to d x with respect to x and y we are integrating that with respect to 

x and y.  

So, and therefore, from this result we write this as the expected value of x minus mu x 

into y minus mu y so, the covariance of x and y covariance of X, Y is given by the 

expected value of x minus mu x into y minus mu y the covariance is denoted as sigma x 



y or simply covariance of X, Y. So, this is how we denote the covariance remember from 

your earlier single dimension random variables we can show that sigma x y is equal to 0, 

if x and y are independent how do we show that, let say we will come back to this 

problem that is we are saying that covariance of x comma y or sigma x y how did we 

define this sigma x y we define as minus infinity to plus infinity of x minus mu x y 

minus mu y f of x, y d x d y . 

This is how we defined our covariance now if x and y are independent that is these are 

independent random variables what is a property of stochastic independence? Recall that 

when x and y are independent your joint density function f of x y will be equal to the 

product of some marginal density function that is d of x into h of y. So, we use this result 

and then write f of x y is equal to g of x y x into h of y in this expression so, what do we 

write this will be minus infinity to plus infinity minus infinity to plus infinity x minus mu 

x will keep it as it is y minus mu y will keep it as it is and in place of f of x y i will write 

this as g of x into h of y, where g of x is the marginal density of x of x and h of y is 

marginal density of y. So, from this see here from this we write this as sigma x y that is 

covariance of x, y as minus infinity to plus infinity I will write x minus mu x into g of x 

d x y minus mu y h of y d y, because that g of x is a function of x alone and h of y is a 

function of y alone and therefore, I write this as minus infinity to plus infinity x minus 

mu x g of x into minus infinity to plus infinity y minus mu y into h of y this is with 

respect to x and this is with respect to y.  

Can you recall this integral for example, I will write this as minus infinity to plus infinity 

x into g x d x what is x into g x d x that is mu x itself minus mu x into integral minus 

infinity to plus infinity g of x what is that integral minus infinity to plus infinity g of x e 

x will be equal to 1 because g of x is the probability density function and therefore, this 

should be mu x minus mu x itself that will be equal to 0. Similarly, this will be mu y into 

mu y itself that will be 0. So, this should be sigma x y will be equal to 0 so, sigma x y 

will be equal to 0, if x and y are independent you must remember; however, that the 

converse is not in general true that is you may have covariance of x, y as 0, but that does 

not necessarily mean that x and y are independent. So, we state sigma x y is equal to 0 if 

x and y are independent. 

However the converse may not be necessarily true and from this again we write the 

sample estimate of the covariance is given by x i minus x bar into y i minus y bar by n 



minus 1. So, you have n values of the n observe value of x i and concurrent values of y i 

so, you have n values of x i and n values of y i and in which case you estimate the 

covariance as given by this expression for example, you may have rainfall values let say 

annual rainfall values for a 50 years and the concurrent runoff values at a particular 

location generated by this particular rainfall for the same 50 years. So, you have the 50 

values of rainfall which had generated the 50 values of runoff and then you are relating 

these two, and you are talking about the covariance between rainfall and runoff. So, that 

is how you estimate you estimate from the sample the covariance of this. 

Now, from the covariance we move on to an important concept called as the correlation 

so, the correlation is actually a major of a degree the degree of association between two 

random variables x and y as you can see from the definition we define the covariance 

correlation row x y as the covariance sigma x y divided by the standard deviation of x 

multiplied by the standard deviation of y this is a normalized covariance. So, we are 

normalizing the covariance sigma x y with respect to the standard deviation of x and 

standard deviation of y as you can see sigma x y had the units of x multiplied by the units 

of y, if your rainfall was in millimeters and runoff was also in millimeters then the 

covariance between rainfall a covariance of rainfall and runoff would be having units of 

millimeters square and the standard deviation of the rainfall x would be in millimeters. 

Standard deviation of y will be in millimeters and therefore, the row x y that you get, 

which is a correlation is a unit less parameter and it is thus a normalized covariance, 

presently we will show that a row x y in fact, varies between minus 1 and plus 1 and row 

x y is equal to 0, if x and y are independent, because your sigma x y will be 0 as we just 

showed. So, sigma x y which is a covariance between x and y covariance of x and y will 

be 0, if x and y are independent and therefore, the correlation will be 0. 

Remember if x and y are independent the correlation coefficient is 0, but often we 

confuse if correlation is 0, we often confuse it with x and y being independent it is not 

necessarily true. So, the fact that correlation is 0 should not directly employ that x and y 

are independent however if x and y are independent then correlation will be necessarily 

0. So, from this definition we get the sample estimate of the correlation as r x comma y is 

equal to the sample estimate of the covariance which is x, y by the sample estimate of the 

standard deviation f x and sample estimate of the standard deviation s y. 
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If we have a perfect correlation; that means, if your r is equal to 1 or the row x y between 

two variables x and y the correlation is one this indicates that all the values all the 

observed values will lie on a perfect straight line if your correlation is minus one then it 

will lie on a straight line something like this which means the higher the values of x the 

lower will be the values of y. So, row x y is positive indicates that the large larger values 

of x tend to be paid with larger values of y and vice versa that is if row x y is positive 

that is we say the higher the value of x the higher will be the value of y if row x y is 

positive, if row x y is negative the higher the value of x the lower will be the value of y 

and therefore, the larger values of x tend to be paid with smaller values of y and vice 

versa, if row x y is negative remember also that the correlation coefficient is a measure 

of linear dependence. We will show that presently that the way we have defined row x y 

it indicates the linear dependence between x and y and that is why in fact, the fact that 

row x y is equal to 0 does not necessarily mean that there is a complete independence 

between x and y there may be a non-linear dependence between x and y which the 

correlation coefficient cannot capture. 
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So, we will take some examples now you have observed values of x and y and these are 

the observed values, let say and you have a certain amount of correlation between them. 

So, there is certain stochastic dependence between these two so, it indicates that there is 

a certain liner dependence between x and y and if you take such a scatter here and you 

calculate the correlation coefficient you may get a much lower correlation coefficient 

corresponding to this. So, points are scattered to a greater extent than they were here and 

therefore, there is a smaller correlation coefficient. So, if you try to fit a straight line for 

this you may get a better straight line fit compared to this straight line the straight line 

that you may fit for this type of scatter and therefore, the correlation coefficient is much 

lower compared to the correlation coefficient here.  

You look at this example here now this is a may be a parabolic type of this points lie on a 

parabola and you get a very high value of correlation r is equal to 0.949 although the 

relationship there is a functional relationship between x and y here the relationship was 

non-linear, but you can fit a straight line with much smaller scatter compared to the 

previous case here. So, you may be able to fit a straight line with a much smaller scatter 

and therefore, the correlation which indicates the liner dependence between x and y is 

much larger in this particular case you take the case of points which are lying around 

lying on the periphery of a circle on this on the circle. So, this is there is a perfect 

functional relationship between x and y defined by the equation of a circle here; 

however, the correlation coefficient will be 0 here. In this particular case, because there 



is a non-linear functional relationship and the coefficient the correlation coefficient 

captures only the linear relationship. 
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So, r will be equal to 0 although there is a perfect functional relationship between x and 

y. So, the point you must remember is that the correlation coefficient indicates or 

captures the degree of linear dependence between x and y we will just see what does 

correlation coefficient being for a perfectly linear relationship indicate for this we will 

express this covariance x covariance of x and y in a slightly more convenient fashion 

which this is equal to expected value of x minus mu x y minus mu y. So, this we write it 

as expected value of x y we simply simplify this x y minus x into mu y minus y into mu 

x plus mu x into mu y. So, from this after you simplify this you get it as equal to 

expected value of x y minus expected value of x expected value of y. So, this is how we 

express covariance of x, y and then we revisit the definition of correlation coefficient this 

is row x y as is defined as sigma x y by sigma x sigma y. 
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Now, we consider a perfectly linear relationship between x and y, let say that y is defined 

as a x plus b which is the perfect linear relationship. Now we consider rho x y square 

which is a correlation coefficient square we write this as sigma x y square divided by 

sigma x square sigma y square and what is sigma x y? sigma x y is expected value of x y 

minus expected value of x expected value of y and we are squaring the whole term and 

we will retain this sigma x square sigma y square as they are now and then substitute y is 

equal to a x plus b. So, wherever y is there I substitute a x plus b and simplify this as 

expected value of a x square, because y is equal to x plus b plus b x minus expected 

value of x and expected value of y here which is expected value of a x plus b the 

denominator will keep it as it is and then when we simplify this what do we get a square 

expected value of x square minus expected value of x the whole square can you 

recognize this term within the bracket it is I in fact, sigma x square which is the variance 

of x.  

So, we write this as a square sigma x square the whole square. So, we get a square sigma 

x to the power 4 and we have sigma y square here and y is a x plus b. So, when y is a x 

plus b you recall that sigma y square is a square into sigma x square and therefore, we 

wrote this sigma x square and sigma x square gets cancelled here a square gets cancelled 

here. So, this turns out to be one therefore, row is equal to plus minus 1 plus or minus 1, 

if there is a perfect linear relationship, because we got rho square is equal to 1 here. So, 

we started with rho x y square. 



So, that a transfer to be 1 and therefore, row is equal to plus or minus 1, if there is a 

perfect linear relationship between x and y. So, the correlation coefficient is in fact, a 

measure of linear dependence. So, if correlation coefficient has any other value than 1 

plus or minus 1, it indicates that there is a lesser degree of linear dependence between x 

and y compare to the perfect relationship which would have yielded a correlation 

coefficient of plus or minus 1. 
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Let do an simple example, now let us say you have rainfall at a particular location and 

the associated runoff we have 15 observed values may be 15 years of observed values the 

rainfall values are in centimeters and the runoff values are also in centimeters. This 

runoff that we are talking about is in fact, generated by this rainfall. So, in the first year 

you have a 105 centimeters of rainfall that has generated 42 centimeters of runoff and so 

on. Now, we are trying to see, what is the relationship? What is the dependence of runoff 

on rainfall? So, we use the correlation coefficient as a measure of linear dependence and 

examine how much of dependence exist how much of linear dependence exits between 

runoff and rainfall. So, we simply use this expression that we have for the sample 

estimates of row x y this is s x y by s x, s y and how do we estimate s x y s x y is simply 

summation of x minus x bar into y minus y bar summed over i is equal 1 to n divided by 

n minus 1 this is how we estimate the covariance between covariance of x and y. 
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So, we use these expressions and then calculate the correlation coefficient. So, first we 

obtain the mean which turns out to be a 1627 is a summation and mean of rainfall is 

108.5 and similarly the variance s x square comes out to be 250 and the standard duration 

comes out to be 15.811. Similarly, for y which is the runoff we estimate y bar as 38.33 

centimeters and the variance as 117.5 centimeter square and therefore, the s y comes out 

to be 10.841 centimeters. So, once we have the mean and the standard duration we open 

out columns like this the rainfall values are given here and the concurrent values of 

runoff are given here. 
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Then we obtain x i minus x bar and y i minus y bar x i minus x bar the whole square y i 

minus y bar is the whole square and then x i minus x bar into y i minus y bar. So, your x 

bar was given as 138 or something here x bar is 108.5 and y bar is 38.33. So, what we do 

is x minus x bar here and y minus y bar here remember because you are taking the first 

deviation it can be negative. So, similarly here first deviations can be negative when you 

square they will all be positive here and then you get x i minus x bar y i minus y bar. So, 

essentially your multiplying this term with this term to obtain this term x i minus x bar y 

i minus y bar you will get this and this 1 is x i minus x bar the whole square. So, this 

term the whole square will give you this term. So, like this you calculate these for all of 

these terms here until 15 year.  

So, for all the 15 terms you calculate these and you have the associated sums here. So, all 

these sums are available on the last row here now this you can do readily on any 

spreadsheet programs like micro soft excel and so on. So, very easily you can do all 

these calculation and then use these calculations for estimating your covariance first. So, 

s x y you estimate it as x i  minus x bar into y i minus y bar summation of that, which is 

available in this column x i minus x bar y i minus y bar which is available in this column 

by 15 minus 1; so, 1974.67 by 15 minus 1, which turns out to be 141.05. What will be 

the units of this will have units of rainfall into runoff, which means centimeter square 

then from this you estimates the correlation coefficient s x y by s x into s x s y. So, s x y 

is 141.05 and s x which is a standard deviation of x calculated here as 15.811. 

And similarly, standard duration of y is 10.841. So, we use those values and get the 

correlation coefficient as 0.823, which is quite a high correlation coefficient indicating 

that there is a good linear dependence of runoff on the rainfall one the associated rainfall; 

however, how significant is the correlation is a different story all together we should 

explore whether the correlation coefficient that we got just now in fact, statistically 

significant that we will study slightly later. But you must remember that the correlation 

coefficient value, let us say 0.8, 0.7, 0.6 etcetera when you get correlation coefficients 

values like this you should not make a judgment just based on those values whether there 

is a strong linear relationship between the two variables that you are considered or not. 

You must also examine how significant is this correlation coefficient value for example, 

in the last example that we numerical example that we considered, we had 15 values and 

we obtained the correlation coefficient of let say 0.84 or something. 



If we had a let us say instead of 15 values we had 100 values and we obtained a 

correlations of a 0.53 or something then we say that the 0.53 correlation indicates that 

there is a much lesser linear dependence of y on x compare to the 0.84 or something that 

you obtained for the 15 values we will not be able to say this and that is where we have 

to check whether the correlation coefficients we just obtained are in fact, statistically 

significant or not next we will go on to the next topic which is the dependent which is a 

continuation of the discussion of correlation where we are interested in obtaining a linear 

relationship. Let say between x and y we have the observed values of let us say rainfall 

and concurrent value of runoff or rainfall and let us say ground water recharge rainfall 

and evaporations and so on. So, we have concurrently observed values of two variables 

and we want to obtain a functional relationship between these two variables. 

So, we what do we have we have just the observed value so, we have a scatter point 

scatter plot. So, if you plot x verses y simply you get scatter of x verses y now, with 

these scatter we would like to established a functional relationship and specifically a 

linear relationship to begin with between x and y what is the use of this let us say you 

have 50 observed value of rainfall and the concurrent 50 values of runoff observed. If 

you can fit a linear relationship between these two, you can use the linear relationship for 

estimating or predicting the value of runoff for any given value x that is the rainfall. So, 

for a given value of rainfall we should be able to estimate what will be the value of 

runoff. So, we can use these function relationship, how do we obtain these functional 

relationship you have the observed values of rainfall and runoff, and we have the scatter 

point as you can see from this figure you have these observed values.  
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So, you have this scatter points like this now we want to obtain a linear relationship 

between these scatter points this procedure is called as simple linear regression simple 

because we are considering only two variables x and y, and y is the dependent variable, x 

is the independent variable and therefore, it is a simple regression linear, because we are 

fitting a linear relationship between x and y, if you have more independent variables. Let 

us say that y depends on x 1, x 2, x 3 and so one for example, runoff is y and it depends 

on rainfall x 1 it depends on let us say the temperature x 2, it depends on the catchment 

slope x 3 and so on. So, if the dependent variable depends on more than one independent 

variable then it is called as a multiple regression. And similarly if you are fitting a non-

linear relationship it can be a non-linear regression multiple non-linear regression simple 

non regression and so on. So, first we begin with simple linear regression for what is our 

purpose. 

We have these observed values each given by x i, y i. So, these are the actual observe 

values. So, when you plot them as scatter plots you will get these black dots. So, these 

black dots are the observed values, and we want to have the best fit line for which will 

represents these scatter values. So, if you look at a particular point y i for a given x i we 

have the y i, which is the observed value and if you fit this best fit line you would have 

predicted the point to be at this location and this we denoted as y i cap. So, y i cap is the 

predicted value y i is you observed value. So, like this for every value you have the 

observed value as well as the associated predicted value predicted value is on the line 



which we would have use to predict that. So, y i cap is the predicted value of x i and we 

write y i cap as a plus b x i, because we are fitting a straight line. So, we write this as 

plus b x i.  

What is the error your actual observed value is y i, but your predicted value is y i cap 

therefore, error e I or the point x i y i is given by y i minus y i cap. So, there are two 

parameters here a plus a and b. So, once we estimate these parameter a and b your 

straight line is completely defined we want to estimate these line such that the error are 

the sum of squared errors is a minimum that is over all these observed points the sum of 

the squared errors should be minimum. So, we will consider the sum of the squared 

errors i is equal to 1 to n the error square, which is y i minus y i cap square and that we 

defined it as y i minus y i cap is a plus b x i the whole square and we simplify that we are 

interested in getting those parameters a and b which will minimize this sum of square 

errors. So, we are looking at that particular straight line which will minimize the sum of 

square errors. 
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So, we take the differential with respect to a and b both of this sum of the squared errors 

m and simplify that we first get a is equal to y bar minus b x bar you get a sigma y i term 

here and sigma x i term here and divided by n. So, you get a is equal to y bar minus b x 

bar. Similarly, you differentiate with respect to b now, d m by d b is equal to 0 you get 

this expression all the details are here it is a simple arithmetic here and then you get this 



term, but we write this in a slightly more relevant form by taking x i minus x bar which 

is a deviation of this particular point x i from its mean x bar as x i dash and y i minus y 

bar we write it as y dash y i dash. 
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Using this we write the expression for b in more elegant form as this is all of this will 

give you the simplification what we said is x i minus x bar equal to x i dash and y i 

minus y i bar is equal to y i dash. So, we consider this x i dash y i dash which is x i 

minus x bar y i minus y bar summation of that and that can be written as summation of x 

i y i minus summation x i summation y i by n, which means essentially we are writing 

this is equal to this expression and then we write this summation x i dash square which is 

nothing, but sigma of x i minus x bar the whole square that turns out to be sigma of x i 

bar square minus sigma x i the whole square by n. 
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Using these two expressions we write b in a more useful and more elegant form as sigma 

x i dash y i dash divided by sigma x i dash the whole square what is x i dash x i dash is 

simply x i minus x bar that is the deviation of x i minus its mean y i dash is deviation of 

y i from its mean and x i dash square. So, you can get b once you get b you can get a 

from this expression y bar minus b x bar. So, b we obtain from the relationship that we 

just discussed and from that you know y bar which is a mean of y and you know x bar 

and therefore, you get a once you get a and b your relationship is completely defined y 

bar y i bar is equal to a plus b x i. 
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So, this is how we obtain the best fit line for a scatter of points we will revisit the 

example that we just did in which we calculated the covariance and the correlation 

coefficient we will take the same example, because all the columns are available now 

with us. 
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So, we obtain x bar is equal to 108.5 and y bar is equal to 38.33, look at this columns 

here. So, you got x i minus x bar into y i minus y bar you got also x i minus x bar what is 

x i minus x bar in our notation now? It is x i dash, similarly this is y i dash and the 

summations are available at the end. So, we get sigma of x i dash into y i dash which is 

available in this column x i dash y i dash which is 1974.67 and, similarly x i dash the 

whole square. So, summation x i dash the whole square which is available from this 

column x i minus x bar the whole square. So, from this you get first b, b turns out to be 

0.56423 and then from once you get b you get a which is y bar minus b, x bar, which 

turns out to be minus 23.889 and therefore, y is equal to a plus b x which is 0.564, which 

is b x minus 22.8295. So, you define the line completely now by using the data that was 

available with you and thus you are able to say that for a given x my predicted value of y 

will be as given by that line. So, you specify any value of x you should be able to get the 

value of y. 

Now, these can be used for several occasions; that means, you have observed the values 

and from the observed values you are converting the observed values into a mathematical 



model which is a simple straight line and then you can use this straight line to represent 

the runoff from that location then you will be able to answer several questions if my 

rainfall is so, much what will be my runoff and so on, and this can also be used to some 

extent for data extension that is, if you have 50 years of data then you can extend it to let 

say 60 years or 70 years using this particular relationship of course there are other issues 

involved there the issues concerned with outliers and so on will at this point of time we 

will not worry too much about this. So, in this lecture, we have we started with the 

method of maximum likelihood we solved one example and then we stated the 

Chebyshev inequality which places an upper bound on the deviations of a particular 

random variable from its mean. 

Then we went on to define the covariance between two variables and define the 

correlation coefficient which is in fact, a linear which is in fact, a measure of linear 

dependence between x and y and from that we moved on to simple linear regression 

where we defined a straight line between the variables y and x, y is a dependent variable 

and x is the independent variable. So, we will continue this discussion in the next lecture, 

thank you for your attention.  

 


