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Good morning and welcome to this the fourth lecture of the course stochastic hydrology. 

If you recall what we have done in the last class, that is the lecture number three is that 

we introduced the concept of independent random variables, recall that we said two 

random variables are independent. If and only if, the joint density function f of x, y is 

given by the product of the marginal density functions g of x into h of y. Then we 

considered functions of random variables for initially we introduced functions of a single 

random variable, let say y is equal to h of x is a function of single random variable x, 

then we introduced how to compute the how to estimate the pdf of y given the pdf of x. 

Then we went on to consider functions of two random variables given f of x, y there is a 

joint density function of x and y, how to compute the joint density of u comma v, where 

u and v are functions of x and y. They are continuous function, and we have seen the 

examples for continuous functions. Then towards the end of this lecture we introduce the 



moments of a distribution, and introduced a concept of expected value. The last two 

points will just revise again today moment of distribution and expected value, and then 

move on. 
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So, if you recall we said the n moment about the origin this is the origin and we are 

talking about the moments of pdf, f of x this is x the n the moment is given by integral 

minus infinity to plus infinity x to the power n f of x dx. So, we are essentially taking the 

moment of this area about this point. The first moment that is when n is the is equal to 

one the first moment about the origin this 0 here represents that we are taking the 

moments about the origin. The first moment is called as the expected value of x and by 

putting n is equal to one here we get expected value of x is equal to minus infinity to plus 

infinity x f of x dx. 

 So, here we have put n is equal to 1 this is also denoted by mu and mean expected value 

are one at the same. So, we call it as the mean of the distribution mean of the random 

variable we defined the expected value we have fixed the expected value like this here. 

We start taking moments about the expected value itself and we define the moment about 

the expected value as mu n we do not put the o there or 0 there. So, if we only write mu n 

it implies that we are taking the moments about the expected value and that is defined as 

minus infinity to plus infinity x minus mu to the power n f of x dx where f of x is the pdf 



of x .This will define the n about the expected value then using this moments we define 

several measures which will give the properties of random variable. 

(Refer Slide Time: 04:06) 

 

For example, how the values are distributed around the mean what kind of central value 

we can expect in terms of the mean or average value and the maximum, the value with 

higher frequency and the value that divides the distribution into two parts and so on. So, 

first we define measures of center tendency and the most important measure of center 

tendency is the mean, which we just define. So, mu is given by minus infinity to plus 

infinity x f x dx in the case of continuous case continuous random variables. This is a 

measure defined on the population then in the case of discrete random variables or when 

we have random variable taking on only discrete values with associated probability mass 

function. 

We define the mu as summation i is equal to 1 x i which is of i the discrete random 

variable into p of x i which is the probability with which the value x i occurs and n here 

is the sample size or n is the number of values or n is the number of values that the 

random variables discrete random variables x can assume. Now, the sample estimate of 

the mean remember as I told in the last class from the population we move on to 

samples, which are the actual values that the random variable as taken or sample is 

actually a subset of the population, and if you have n numbers of values in the sample. 



The sample estimate of the mean is given by simply the arithmetic average x bar is equal 

to x i by n and this is summation is from i is equal to 1 to n where n is the sample size. 

So, this is the most important measure of center tendency mainly the mean, we also have 

the concepts of mode and the median mode is that value which occurs with the highest 

frequency.  
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For example, if you have a distribution like this, that you have let say a distribution 

something like this and you have the highest frequency value here this defines the mode.  
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 And median is that value, which divides the distribution into to half; that means, the area 

towards the right of the median is equal to area towards the left of the median, both of 

which are equal to 50 percent of the area or most. In most hydrologic analysis we use the 

concept of the mean more often than the concept of the mode and the median it is 

important for us to understand the concept of mean. 
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 Then we have the measures of spread or dispersion let see look at a sample consisting of 

values 0, 10, and 20 let say there are three values in the sample. What is the sample 

estimate of the mean? It would be simply the arithmetic average and therefore, it would 

be 10 we have another sample which has again three values, but the values are 9, 10 and 

11 again the sample estimate of the mean is 10, which is the arithmetic average. Now 

both of these have the same mean, but as you can see the spread around the mean is 

much higher in the first case compare to the spread around the mean compare to the of 

the second case and therefore, it is important for us to see how the values are spread 

around the mean or how they are dispersed around the mean. 

And therefore, we introduce a measure for measuring the spread of the distribution 

around the mean the most obvious measure is the range, which is given by simply the 

difference between the maximum value and the minimum value. So, it indicates actually 

how far are the values spread not necessary around the mean in this case x max minus x 

min will give you the range of values that you may expect, but the more important 



measure of spread is the variance, which is of based on the second moment about the 

mean which is in fact, equal to the second moment of the about the mean. 

So, sigma square which is the variance is defined as expected value of x minus mu the 

whole square and recall that the expected value of a function is given by that function 

multiplied by the integral of that function multiplied by f of x dx. So, in this case we are 

looking at the expected value of x minus mu the whole square and therefore, this is given 

by integral minus infinity to plus infinity x minus mu the whole square f of x dx. So, as 

you can expect here for example, the spread of this distribution is much higher compare 

to the spread of this distribution. So, the variance that you can get you get from this 

distribution is higher than will be higher than the variance from this distribution. So, the 

variance actually indicates how the values are spread around the mean. The higher the 

variance the higher is the spread. 
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The sample estimate for the variance again recall that we have defined this, for the 

population this definition; is for the population, and the sample estimate for that is given 

by summation i is equal to 1 to n x i minus x bar to the whole square divided by n minus 

1. 
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In the case of the mean the sample estimate was given by you look at this point x 

summation of x y over n. So, n is the sample size. why is it that we use n minus 1 here of 

course, you can also use n as one of the estimates, but we use n minus one for getting 

what is called as an unbiased estimate of the variance will come to the parameter 

estimation subsequently in this course, but right now you remember it is not n, but n 

minus 1 because we have looking at an unbiased estimate of the variance. Then we 

define the standard deviation as the positive square root of the variance. So, the standard 

deviation is simply the positive square root of variance and the associated sample 

estimate for that is given by s as the positive square root of s square. 

Now if you have a sample let say of stream flows, stream flows measured in million 

cubic meters then what are units of x bar or the arithmetic average which is a sample 

estimate of the mean. The x bar will also have the same units as the variable x itself. So, 

in this case x bar will have the units of million cubic meters. Similarly the standard 

deviation you look at this point x i minus x bar whole square. So, x bar has the units of 

the flows in this example x i has units of flows. So, x i minus x bar the whole square has 

the units of flow square or million cubic meter square and when we take the square root 

the standard deviation will have same units as the original variable. 

So, the standard deviation in this case will have variables of million cubic meter, but 

when we bound to compare two distribution different two distributions of different 



random variable, let say we want to compare the distribution of rainfall as well as the 

stream flow. We want to have a measure of the spread which is independent of the units 

and therefore, we define what is call as coefficient of variation, and we define that as 

sigma over mu as you can see sigma has same units as x mu has the same units as x and 

therefore, c v will not have any units, and for the sample it is given by x by x bar. So, in 

general we use coefficient of variation as a measure of spread when we want to have 

comparison with comparison among different distributions. 
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So, we have defined sigma square as expected value of x minus mu the whole square all 

these have to be capital here say for example this x, because we are talking about a 

random variable. 
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 This is a capital random variable, so this X, similarly this is X so, from here expected 

value of x minus mu the whole square we expand this. So, we are talking about expected 

value of x square minus two x mu plus mu square. So, when we simplify this recall the 

properties of the expected value. So, I can write this as expected value of x square minus 

two mu being constant it comes out into expected value of x plus expected value of mu 

square this will be written as expected value of mu square minus two mu into expected 

value of x again mu. 

 So, this will be minus two mu square plus mu square. So, this will be equal to expected 

value of mu square minus mu square which is written as expected value of x square 

minus expected value of x the whole square, this is a useful result which in many 

situations we use in many application we use this particular expression. So, we defined 

two measures now measures of central tendency which will indicate how the distribution 

is in terms of the central values example the mean the mode the median etcetera, then we 

define a measure of the spread or dispersion which use how far the value are spread for 

the mean the variance is a important measure of dispersion. 

Now, we look at another important measure of the distribution which gives us whether 

the values are symmetrically distributed or there is a skewness there, and if there is a 

skewness whether it is a positive skew or negative skew. So, we introduce a measure of 

symmetry which is again depend which is depend on the moments from the first moment 



about the origin which provided you the expected value of x. We went on to the second 

moment about the expected value about the mean and define the variance which is 

expected value of x minus mu the whole square which is in fact, the second moment 

about the like this we keep proceeding to higher order moments we consider the third 

moment about the expected value, and then define a measure go to the higher order 

fourth moment and then define a associated measure like this we are keep in moving to 

higher order moments about the expected value each moment has some implications on 

the type of the distribution. 

So, as you consider higher and higher moments you get better and better idea about the 

distribution itself. So, let us look at the measure of symmetry now what is that we are 

looking at we are looking at let say there is a distribution something like this there is a 

long tail towards the right an another distribution, which have the long tail towards the 

left and has a similar peak as any of them and there is, another distribution which is 

perfectly symmetrical about certain point. We define the coefficient of skewness based 

on the third moment now whenever we are defining the measures we normalize those 

measures the associated moment with the standard deviation. What is a standard 

deviation? Standard deviation is mu to the power half, because mu two is a variance and 

to the power half which is a square root to the standard deviation. 

So, when you take the third moment you standardize you normalize that with the 

standard deviation to the power three when you take the fourth moment you normalize 

that with the standard deviation to the power four and so on. So, the coefficient of 

skewness we define here with the third moment mu 3 divided by mu to the power 3 by 2 

remember mu to the power 3 by 2 is the standard deviation. So, mu to the power 3 by 2 

is the standard deviation cube.  

So, this is written as this is, your mu 3 x minus mu to the power 3 f of x dx recall that mu 

n is x minus mu to the power n f of x dx therefore, this term here indicates the third 

moment divided by sigma square which is mu 2 to the power 3 by 2 which means sigma 

to the power 3 from this we can write the expressions for the sample estimates. So, for 

the sample estimates we replace the integral with the summation is equal m to n x i 

minus x bar we written the same power as the moment x minus mu the whole cube. So, 

we have written the same moment. Then, for the standard deviation what is it that we had 

n to the power 0 and x i minus x bar the whole square. We had there for the variance now 



we start increasing the power in the numerator power of n in the numerator and start 

increasing the terms in the denominator for the variance we had n to the power 0 and 

here we had n minus 1.  

For the skewness we put n to the power one and increase another term here n minus 1 n 

minus 2 and this s cube correspond to the sigma cube here. So, we are essentially 

normalizing this term with the standard deviation same power. So, for example, if you go 

to the higher moment, next higher moment you will be writing for mu 4 that is mu 4 and 

therefore, the denominator will be mu 4 mu 2 to the power 4 by 2 which is mu 2 square 

and therefore, what we will write here we will write for the forth moment we will write n 

square and then n minus 1, n minus 2, n minus 3 and this power becomes 4. Like this 

from one moment to next higher moment we keep increasing the order of the moment 

and normalize that with respect to the standard deviation raise to the same power.  

The coefficient of symmetry or coefficient of skewness as we have defined here will 

indicate whether the values are symmetrically distributed or there is a negative skew in 

which case the c s has defined here will be negative or that has a positive skew in which 

case the c s has defined here will have a positive value. Note that for the positive skew 

the values are stretched in the sense the distribution is stretched to the right. So, it is 

skewed to the right and for the negative skew there is a long tail to the left. So, that if 

you have a long tail to the right it is called as the positive skew you have a long tail to the 

left it is called as the negative skew. 
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Then we go to the another measure called as measure of peakedness. So, what is it that 

we did first we define how centrally the values are distributed then how far they are 

spread from the mean, and we also saw how symmetric or how skewed is the distribution 

of the values. So, these 3 give us some idea about the distribution itself, but there is 

another important measure which is defined with respect to a called normal distribution. 

So, if you have a normal distribution you may have something like this. 

So, how p k d is a distribution that means, you look at this distribution for example, this 

is much flatter compare to the normal distribution, and then there may be another 

distribution which has the same spread, same mean ,same mod, same median, etc, and 

same skewness coefficient also it may have, but it have a different peakedness. So, the 

values are the distribution have a much higher peak compare to the So, called normal 

distribution to measure this that means, how peaked is the distribution we introduce what 

is called as a kurtosis it also called as a kurtosis coefficient or coefficient of kurtosis, but 

in this course we will simply denote this as kurtosis.  

So, as said we move on to higher moment from the previous one in the previous one, we 

consider the third moment about the mean we consider now the fourth moment about the 

mean. So, the kurtosis is defined based on the fourth moment of auto mean and then we 

standardize this with respect to 2 mu 2 to the power 4 by 2. Mu 2 to the power half is the 

standard deviation and that we are raising it to the power 4 mu to the power 4 by 2 will 



give you mu to the power2 . So, kurtosis is given by mu 4 divided by mu 2 to the power 

2, which if we write this is again population this would be minus infinity to plus infinity 

and mu four here which is x minus mu to power 4 f of x dx f of x is the pdf of x divided 

by mu 2 to the power 2 which is mu 2 is sigma square which is a variance to the power 2.  

The associated sample estimate is written as recall that in a previous measure which has 

measure of symmetry we had used mu three there we had n here. So, we go on to the 

higher power of n and write n square and this power is the same as the power of the 

moment. So, x i minus x bar of to the power four divided by again here we increase one 

term n minus1 , n minus 2, n minus 3, and here we have got sigma to the power 4 and 

therefore, we write it as s to the power 4. So, this is a sample estimate of a kurtosis. So, 

together these measures mainly the measure of center tendency measures of dispersion. 

In fact, and the measure of skewness or the measure of symmetry which is given by the 

coefficient of skewness and the measure of peakedness together all of this will give us an 

idea of how the distribution is likely to be. So, if you have a sample let say that over the 

last 50 years you have observed the stream flow at the particular location. 

So, from this sample you should be able to estimate you should be able to determine the 

sample estimates of the mean or the expected value the sample estimate of the variance 

and therefore, the standard deviation from which you can get the coefficient of variation 

and also estimate the coefficient of skewness or the coefficient of the symmetry and the 

coefficient of kurtosis are in this particular case, we call it as kurtosis simply call it as 

kurtosis.  
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So, these measures will give us other side or an idea about which type of distribution this 

sample may fit let us take an example. Numerical example first we will work with 

expected value along, let say you have a pdf, f of x is equal to 3 x square and which is 

defined for x varying between 0 and 1, let us obtain the expected value of x and the 

expected value of a function defined on x which is three x minus 2 and the expected 

value of x square, which is another function defined on x. 
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 So, the expected value of X is simply given by minus infinity to plus infinity x f of x dx 

and, because f of x is defined to be 0 between the range 0 and 1, we integrate between 0 

and 1 this is x this is f of x 3 x square with respect to x. So, we get is as 3 by 4. So, the 

expected value of x is 3 by 4 this is also mean and it is also denoted by mu then the 

expected value of any function of x is given by integral minus infinity to plus infinity 

that particular function into f of x dx.  

So, expected value of 3 x minus 2 is given by minus infinity to plus infinity three x 

minus 2 into f of x which is 3 x square into dx and when you integrate that you will get 

one by 4, similarly the expected value of x square is given by minus infinity to plus 

infinity x square f of x dx this is the function x square is the function and this is pdf and 

this you get it as three by 5. Recall that expected value of x square can be used to get the 

variance once you have expected value of x we wrote expected value that is sigma square 

for example, sigma square we wrote is as expected value of x square minus expected 

value of x the whole square. So, we can get the variance from expected value of x and 

expected value of x square. 
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We will take another example where we have a sample the previous example consisted 

of population estimate for example, this is a expected value based on the pdf and for the 

population, now we will go to an example where we have a sample of values for 

example, average yearly stream at a particular location. . So, this have been measured for 



last 15 years although I must alert, you that using the sample estimates then using the 

sample estimates for the population as approximation of population measure we must 

have larger number of values here larger number of years of observation not just the 15 

years, but as an example we take 15 years long. So, these are the observed value 150 129 

and So, on. So, these are given for the last 15 years. So, when you have observed values 

and you want to have an idea of distribution you use the sample estimates for the 

measures that we just defined mainly the x bar which is a estimate for the men x square 

which is an estimate for the variance sigma square and the coefficient of skewness which 

is denoted as c s for the sample estimates and the kurtosis which is k. 
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So, first we get the sample estimate for the mean as simply the arithmetic average x bar 

by n simply add up all the values divided by the number of values which is 15 in this 

case. So, you get the sample mean as 135 million cubic meter and the variance is given 

by x i minus x bar the whole square n minus 1. So, that once you get the sample mean or 

the x bar you open out a table tabular column, because you need all these powers x 

minus x bar the whole square x minus x bar the whole cube and so on you need all these 

columns sop we open out tabular column like this. 
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 So, this column gives you the year number and then these are the values. So, actual x i 

values. So, this is xi equal to 1, xi is equal to 2 etc, and these are the x i values x 1 is 

equal to 150 x 2 is equal to 129 and so on. So, sum it over you get 20 25 and 20 25 by 15 

gives you the mean which was 135 as obtained before. 
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 So, this is your arithmetic mean so, we use this 135 and then get x i minus x bar which is 

150 minus 135 which is 15 remember that because x bar can be greater than x i, you can 

have negative values here that would be some negative values. In fact, a first order check 



of whether you are doing your computations is that the summation of the first order 

deviation which is x i minus x bar must be equal to 0, then we get x i minus x bar the 

whole square which is simply this term square minus x square 25 square and so on. 

Now, this you add it up you get the variance. So, how do we get variance this is 

summation of x i minus x bar the whole square divided by n minus1. So, this is 

summation of x i minus x bar the whole square divided by n minus 1 which is 15 minus 

114 that is how you get the variance, similarly, we go to coefficient of skewness you add 

up x i minus x bar the whole cube, because the order of the power is odd you will get 

negative value use here. So, there will also negative value not only the negative values 

and then you sum it over and then divided by you use your sample estimate formula you 

get the coefficient of skewness.  

Then you go to the x i minus x bar whole cube which is whole to the power 4 which is 

these values raise to the power 4 sum them over you get fourth order the fourth order 

power. fourth power of the deviation x i minus x bar use these to get the sample 

estimates for example, sample estimates for the variance is sigma x i minus x bar the 

whole square. So, this is what I have written here is sigma x i minus x bar whole square 

divided by n this is i is equal to 1 to n, similarly then you take the standard deviation 

which is the positive square root of the variance you get 23.8 million cube meter then we 

get the coefficient of variation which is s by x bar recall that we defined coefficient of 

variation to obtain a unit less measure of the spread or the deviation.  

So, you get s by x bar as 0. 176 then coefficient of skewness we use the third power of 

deviation x i minus x bar the whole cube divided by n minus one n minus two s to the 

power 3 we have got s here and then that s we use here and this minus 16 is obtained 

from the summation of this term here x i minus x 2 cube. So, this is minus 2916 we use 

that and then the standard deviation to the power 3. So, we get c s as minus 1 minus 0. 

183 remember that the coefficient of skewness can be negative. So, when it is negative 

we get a negatively skew distribution. 
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Then we get also the coefficient of kurtosis which is also called as simple kurtosis k is 

equal to n square which is 15 square and X i minus X square whole to the power minus 

4. In this case it was 6678008 which is the summation of this column here and we use 

that raise as standard deviation to the power 4, you have n minus 1 n minus 2 n minus 

three which 14, 13 and 12 then you get 2.14 if the kurtosis is less than 3 then, it called as 

platy kurtic and it generally indicates flat distribution. For example, a platy kurtic 

distribution will have some shape something like this if you this was your normal 

distribution this would be k is equal to 3 recall that we define the normal distribution like 

that if k is than 3, you may expect a flat distribution like this. So, lower the k the flatter 

will be the distribution. So, in this particular case you get 2.14 as the kurtosis which is 

less than 3 and therefore, it is the platy kurtic distribution. 
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So what? It is that we did. So, far that if we have a sample of observe value we first get 

an idea of what kind of distribution we may expect this particular sample to follow this 

we did with several measures measure of center tendency measure of soft spread, how 

far the values spread from the mean, and then how symmetric is the distribution is there 

is a symmetry in the distribution or there is a lack of symmetry if there is a skewness 

whether it is positively skewed or negatively skewed then how peaked is the distribution 

with respect to some normal normally defined distribution and so on.  

So, this gives from the sample of values that we have we get a idea of what kind of 

distribution we may expect for the sample to follow, now from several applications there 

is a large number of distributions, which have defined for hydrologic application, and 

also for other applications recall that when we introduce the concept of pdf probability 

density function we said any functions satisfies those condition; for example, effects 

must be non negative effects must be greater than equal to 0 and the integral minus 

infinity to plus infinity F of X t X must be 1. So, any function satisfies these two 

conditions is a potential condition for being a pdf in the continuous case that is a 

continuous random variable. 

So, there are a handful of distribution which are commonly used in hydrology. We will 

see some of them the idea here is the if we want to use that, let say have a data for last 20 

years of stream flow and you have estimated all these estimated measures for example, X 



bar you have X square you have estimated coefficient of X skewness you have estimated 

coefficient of peakedness you have estimated from these you would like to use well 

defined distribution. So, we will go through some of the distributions that share 

commonly used in hydrology, and we will also see some applications where particular 

type of distribution is used for a particular type of process. For example, if we have a 

daily rainfall what kind of distributions normally used and monthly stream flow seasonal 

flow when the time scales are large processes are more or likes normal processes what 

kind of distributions we use and so on. 

So, we introduce some distributions today and may be continue to the next class also this 

distributions are commonly used for several hydrologic application the most commonly 

used distribution is the normal distribution in fact, the normal distribution in hydrology 

we use it for most. So, called normal processes for example, monthly stream flow 

seasonal rainfall the smoothen processes which are aggregates over large amount of time 

and the normal distribution is also called as the bell-shaped distribution and after the 

German mathematician who introduced this distribution it is a called as the disribution in 

fact, the normal distribution was first introduced for analysis of errors from the observed 

data, and the similar data ore experimental data.  

So, we used the normal distribution as I sais in most cases where we have aggregation of 

values over a sums more than process for example, if we are talking about monthly 

stream flows seasonal rain fall or seasonally repo transpiration where the values can be 

considered as summation of smaller processes large number of smaller processes. 
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We can use normal distribution as a fast cart approximation the normal distribution is 

also the most commonly used distribution in many of the hydrologic applications where 

we are dealing with normal processes again I repeat for example, we have the looking at 

the inflows to a reservoir the storage levels on the reservoir operated based on a certain 

operating policy. So, how the reservoir levels are fluctuated, now such normalized 

processes which are aggregate of smaller processes happening over large over a fairly 

reasonably large amount of time we can approximate them using normal distribution.  

Now the normal distribution has very interesting properties, because of which, it 

becomes the most commonly used distribution first it is a perfectly symmetrical 

distribution and it is symmetrical about the mean mu the random variable is X the pdf f 

of x for the normal distribution is given by 1 root 2 pi sigma exponential of minus 1 by 2 

x minus mu by sigma the whole square and this is defined for x varying between minus 

infinity to plus infinity as you can see from the distribution this is the pdf it has two 

parameter mu and sigma. So, once you have defined parameters mu and sigma this pdf is 

completely defined. 

So, is called as its has two parameters mu and sigma and we denote it as X followed 

normal distribution with two parameters mu and sigma we use this notation. So, when 

we use this notation, it means that X is a random variable which follows the normal 

distribution with parameters mu and sigma square, sigma square is a variance. So, many 



times you may see that the notation consist of mu n sigma, it does not matter it only 

indicates that instead of variance we are using the standards deviation the distribution 

approaches 0 asymptotically as x goes to minus infinity or plus infinity and it is 

symmetric about x is equal to mu the mean the mode and the median are all the same. 

So, x is equal to mu also defines the mean and the median, and the mode because this is 

also the highest frequency value. 
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Then there are other interesting properties of normal distribution, because it is perfectly 

symmetrical you have a gamma S which coefficient of skewness to be 0, recall that if it 

is symmetric distribution you get gamma S as 0. So, normal distribution has a coefficient 

of 0 and kurtosis is actually defined with respect to normal distribution is 3, but the 

useful result of normal distribution is that if x is normal distribution distributed with mu 

and sigma that is we are talking about x here as normally distributed with mu and sigma 

square and we define a linear function on x, Y is a linear function of x then Y is also 

normally distributed.  

So, Y is defined as a plus b x, it is a linear function of x then Y is also it can be shown 

very easily that Y is also normal distributed with the parameters a plus b mu and b square 

sigma square; that means, the mean of the random variable Y will be a plus b mu and the 

variance of random variable Y will be b square sigma square. Now we look at the cdf of 

x. So, f of x is given by minus infinity to plus infinity minus infinity to x this is the cdf 



we are talking about f of dx which would be 1 by root pi into sigma minus infinity to e to 

the power minus half x minus mu by mu whole square dx and this is foe x varying 

between minus infinity to plus infinity. 

Now, if you have a sample and now you have estimated the you have obtained the 

sample estimate for mu and sigma then you should be able to get the F of x, because the f 

of x is completely defined in that case, and therefore you should be able to get f of x, if 

we are able to integrate this between minus infinity to x. Also as your mu and sigma 

change for different samples your pdf itself changes because it is a two parameter pdf 

therefore, as the parameter value change your pdf changes; and therefore you need to 

obtain this integral for a specified value of mu and sigma, because the integration is not 

easily possible.  

We adopt numerical integration and when we want to do numerical integration if you 

have to do it for every given mu and sigma then it becomes combustion. So, we use this 

important result that if we define a function on random variable x a linear function on 

random variable x, then we know that y also follows normal distribution with parameters 

specified this specified like this. So, we should be able transform, if you have the random 

variable x you should be able to obtain a linear transform of x which also follows the 

normal distribution with parameters a plus b mu and b square sigma square, we use this 

result and generalize the integration for the normal distribution. 
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So, look at this transformation z is equal to x minus mu by sigma this is linear function 

and in our earlier notation from our earlier notation where we wrote y is equal to a plus b 

x, if we use that here a will be minus mu over sigma this part and b is one over sigma 

from, here. So, because y follows in particular case a normal distribution with a plus b 

mu and b square sigma square and this is the mean of random variable y and this is the 

variance of random variable y.  

So, substituting this here z should follow normal distribution with a plus b mu. So, this is 

a plus b mu. So, you get this as 0 and 1 b square sigma square as a variance. So, you get 

the parameters of the normal distribution that z follows as 0 and 1 and this becomes a 

extremely handy result because once we have this transformation z equal to x minus mu 

over sigma z follows a normal distribution with 0 mean unit variable, and therefore we 

should be able to define the cdf of z and use the integration to obtain the associated 

probabilities on x. 

So, once we define z we define the pdf of z, because z follows normal distribution we 

obtain the pdf of z as 1 over root 2 pi sigma is 1 therefore, we do not write sigma here e 

to the power minus z minus mu x the whole square there and mu is 0 here for this 

therefore, you get e to the power z square by 2 and z varies between minus infinity to 

plus infinity because x varies between minus infinity to plus infinity. So, once we get the 

pdf of z you get the cdf of z as integration between to z 1 over root 2 pi that is this f of z 

and you get this integral here minus infinity to z e to the power minus x square by 2 d z. 

Recall that your cdf of z what does it give it gives you that is you are talking about f of z 

this gives you probability that z is less than equal to z. So, for a specified value of z we 

should be able to get the probability of z being z being less equal to value if we can 

integrate this function e to the power minus z square by 2 with respect to z. 

However again the integration of this is not easily possible with our usual routine method 

and therefore, we have to go for numerical integration, but the advantage here is that 

because it has a 0 mean and unit variance it does not have any parameters and therefore, 

for a specified value of z you can integrate this and then give the integral of values there 

is probability of z being lesser equal to z for various values of z and that is what is done 

using the numerical integration. So, what is we have did starting with the normal 

distribution we obtained a transformation on the random variable x we defined z is the 

now called as the standard normal deviant or standard normal variant. So, from x we 



transform a variation z is equal to x minus mu over sigma, and then see that z follows a 

normal distribution with mean as 0 and standard deviation as 1, let us look as how the 

standard normal distribution looks like. So, the f z which is the pdf of z is referred as 

standard normal density function and if you plot the standard normal density function it 

look like this it is perfectly symmetrical about x is equal to about z is equal to 0. 
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Then another interesting property here is, if you take one standard deviation on either 

side the standard deviation of z is 1 therefore, if you take 1 standard deviation here and 1. 

Standard deviation here the area contained within that is about 68 percent about 68 

percent pdf is contained in 1 standard deviation around the mean which is 0 and you take 

2 standard deviations that is between minus z is equal to minus t 2 o to z is equal to plus 

2 about 95 percent of area containing that. So, this area between z is equal to minus 2 to 

z is equal to plus 2 contains 95 percent of the area and similarly three standard deviation, 

if you take minus 3 2 plus 3 that is z is equal to minus 3 to z is equal to plus 3 about 99 

percent of the area of about this pdf is contained within this region. 

Now, this has a important notation or implication that when you are dealing with some 

normal processes not really the extreme processes like this that is you are not concerned 

about this what is happening to the tail of the distribution or on the extreme right of this 

distribution about 99 percent of the values lie within plus or minus 3 about standard 

deviations. Now, because as I said f z cannot integrate analytically by ordinary means we 



use numerical integrations and then tabulate them for various values of z we tabulate the 

area under the standard normal occur or the standard normal density function and then 

given a value of x for which was interested in obtaining the probability. Let say that 

probability of x is less than or equal to a given value of x you are interested in. You use 

the transformation z is equal to x minus mu over sigma and then start talking about the 

probabilities on z rather than probabilities on x using the tables that we generate using 

numeric integration. So, with this now we will pause for today and we will continue the 

discussion in the next class. 

So, what is it we did that today we started with the definition of the moments we take the 

moments about the origin define the moments of the origin first. So, the first moment of 

the origin we call it as expected value, and then once we define the expected value we 

start taking moments about the expected value and define the higher order moments 

about the expected value itself. 

We introduced measures of central tendency as the mean or the expected value itself and 

the mode and the median then we went on to see the measure of a measure of dispersion, 

which is the variance which we defined as second moment about the mean, and then we 

also introduced the measures of symmetry which are based on the which is based on the 

third moment about the mean, and we also obtain the associated sample estimate then we 

the measures of peakedness which is a kurtosis and kurtosis is defined based on the 

fourth moment about the mean. Then we look it at the most commonly used distribution 

which is a normal distribution we saw that the normal distribution is perfectly 

symmetrical and therefore, the coefficient of skewness is 0, and the kurtosis is 3 and then 

normal distribution important property that a linear function define on the random 

variable following the normal distribution also follows normal distribution. 

 And we use this result this important result to obtain what is called the standard normal 

density function, and we define the cdf of the standard normal density function or 

standard normal variable. And now we are move on to tabulating the cdf values for the 

standard normal variable. So, we will continue the discussion in the next class, and we 

will solve some examples using the normal distribution. And we will acquaint ourselves 

with the use of the standard normal table. Thank you very much for your attention.  


