Stochastic Hydrology
Prof. P.P. Mujumdar
Department of Civil Engineering
Indian Institute of Science, Bangalore

Lecture No. # 32
Regression on principal Components

Welcome to this the lecture number 32 of the course stochastic hydrology. If you recall
in the last lecture, we discussed essentially about the principal component analysis, but
as a prelude to preparation to the principal component analysis, we discussed some
basics of the matrix algebra especially, dealing with the eigen values and the eigen
vectors. Now, for a square matrix, we saw that the eigenvalues can be got by determinant
A minus lambda i is equal to zero, where A is the square matrix for which you need the
eigen values and lambda are the eigen values and i is the identity matrix. Now, once you
get the eigen values, you can also go on to get the eigen vectors by putting A X is equal
to lambda X, where, X become the eigen vectors. If you have a the matrix A of size n by
n, then you will have n eigen vectors corresponding to the n variables of the A matrix.
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Summary of the previous
lecture

+ Eigenvalues and eigenvectors
» Principal component analysis
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Then we went on to do the principal component analysis, where we express Z is equal to

X A, where Z is a transform data X is your original data. If you have p variables and



each of the p variables having n observations, then this will be of the size n by p and A is
the vector of A is a matrix consisting of the eigen vectors. So, you will have p by p size.
So, that is how you get the transformed data Z. Now, this is what we did in the principal
component analysis. Towards the end of the principal component analysis, in the
previous lecture, 1 mentioned that there are advantages of dealing with the principal
components, when we are regressing using the regression with multiple variables, large
number of variables and the typical example that we provide in hydrology is, let say the
runoff at a particular location is dependent on several rain gazes, several rainfall values
in the catchment, and then apart from the rainfall values it may also depend on other

variables.

For example, it may depend on the soil moisture, it may depend on the vegetation, it may
depend on the area of the catchment and so on. So, there are several variables on which
the runoff is dependent and you want to develop the regression, for the runoff in terms of
all of these variables, there are two features in this particular exercise; one is the number
of variables themselves number of variables itself is large let say you may be dealing
with ten variables twelve variables and so on. With each of the variables having large
amount of data, let say rainfall at the location, have you have fifty years of data similarly
runoff, you have fifty years of data and rainfall, may be for several the locations at each
rain gaze you may have fifty years of data. So, the size of the problem becomes large

when you are dealing with large number of variables and large amount of data.

Additionally, many of these variables may be correlated among themselves, as |
mentioned, if you are looking at soil moisture and rainfall together in the regression
model as independent variables, the soil moisture and rainfall themselves will be highly
correlated. So, to account for these correlations in essentially to remove these
correlations among the independent variables and to reduce the size of the problem; that
means, instead of dealing with ten variables I may want to deal with only three variables.
To achieve this purpose, we carry out the principal component analysis. So, there are two
major advantages of the principal component analysis; one is the original set of
correlated variables are transformed to a set of uncorrelated components and this is a
linear transformation of the original variables and in doing so, what we are also doing is

that, we are identifying which of these components explains most of the variance present



in the process and therefore, we we can afford to choose only a few of the principal

components and ignore the remaining.

So, what was a regression of on ten variables may, now be reduced to a regression only
on two variables although these two variables that, we are now dealing with will not be
directly related with the original variables. There some kind of a linear transformation of
the original variables. So, the original variables would have lost their identity in the final
regression, we may not be able to say that the first component is in fact, rainfall again
component soil moisture and so on. Both these components will be a linear combination
of all the variables that we considered earlier. So, we will progress now and see how we
use the principal components in the regression. Remember, our idea is to develop a
relationship between the dependent variable. Let say the runoff and the set of
independent variables which we have identified based on the physical processes that
governed the runoff process and we have the data on all of these variables on dependent
variable. We have and concurrent values of the independent variables concurrent because
we are saying that the rainfall during that period. Let say, you are talking about a month
time period rainfall during that month produces the runoff, during that particular month
and therefore, you should have concurrent values of all of these variables dependent
variable as well as all the dependent variables.

On the independent variables, we do the principal component analysis. In the last lecture,
I introduced how to do the principal component analysis on any sets of variables. So, on
the independent variables, now we carry put the principal component analysis. What is
the idea? The idea is, again that we want to transform this set of independent variables
independent in the sense, that they are independent of the dependent variable, but among
themselves they may be correlated. So, we want to transform this set of independent
variables x one, x two, X three, etcetera up to x p, into another set of variables which we
call them as principal components, by using the transformation and that is what we do
and then regress the dependent variable. Now y with respect to the principal components

and not with respect to the original variables and that has several advantages let us see.
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Regression on Principal Components

Regression on Principal components:
+ In the development of a stochastic model for a

dependent variable Y, the first step usually is to do
PCA on the independent variables.

+ The derived principal components are used as

independent variables in a multiple regression
analysis with the dependent variable Y.
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So, essentially regression on principal components is necessary, because we want to

develop a stochastic model on the dependent variables using all these independent
variables and the derived principal components as we derive from the first set, we do the
principal component analysis on the independent variables and these principal

components are used as independent variables in the regression.
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Regression on Principal Components

Procedure:
+ Independent variables are standardized.
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where X, is the i observation on the j" variable. ang
s,arethe mean and standard deviation of the j»
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» Dependant variables are centered.
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So, why now we regress with the principal components, that is what we call as regression
on principal components. What do we do in this, there are p variable, p independent
variables here and for each of the p variables you have number of values available with

for example, i is the i eth observation of the j eth variable. So, you may have several



variables j is equal to one to p, p variables you may have the independent variables we
standardize. Generally, rather than just centering because these independent variables
may come with different units like, | said rainfall may be in depth units soil moisture
may be in percentage area may be in area unit and so on. So, to account for the different
variables that come with different units we standardize all of them. So, that you are
writing it as x 1 j minus x bar j over s j. Now the capitals and small are used

interchangeably in regression as | mentioned earlier.

So, do not worry too much about the capitals and the small as long as you understand
that this is the observed value of the i eth observation and j eth variable and therefore, we
are talking about the mean of the j eth variable and the standard deviation of the j eth
variable. So, that is how you standardize all the independent variables. The dependent
variable being the single variable we can just use a centering. So, we call this as
centering, this is observed value for the dependent variable i eth observation minus y bar.
y bar is the mean of the dependent variable. So, the dependent variable we center and
independent variables we standardize and then use the principal component analysis on

the independent variables.
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Regression on Principal Components

» The matrixZ is
Z=X 4
>

where
X is nxp matrix of n observations on p independent
variables

Z is nxp matrix of transformed data

A is pxp matrix consisting of eigenvectors
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Then the transform matrix Z, remember this is the this defines our X, which is the

independent variables or the transformed independent variables or the standardized
independent variables, if you wish and these are the principal components. So, this is



matrix consisting of the eigen vectors. So, on this we get the transform data Z. So, Z is
transformed from the standardized data on the original independent variables, which is
the p variables. So, this is a n, n by p matrix and this is p by p matrix, because we are
talking about the eigen vectors and Z is again n by p matrix of the transformed data, then

we look at the dependent variable.
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Regression on Principal Components

+ The regression model is
Y=ZB or .".=t/’f-',,
p=l

Where

Y is nx1 vector of n observations of the centered
dependent variable,

Z is nxp matrix of n values for transformed of p
variables, and

B is a px1 vector of unknown parameter=

Let me explain that, you have the dependent variable let say, this is the y matrix which is
n by one vectors because there are n observations and this is Z which is a n by p matrix.
So, this is n by one and this is n by p and these are the coefficients of the regression this
is a coefficient matrix and that is p by one vector of unknown parameters and our aim in
the regression is to determine these unknown parameters. Recall from the lecture, before
the previous one, where we discuss the multiple linear regression on how to obtain these
unknown parameters for a multiple linear regression, exactly the same procedure we
follow here and then obtain the betas. Now, in the scalar form it is written as y i is equal
to j is equal to one to p summation beta j z i j, this is a scalar form of this matrix form.
So, essentially we solve this now and then obtain beta Z is known Y is observed values

of the dependent variable and therefore, we can obtain B the matrix B.
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Regression on Principal Components

+ The matrix B is estimated as

R=(2z) zr
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So, from your multiple linear regression, just compare this, how did we estimate B in

that case. In this case, when we are writing Y is equal to Z B, we write B cap, which is
the estimated value of B as Z dash, Z inverse Z dash Y, where our Z is this Z now X A,
this is Z and our Y is n by one. So, Z is let us look at the dimensions, now what is Z, Z is
n by p matrix. So, Z is n by p. So, this is p by n Z dash and Z is n by p and therefore, you
will get p by p and Z dash is again p by n and this is n by one. So, p by n, n by p. So, you
get p by p here inverse p by p and then p by n therefore, you get n by n and then n by
one. So, you will get n by one. | am sorry lets look at that this is, n by p z is n by p minor
matrix and this is Z dash is p by n. So, you will get p by p and this is Z dash is p by n.
So, you will get p by p, p by nand n by 1. So, this will be p by 1 b dash will be p by 1.
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Regression on Principal Components

+ The matrix B is estimated as
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So, that is what you get here this is beta 1, beta 2, beta 3, etcetera up to beta p. This is p
by 1 this is a matrix that you obtain from this expression here. So, essentially we write y
is equal to z into B and then our aim is to obtain this B. And this is how we obtain B
from this. Once these are fixed that is these are obtained or these are estimated beta 1,

beta 2, etcetera beta p, then your regression equation is in place.
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Example — 1

The annual yield of a basin is to be obtained from
annual rainfall of 10 stations in and around the basin.
The annual rainfall in mm for the 10 stations (x,, x.,
Xy, X, Xy, Xg, X=, X, X, @Nd x,) and the observed
annual yield (Y) in mm for 19 years is given.

Obtain the prediction model for calculating annuai
basin yield (Y) from annual rainfall using PCA.
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So, let us look at an example now, here what we are doing is that let say, we have a basin
where let say, this is a basin and then you have the runoff values available here. And then
these are several rain gazes. Let us look at this is rain gaze ,1 rain gaze 2, rain gaze 3, 4
etcetera. A common method is, in the hydrology that you get some averaged rain value
and then relate it with the y here. But it may so happen that, you would like to use all of
these rain gazes independently let say, there is x one here x two x three and so on. You
may want to use all of them and then relate with the runoff at this location. So, we may
want to write y as a function of x 1, x 2, etcetera x p. There are p independent variables
and then we want to estimate the runoff, at this point which we also we call it as yield of
this stream let say, there is a stream here and then these are all the stream locations. So,
this rainfall is contributing to runoff at this location and this runoff, we want to estimate

based on the values here x one, x two, X three, x four and so on.

There may be p such rain gazes. Let us do this exercise, the first point to be noted here is
that, x one and x four may be correlated x one and two, may be correlated because they
may come from the same hydrologic region. We are talking about this watershed here
and therefore, they may come from the same hydrologic religion. This is a homogeneous
hydrologic region and therefore, the rainfall here and rainfall here and at all these
locations may have significant correlations. And the other thing is that you may have so
many rain gazes. Here, that the size of the problem may become slightly unmanageable,

if you are having let say, ten variables twelve variables and so on. Additionally, apart



from the rain gazes, you may also have some other variables being put into the runoff
estimation. For example, you may want to put in a vapour transportation because from
the run rainfall part of it also goes as a vapor transportation and therefore, you would like
to account for that in the runoff that is observed. You have the observed values of y let
say, for the last fifty years, every month you have the observed values. So, six hundred
values, you may have, you have concurrent observed values on rainfall at this location
which gives x one rainfall, at this location which gives x two and so on. For all the p
variables, for all the p sites you have rainfall values observed concurrently with the

runoff values.

Now, we want to fit a regression equation of the type y is equal to f x one, x two, etcetera
x p. We will use the principal component analysis and then fit this regression equation.
So, on the principal component for the principal component analysis the first thing we do
is to standardize the original data that is a on the independent variables and also center
the dependent variable data then we have to carry out the principal component analysis
how did you carry out the principal component analysis? Once you have the data matrix
X, which is n values, corresponding to each of the p variables, which means a it is an n by
p matrix. We calculate the covariance matrix from this; that means, covariance of p
variables with p variables. So, we get a p by p matrix of covariances. On the p by p
covariance matrix which is a square matrix, we get the eigen vectors and the eigenvalues
for the covariance matrix and we use these eigen vectors as the principal components and
then obtain the associated principal components for the covariance matrix and then use

the regression equation on these principal components.
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Example — 1

The annual yield of a basin is to be obtained from
annual rainfall of 10 stations in and around the basin.
The annual rainfall in mm for the 10 stations (x,, x.,
Xy, X Xy, Xg, X-, X, X, @Nd x,) and the observed
annual yield (Y) in mm for 19 years is given.

Obtain the prediction model for calculating annual
basin yield (Y) from annual rainfall using PCA.

So, let us see how we do that in the example. So, if you have rainfall annual, rainfall at
ten stations. So, these rainfall values we denoted as x one, x two, X three, etcetera up to x
ten. So, there are ten stations. So, you have ten variables associated with it, the observed
annual yield associated with these nineteen years of annual rainfall are also given; that
means, this is annual rainfall and the associated annual yield by yield. We assume
understand that it is a runoff at that particular location. Which means that is a yield of
that water shade which is just the runoff that is observed. So, we have concurrent values
for nineteen years on the annual yield as well as on these ten stations which are taken as
independent variables here. So, we want to obtain the prediction model for the yield
associated with the rainfall. So, we want to develop a relationship between the annual

yield and the rainfall in all these ten stations.
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The annual rainfall in mm for 10 stations and cbserved basin annual yield (Y) in mm

Yool v, |x, |x, | x| x| x|x|x|x|x) ¥
1948 [41775496|2922| 5713 | 3640 | 3203 273942167 2299} 3255.2 |
2261 |3670|7797|3327| 6934 | 4424 | 3692 [3451| 2866 2653| 3682.7
1989 |4353| 7392|2837 | 6275 | 4827 | 4476|4403 3568 3241 3921.9
1998 |3307| 7061 | 3439| 6641 | 4815 | 4256|4129 3447 [3046| 3909.3
2086 | 4230|6564 | 2987 | 6675 | 31958 | 3900 35591 4078 [3583| 3768.9
1717 2714591913394 5605 | 3648 | 308524401 2631 [2587] 3106.4
1383 | 2357|5053 | 2958 | 5144 | 3106 | 4052 3006 3049 2890 3069.4
1470 | 30043951 2691|5116 | 3557 | 27751909 1952|1723| 2940.2
1350 | 2446|4280 | 2397 | 4722 | 3556 | 281829452931 2733 3015.3 |
1602 | 4188|5910/ 3619 6869 | 5142 | 319036601 3964 3107 3953.2 |
1417 [3631|5145|3282| 5226 | 3793 | 26633017 2579 13367] 31724 |
1662 [4683 |6384|6376| 7313 | 4679 | 30373666/ 3142 2621| 3791.0 |
1955 |4553 |5679|6141| 6068 | 3651 | 2601 2791|2148 2448| 3344.8
1974 |3836 | 6021 % 5876 | 4026 | 3037 39201 2583 2742 3650.3
2094 (4183|6733 6044 | 6573 | 2465 34061 2410 2539 3878.7 |
3149 |6128(8151|9048| 8384 | 7467 | 2888 3522 2496 2895| 4606.2 |
1471 | 285214151 | 4975 5149 | 4733 | 2603 34931 3396 3554 3498.8
1691 [37114200| 4962| 5359 | 3782 | 31853099 3381 2938 3241.0
2373 | 4836|6704/ 6563| 6197 | 5001 | 3902|3685 363613365 4013.5

]

So, let us look at how the data is organized we have nineteen years of data. So, these are
the annual values. So, this is the year number and the annual yield is given here, for all
the nineteen values this we take it as a dependent variable y and these are all the rainfall
values given at the ten stations. So, at the ten stations you have the associated rainfall
value now both are given in millimeter units. What do | mean by runoff wing in
millimeters that you have observed the runoff. Let us say, you have observed the volume
of runoff divided by the total area of the catchment, you will get runoff in the depth
units. So, all of these are in depth units. Now, as you can see you may have a significant
correlation between x 6 and x 9. For example, x 6 and x 10, x 2 and x 4 and so on. So,
among these variables, there may be some combinations of variables which have

significant cross correlation; that means, they may be correlated with themselves.

Now, such problems in regression are called as those of multicollinearity; that means,
there is a significant correlation among two or more variables among the independent
variables. So, this correlation needs to be addressed when we are developing a regression
relationship. As | said, the first step is that we standardize all the independent variables
and generate the vector x, which consist of the matrix x which consist of the standardized
independent variable that will be p by n which means ten by nineteen that is n by p that is

nineteen into p variables.



So, let us look at the regression equation now. What we do is to demonstrate the utility or
the usefulness of the principal components. First, we will use all of these ten variables as
they are and develop a multiple linear regression ship linear regression between y and
these ten variables as they are we will not do any principal component analysis to begin

with.
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Example — 1 (Contd.)

A regression equation is obtained using all the 10
stations annual rainfall data is as follows

Y oro =X B

(19-1) (19+10) (10+1)

B=(XX) XT
The multiple linear regression equation is as follows.

Y =7824+0.1861 x, +0.0484 x.-0.0198 x, +
0.0019x, +0.1196 x,; +0.1555 x, + 0.0232 x- +
0.1948 x, +0.0799 x, - 0.0041 x,,

So, when we do that we express y as x b this is from your multiple linear regression y is
a vector of 19 by n there are 19 values and there is only one variable. So, 19 by n x is a
matrix of 19 values of ten variables. So, this is 19 by 10 and B is a vector of unknown
parameters and there are ten such parameters one associated with each of the variables.
So, this is 10 by 1. So, you get beta cap as x dash, x inverse, x dash y, this is from your
original regression. And So, you will get or regression of this type, we also introduced
the intercept there you just recall form your multiple linear regression, then you get
expression of y as a function of these ten variables and you get the intercept as 782.4 to
get the intercept what you would have done is you would have put the first values of all
the betas as one, all the x one as one you just refer to the multiple linear regression to get
this intercept and you get the coefficients beta one, beta two, etcetera up to beta ten

based on this equation here.
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Example — 1 (Contd.)

Using this regression equation, . _ BXT dnv’
R =0988 ES

PCA is performed on the data to reduce the size of
the problem and to account for correlations among
the rainfall values at10 stations.

observed basin annual yield is centered.
(Y,-%) . W
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Now, this is what we obtain, when we regress the dependent variable on the independent

The annual rainfall data is standardized and thee

variables as they are observed without doing any principle component analysis as you
can see here, all the ten variables have been used and there are ten regression
coefficients. Here, if we use this regression equation as obtained here and we get the R
square value, this is what we discussed in the previous lecture R square value is given by
B dash, X dash, Y minus ny bar square, where y bar is the mean of the Y data by Y dash
Y minus ny bar square n is the number of data X dash is the transpose of your X matrix

B dash is the transpose of B vector.



(Refer Slide Time: 25:16)

Example — 1 (Contd.)

A regression equation is obtained using all the 10
stations annual rainfall data is as follows

Yor =X B

(19-1) {19+ 10} (10-1)

- . . | s
B=(.\' X) XY
The multiple linear regression equation is as follows.

Y =782.4+0.1861 x, +0.0484 x, - 0.0198 x, +
0.0019x, +0.1196 x,; + 0.1555 x, + 0.0232 x- +
0.1948 x; +0.0799 x, - 0.0041 x,,

So, when we do that you get for this example, R square as point nine eight eight. So, this

is this would have been nice and acceptable provided the size was not big by ten

variables and provided we were sure that all of these are uncorrelated. For example, there

is no correlation between x one and x y x one and x four and so on. So, all of these, if

they were uncorrelated and the size was not as large as this then it would have been

acceptable, but we would like to express this regression in terms of the principle

components, where we we derive a set of variables which are all uncorrelated and then

we should be able to choose less than ten number of variables may be six may be three

may be two and so on.
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Example — 1 (Contd.)

Using this regression equation, R BXT dnv’
R* =0988

PCA is performed on the data to reduce the size of
the problem and to account for correlations among
the rainfall values at10 stations.

The annual rainfall data is standardized and the
observed basin annual yield is centered.
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So, that is what we will try to do, try to achieve through the principal component

analysis. So, what we do is, we perform the principal component analysis now on the
independent variable that is x one, x two, X three, etcetera x ten. We will do the principal
component analysis on that then regress the y which is the dependent variable on the
principal component analysis. So, the aim as | mentioned is to reduce the size of the
problem and to account for correlations among the rainfall values at the ten stations.
What do | mean by account for it is not as, if we are calculating the correlations and
putting it into the regression, no we want to convert the original set of independent
variables which are all correlated among themselves to another set of variables which are
uncorrelated among themselves and that is what we mean by account for the correlation
among the independent variable and also do not get confused between the usage of

words independent variable.

They are independent in as much as they do not depend on the dependent variable
whereas, the dependent variable depends on these variables and therefore, they are called
as independent variables, but they may not be independent among themselves and that is
what leads to multicollinearity, as | mentioned the multicollinearity by multicollinearity,
I mean some of these variables that we are using in the regression are correlated with
each other to do that, then we have ten stations and we have observations going from i is
equal to one to nineteen in this particular case.
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The annual rainfall in mm for 10 stations and cbserved basin annual yield (Y) in mm

Year || o, .r.lx. -"m[ v

X b 1 |0 ol e <ol =
1979 1948 |4177|5496|2922| 5713 | 3640 [3203 2167 32552
1980| 2261 |3670|7797|3327| 6934 | 4424 |3692(3451| 2866 36827
1981/ 1980 |4353|7392( 2837 6275 | 4827 | 4476 3568 [3241) 3921.9 |
1982| 1999 |3307|7061|3439| 6641 | 4815 | 425641293447 3908.3
1983 | 2086 |4230 6564|2987 | 6675 | 3958 | 39003559 4078 [3583| 3768.9
1984/ 1717 [2714(5919 3394| 5605 | 3648 | 3085 244012631 [2587] 3106.4 |
1985| 1383 [2357|5053| 2958| 5144 | 3106 [4052] 3049 30694 |
1986/ 1470 |30043951 (2691 5116 | 3557 | 2775|1909 195211723| 2940.2
1987 1350 |2446|4280(2397| 4722 | 3556 [2818 2931 3015.3

1988| 1602 |4188|5910| 3619| 6869 | 5142 | 31903660/ 3964 3107] 3953.2
1989( 1417 |3631|5145|3282| 5226 | 3793 30172573 /3367] 31724
1990| 1662 | 4683|6384|6375| 7313 | 4679 1366613142 2621 3791.0
1991|1955 | 4553|5679 6141| 6068 | 3651

i
¢
g
4

[3406/ 24102539 3878.7
2496 2895 4606.2
3396 3498.8

5350 | 3782 | 318530993381 32410 |

6197 | 5001 | 3902[36851 3636 40135

2663
3037
26012791/ 2148 33448
5876 | 4026 mmm% 3650.3
2465
2888
2603

i
:
s
a3
:
:

o 1471 | 2952|4151
{— (1691 [3711
e 2373 | 4836
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Example — 1 (Contd.)

Using this regression equation, R= BYXT div’
R =0988 Fi—ay

PCA is performed on the data to reduce the size of
the problem and to account for correlations among
the rainfall values at10 stations.

So, nineteen years of data at ten stations. So, that data x i j we deduct x bar j at the j eth
stations you take out the mean of that j eth station data and divide it by the standard

deviation of the j eth station data.
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The annual rainfall in mm for 10 stations and cbserved basin annual yield (Y) in mm

Y-I S ol ] (e i - (e el I e ] Xg -"u-[ ¥
1979 1948 |4177|5496 5713 | 3640 | 3203 2167 32552 |
1980| 2261 |3670| 7797|3327 | 6934 | 4424 | 3692 3451|2866 2 36827
1981/ 1989 |4353(7392(2837| 6275 | 4827 | 4476|4403/ 3568 3241| 3921.9
1982| 1999 [3307|7061|3439| 6641 | 4815 | 4256412913447 3046 3908.3
1983 | 2086 |4230 6564|2987 | 6675 | 3958 | 39003559 4078 [3583| 3768.9
1984/ 1717 |2714(5919| 3394| 5605 | 3648 | 3085 24401 2631 2587] 3106.4
1985| 1383 | 2357|5053 | 2958| 5144 | 3106 | 4052 MMJEA_
1986| 1470 |3004|3951 2691|5116 | 3557 | 277511 1952%2940.2
1987 | 1350 |2446|4280| 2397 | 4722 | 3556 | 2818 2931 30153
1988| 1602 |4188|5910|3619| 6869 | 5142 | 3190 3660|3964 3107| 3953.2
1989 1417 | 36315145/ 3282| 5226 | 3793 | 2663 3017 2579 3367] 31724
1990 1662 [4683(6384 6376 7313 | 4679 | 3037 36661 3142[2621| 3791.0
1991 | 1955 [4553|5679|6141| 6068 | 3651 | 2601 2791|2148 33448
1992| 1974 |3836|6021 g 5876 | 4026 mmm% 3650.3
1993 | 2094 |4183|6733 6044 | 6573 | 2465/3406/2410/2539) 3878.7
1994 3149 |6128|8151 /9048 | 8384 | 7467 | 2888 2496 4606.2
6 1471 [295214151|4975| 5149 | 4733 | 2603 33963554| 3498.8
{ | 1691 |3711|4200|4962| 5358 | 3782 |3185 3381 32410
A 2373 |4836|6704/6563| 6197 | 5001 |3902 36363365 40135

That is, you take any station the mean of this and the standard deviation of this you use
to standardize the data at station number six that is what we do here and so we obtain
corresponding to each of the station. We obtain the n values nineteen values which are
all standardize values. And then that dependent variable y, we simply center it we take
the mean of this and then y minus y bar. So, we center all of this and obtain the

dependent variable data.

(Refer Slide Time: 31:46)

Example — 1 (Contd.)

Station | Mean | Std.dev.

(¥,-%) X, 18732 | 4343

L x, 38399 | 9275
: X, 5925.8 | 12501

x, | 44360 | 18463

x, | 6068.9 @ 9149

Y =E-¥y Y. | 44410 | 10913
x. | 32540 | 608.8

x. | 3307.3 | 5994

x, | 29697 @ 6216

x§ | 28506 | 4624

v 3569 =




The mean of all of these stations are given here and the standard deviation and of the
dependent variable the mean is given here the standard deviation is not necessary for y.
So, we will use these means at this particular location j is the station. So, j goes from one
to ten here and i is the year of observation. So, you use for the j eth station you use X j
and s j standard deviation. Similarly, for y you use this mean 3569 as y bar and you get

the standardize annual rainfall and centered observed basin annually.

(Refer Slide Time: 22:40)

The annual ranfall in mm for 10 stations and cbserved basin annual yield (Y) in mm

Year, x| Xe ] b A .ru,[ ¥

: a2 el
1979] 1948 |4177|5486(2922| 5713 | 3640 | 320327392167
1980| 2261 | 3670|7797 | 3327 | 6934 | 4424 | 3692[3451| 2866 2653 36827
1981 1988 |4353 (73922837 | 6275 | 4827 | 447644033568 3241 39219 |
1982|1999 |3307 7061|3439 6641 | 4815 | 42564129 3447 3046 3909.3
1983|2086 | 4230|6564 2987 | 6675 | 395 | 3900 3559|4078 3583 3768.9
1984/ 1717 |2714/5919|3394| 5605 | 3648 | 30852440/ 2631 2587] 3106.4 |
1985 1383 |2357 5053|2958 5144 | 3106 | 4052/3006/ 30492890 3069.4 |
1986] 1470 |3004(3951|2691| 5116 | 3557 | 2775(1909| 1952(1723| 2940.2
1987 1350 |2446 4280 2357 | 4722 | 3556 | 2818(2945(2931 2733 3015.3
1988 1602 | 4188|5910 3619 6869 | 5142 |3190/3660| 3964 3107 39532
1989( 1417 |3631|5145| 3282 5226 | 3793 |2663/3017] 257913367 31724
1990| 1662 |4683|6384|6376| 7313 | 4679 | 30373666 3142 2621| 3791.0
1991 1955 | 4553|5679 6141| 6068 | 3651 2601 2791|2148 2448 3344.8
1992( 1974 |38366021 g 5876 | 4026 mmm% 36503
1993|2094 |4183(6733 6044 | 6573 | 24653406/ 24102539 3878.7
1994/ 3148 |6128(8151|9048| 8384 | 7467 | 28883522/ 2496 28951 4606.2
4975 5149 | 4733 | 2603 3493/ 3396 3554 3498.8
4962
6563

5358 | 3782 |3185 3381 32410 |
6197 | 5001 | 3902 3636 40135

- 1471 |2952(4151
{ 11691 3711
* 2373 |4836

So, this is centered values and these are standardized values. So, X one to x ten you get

£

the standardized values and similarly these are the dependent variables, centered values
now you focus on this sets of values x one to x ten you have 19 values associated with
each of them.
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Example — 1 (Contd.)

L3
The covariance matrix for lhe standardized data
matrix :i % )x,-%)

covi Y. X, )=5, . ==

079 081 064 078 O71 018 038 -003 008

1 085 072 080 068 -002 040 003 042
065 1 038 0B84 064 044 061 047 019
072 038 1 055 071 035 025 015 004
080 084 055 1 070 021 051 021 013
068 084 071 070 1 010 048 008 018
002 044 035 021 010 1 052 058 037
040 061 025 051 048 052 1 064 064
003 047 015 021 008 058 064 1 079
012 019 004 043 048 037 08 07 1 [yg.9

We will get the covariance we will obtain the covariance matrix for these ten variables in
preparation for our co principal component analysis S p. How do we obtain the
covariance let say, these are the variables. | write them as let say x 1, x 2 etcetera x 10.
Similarly, x 1 x 2 etcetera up to x 10. So, these are the variables. So, x 1 to x 1 that is a
covariance and x 1 to x 2 covariance x 1 to x 3 and this is what we obtain here on the
standardized variables. Remember we are talking about the standardized variables and
that is why you get the covariance x 1 x 1 as 1 itself and this will be all diagonal
elements will be one here. So, this covariance is x 1 to x 2 let say | want to compute the
covariance between x 1 and x 2 it is given by x 1 i 1 is the first first variable and for the i
eth period i is equal to 1 to n minus x 1 bar x 2 i minus x 2 bar etcetera by n minus 1 n is

nineteen in this case.

So, like this you form a ten by ten matrix. So, x 1 to x 10 similarly, x 10 to x 10. So, you
can get a ten by ten matrix which is a square matrix and for this square matrix. We now
obtain the eigenvalues and the eigen vectors for obtaining the eigen vectors first you
have to get the eigenvalues. So, let us get the eigenvalue, if | denote this as the matrix s
the covariance matrix we denote it as matrix s here and therefore, | should be able to get

the eigen vectors and the eigenvalues corresponding to the matrix s.
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Example — 1 (Contd.)

The eigenvalues and eigenvectors for the covariance
matrix

Eigenvaiues |S—Al|=0

Eigenvectors | § —*J 1X=0

0.390|-0.165] 0.211 |-0.191| 0.451 |-0.304| 0.149 |-0.043|-0.644-0.079|

0.381 |-0.188|-0.053|-0.543|-0.127| 0.215 |-0.265|-0.574| 0.189 | 0.157 |
0.393|0.029|0.382 | 0.235| 0.074 |-0.128/-0.328/ 0.319 | 0.227 | 0.600 |

0.298 |-0.321|-0.390/-0.111/ 0.246 | 0.400 | 0.425| 0.437 | 0.210 | 0.089 |

0.404 |-0.065| 0.179 |-0.121|-0.589|-0.056/|-0.083| 0.393 |-0.013|-0.522|
0.371|-0.161|-0.229| 0.546 |-0.116/-0.394| 0.301 |-0.402| 0.241 |-0.087|
0.122/0.462{0.521 |-0.117|0.237 | 0.148 | 0.428 |-0.136] 0.393 |-0.229|

) 0.3170.338 |-0.122| 0.444 | 0.069 | 0.603 |-0.241|-0.134/-0.333|-0.135|
f;: 0.136| 0.529{-0.237/-0.201(-0.412/-0.110{ 0.388 | 0.031 |-0.275{ 0.443 |
() |0.160/0.443|.0.477].0.1921 0351 |-0.3581-0.358|0.155| 0. 235 .0 234

MPTEL

How do I get that? So, the eigenvalues are obtained by determinant S minus lambda I is
equal to 0, I set it as determinant S minus lambda 1 is equal to 0 and then obtain lambdas
here S is a ten by ten matrix and therefore, | will get ten lambda values here. So, the
eigenvalues this is obtained from the matlab routine, we get eigenvalues as four point
nine five nine four five and. So, on. So, there are ten eigenvalues that are obtained form
for the covariance matrix. We use these eigen values and associated with each of the
eigen values we get one eigen vectors, like that we get ten eigen vectors we use this S
minus lambda | into X is equal to 0 this is a matrix and this is a matrix. So, we obtain the
eigen vectors now this is eigen vector number one, eigen vector number 2, etcetera. So,
this eigenvector is associated with this lambda one this eigenvector is associated with

this eigenvalue lambda 2 and so on.

So, associated with each of the eigen vector there is a eigen value. As | mentioned, they
come in pairs there is an eigen value and there is associated eigen vector. So, this is what
we obtain for the covariance matrix, then we use these eigen vectors and look at the
percentage variance explained by each of the eigen vectors there are ten such principle
components, eigen vectors consisting of the principal components here. Let us not get
confused this is principle component number, one which is the eigenvector number one
principle component number two number three and. So, on there are ten such values
here, now we will see how much of percentage variance is explained by the first eigen

vector the second eigen vectors third eigenvector and so on. To do that we look at the



eigen values associated eigen values. Let say, this is lambda one lambda two and so on.
So, | will get the percentage variance explained by this eigenvector by using the
corresponding eigenvalue.
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Example — 1 (Contd.)

The eigenvalues and % variance explained:
| Eigenvalues | % variance explained

TracéPfs)

4945 49 447
2631 26.310 > 95% variance
1.047 10.470 explained by first
0.364 3.641 & principal
0.307 3.069 components
0.257 2565
0.205 2.047
0.140 1.399

o~ | 0063 0.629

(%} o042 0.423

So, | will get lambda j by trace S where trace s is simply the summation of all the
eigenvalues that is S in this case, will be this plus this plus this etcetera. So, | can write
trace S if you recall from your last lecture, as we will write trace as is equal to simply
lambda j over j all the eigen values summation of all the eigen values. And we get the
percentage variance explained by a particular eigen vector y using this on the associated
lambda j. So, this says that the first eigenvector explains 49.447 second one explains
26.310 and so on. This is arranged in descending order. So, this is how we obtain the

percentage explained by this various eigen vectors.

Now, look at this, if we take the first six components that is 49.447 plus 26.310 and so
on. If you take first six about 95 percent of the variance is explained by the first six
component. So, we have the option of developing the regression only using the first six
because we are satisfied that 95 percent of the variance is explained by this components.
So, | can ignore the remaining four, if you want to include all the hundred percent of
variance then all the ten principle components have to be included. So, let us look at first
the six components, that is, |1 use only the first six eigen vectors and develop the
relationship of the dependent variable on these six principle components, essentially this



is the advantage you know when we are using the principle components. We can see how
much of percentage variance or how much of information content is in fact captured by
using these six eigen vectors is the question that we are trying to answer. So, in this
particular case, we are saying that 95 percent of the information can be captured in terms
of the variance. In terms of the variance, we can capture about 95 percent of the
information by using these six component and therefore, it is not necessary or you can
afford to ignore the remaining four components that is the interpretation here. So, we
will use these six components and then regress the dependent variable on the six eigen

vectors now or six principle components. So, to say.

(Refer Slide Time: 40:47)

Example — 1 (Contd.)

First six components are considered in the analysis

and the modified data is obtainedas 7 =\ {

2 03 07 008.095.129-121
)95 00T Q72 02407

10x8

o,

MIPTEL
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Example — 1 (Contd.)

The eigenvalues and eigenvectors for the covariance
matrix

Eigenvaiues |S—Al|=0
4945|2631/ 1.047 |0.364 | 0.307 | 0.257 | 0.205|0.140 | 0.063 | 0.042 |

Eigenvectors | § —*J 1X=0
0.390-0.165] 0.211 [-0.191{ 0.451 [-0.304] 0. 149 |-0.043]-0.644]-0.0739|
0.381 |-0.188-0.053|-0.543|-0.127| 0.215 =-0265I-05?4’D.189!0_15?i
0.393 | 0.029| 0.382|0.235 | 0.074 |-0.128/-0.328/ 0.319 | 0.227 | 0.600 |
0.298 |-0.321|-0.390/-0.111| 0.246 | 0.400 | 0.425 | 0.437 | 0.210 | 0.089 |
0.404 |-0.065| 0.179 |-0.121|-0.589/-0.056|-0.093{ 0.393 |-0.013|-0.522|
0.371 |-0.161/-0.229| 0.546 |-0.1161-0.394| 0.301 | -0.402| 0.241 |-0.087|
0.122{0.462|0.521 |-0.117|0.237 | 0.148 | 0.428 |-0.136| 0.393 |-0.229)
0.3170.338 |-0.122| 0.444 | 0.069 | 0.603 |-0.241|-0.134/-0.333/-0. 135
0.136|0.529|-0.237-0.201/-0.412/-0.110| 0.388 | 0.031 |-0.275/ 0.443 |
| 0.160 | 0.443 |-0.477]-0.192| 0.351 |-0.358|-0.358| 0.155 | 0.235|-0.234

So, what we are doing now Z is equal to X A is, what we are saying and A is the
principle components and we are using only the six principle components. So, A is a
vector of ten into six there are six principle components look at this now, the first column
is the first eigenvector which is the first principle component second principle
component third principle component etcetera look at the eigen vectors, here this is the
first principle component, second principle component up to six we go one, two, three,
four, five, six and these are the six principle components we have considered. And these
ten are associated with the ten variables. So, you had initial ten variables. So, you have
got ten values corresponding to that remember eigen vectors this dimension is p by p
which is ten by ten out of that we are taking up to six therefore, we are taking ten by six
matrix here from this and then using the principle using the regression relationship and
this is your original X value by original X value. I mean it is a transformed X value

standardize X values. So, this comes from the standardized X values here.
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Example — 1 (Contd.)

First six components are considered in the analysis
and the modified data is obtainedas 7 =\ .{

Q 036 -034-082 039 073 -008.095.129 .1 31)

089 0 150 .060 095 002 OT2 04 01T D85} r~ -
0T mr T » 82| |0380 0185 0211 -0 197 0451 0304
02 05T 0% )34 01T 040

040 042 0951 07 a8 1 3 157 [0.38" -0188-0053 15
038 121 001058 051 073 S| |o%m 0029 0382 ny.
113160 070-080 107 -122 1

0288 -0.3271 -0.290
083 090 -158 095 108 081

Z =}-120 .150.132.1 10 .147 081

052 038 001044 0BT 054 059 160 053| |g a7y -0 181 -0 220 048 -0 118 -0 358

-105 023 042 083 092 050 097048083 110 - . wh

049 081 037 105 138 022 038080 029 .052] [0122 0462 0521 -0 117 0237 0 M8

01 07T 020 092 00 ar? 0317 0338 -0.122 0484 0089 0800

023 000 008 068 021 03

05T 037 088 124 1

194 24T 1

-1 |0404 -0 085 0179 -0 121 -0 589 -0

0138 0529 -0.237

- 098 008 143 020 .1 0180 0443 -0477-0 192 0351 0358
L .
(;ﬁ 042 014 -138 028 0 7 10x6
) LL!S 107 082 115 0% 19x 10

MIPTEL

This is point one seven two minus one point two one. So, we use this entire data here,
after transforming after standardizing and then put the regression relationship. So, this is
point one seven two minus one point two nine. So, this is your nineteen by ten values the
matrix is nineteen by ten and this is ten by six. So, you obtain a matrix of nineteen by

six, for Z that will be n by p and now this p is restricted to six now.
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Example — 1 (Contd.)

[F1.283 -1.278 1.250 -0.492 0.139 0.045)
1133 0182 1.776 0.367 -0.068 -0.361
1825 2512 0874 0410 0.245 0.386
1.273 1.972 0998 0.826 0.040 0.127
1176 2403 0.134 -1.034 -0.232 -0.640
-1.907 -0.547 0.724 0.067 0.087 -0.705
-2.385 1.519 0.673 0.048 0.429 0.160
Z=YX 4= |[3779-2327 1050 -0.058 -0.483 -0.172
-3.115 0333 0480 0475 -0.042 -0.194
0830 1.247 -0.735 0.055 -1.484 -0.236
-1.700 0.094 -1.054 -0.154 0.348 -0.373
= 1.345 0585 -0.305 -0.126 -1.214 1.016
' -0.430 -2.241 0.012 -0.817 0.203 0.574
0.243 -0.433 -0.168 0.391 0.583 1.067
1.336 -2.171 -0.751 1.328 0.157 -0.178
5.527 -2835 -0.199 -0.183 0.169 -0.643
-1.202 0.857 -2.516 0433 0.246 -0.258

J 19x6

-1.219 0.268 -0.975 -0.743 0.058 0.311
(2341 0.821 -0.416 -0.792 0.808 0.081

So, this is the matrix Z, we get this is the transformed data as after | do the multiplication

XY A, when I do this, | get the matrix Z as nineteen by six now, this one has to be



regressed on the dependent variable Y. What did we do now, we use the principle
component analysis and transform the original data into Z now we use this Z to regress

on Y, Y will be regressed on this transformed data Z.
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Example — 1 (Contd.)

Regression analysis is performed on these
components i Staa

1133
3/2S
) 199
F=2% oy
: -500.0
= i - . >
B=(ZZ) ZI ¥ = [ssaz
|7
-397.0
2218
-224.6
80.9
308.3
1036.7

O 70.6
0 =l
S 4440
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So, we write Y is equal to Z B, where Y is the dependent variable and Z is this
transformed data now this matrix is obtained and B is the matrix, the vector of unknown
parameters which we want to estimate. So, being a multiple regression, multiple linear
regression we have seen how to estimate B. So, we call it as B cap is equal to Z dash Z
inverse Z dash Y much the same way as we did for our multiple linear regression with
the original variable except that we are now using the transformed data the transform
data is obtain from transforming the standardized values, standardized vector of
standardized matrix of standardized values of the independent variables. And multiplying
that matrix with the principle component and we have used six principle components,
associated with the six eigen vectors which explain about 95 percent of the variance in
Y. So, we know Z therefore, we can get Z dash Z inverse and Z dash is obtained and we
know Y, Y is the centered values of the the vector of the centered values of the

dependent variable. So, we know Y and therefore, we can get B dash.
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Example — 1 (Contd.)

889.01 0.00 0.00 000 0.00 Q.00

0.00 47.36 0.00 000 0.00 0.00

x Ly 0.00 0.00 1885 0.00 0.00 0.00
(Z Z ) =000 0.00 0.00 655 0.00 000
0.00 000 000 000 ?ﬂ =.00

0.00 000 0.00 000 000 462

Gx6
1922
133
B=(zz) zr=| 31 e
73.9 V.
70 4.1 5
(K

. 157
NPTEL Gx1 A ‘ (
1
- L e

Now, B dash is the estimated values of the parameters beta one, beta two, etcetera beta p,

in this case we get six beta values. So, Z, Z dash Z inverse this matrix Z dash Z inverse. |
will give you directly this is a six by six matrix and this is a symmetric matrix diagonal
diagonal symmetric matrix and this is what you get here and using this we get B cap
which is the estimated values for betas as six by one matrix as one ninety two point two

and so on.
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Example — 1 (Contd.)

The regression equation is

y=192.1569 P, + 13.29536 P, — 33.1304 P,
7292323 P_, - 64.0569 P — 15.6921 P,

R* =0978

2 . ‘.*l-,n-*




So, this is your beta one this is beta two and so on. So, we have now estimated the
coefficients for the regression relationship with beta one, beta two, etcetera beta six and
we can write the regression relationship. Now, using this as if we do not have the
intercept directly we use all the six species, we write this as one ninety two point one

five six P c one, etcetera P ¢ two, P ¢ three and so on. This is your y.
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Example — 1 (Contd.)

Regression analysis is performed on these

components 3142
25

3399

F=Z%h -

- -1 o
B=(zz)'zr  y_[®i
387

-397.0

oy ]

-224.8

309

308.3

1036.7

7 706 -

& 3284 ?
4440 ] \
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And the associated R square value we obtain as point nine seven eight, which is slightly
smaller than what we obtain earlier which was point nine eight or some such thing. Now,
there are two important things, here important aspects we are writing Y is equal to Z B
and that in the long form, we are writing this as y is equal to these are the beta one, beta
two, beta three, etcetera values the P ¢ one, P ¢ two, etcetera are in fact, the eigen vectors
that we have obtained these are the eigen vectors let say, we are looking at six values. |

am sorry.
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Example — 1 (Contd.)

First six components are considered in the analysis
and the modified data is obtainedas 7 =\ |

6 038082 039 0T 008-095.129-12

(Refer Slide Time: 46:06)

So, let us look at the eigen vector there these are the eigen vectors. So, that is how we
obtain regression relationship on Pc’s that is the principle components, which are
essentially the eigen vectors. Now, there are some interesting features on this particular
regression equation you see you obtain beta one as one ninety two point one six beta two
and this value and so on, by using six principle components. Because we said that 95
percent of the variance has to be explained by this model and therefore, 1 go up to six
values let say that, | sacrifice some more information and not go up to 95 percent. But |
will restrict myself to first three principle components alone. So, I may not be able to
explain 95 percent, but may be slightly smaller than that let say 85 percent or 86 percent
and soon and then discarding some other principle components, | redevelop the

regression relationship.

Let say, out of this six, | redevelop discarding this three, now an interesting point here is
that, when we do that these coefficients still remain the same this is because they are
orthogonal to each other. Remember, the principle components are orthogonal to each
other and that feature brings to the fore the fact that, if you discard some of the beta
values or some of the principle components and then redo the regression your

coefficients still will remain the same and this is quite interesting.
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Example — 1 (Contd.)

The eigenvalues and % variance explained: e

A

| Eigenvalues | % variance explained

4945 49.447
| 2631 26.310 > 95% variance
1.047 10.470 explained by first
[ 0364 3641 & principal
0.307 3.069 components
0.257 2565
0.205 2.047
0140 | 1.399
#0063 0.629
{ ‘f) 0.042 0.423

Let us look at that, these are your percentage explain from your earlier table, we used
these are the percentage explained we have arranged them in a descending order. In fact,
in this particular it comes in the descending order. So, when we used 95 percent of the
variance we went up to the sixth principle component. So, we used all the six principle
components we use the same table now and look at only the first three principle
components. So, the first three principle components explain 85 percent of the variance
approximately let say that | am satisfied with using 85 percent of the information; that
means, | want to reproduce 85 percent of the information in terms of the variance and
therefore, | restrict my regression relationship only to these three principle components
and develop the regression relationship, again much the same way as | did just a while
ago using all the six principle components, | do this now on these three principle

components.
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Example — 1 (Contd.)

First six components are considered in the analysis
and the modified data is obtainedas 7 =\ .1
(G017 036 038.082 039 073 008.095.129 l:-'h
08e 002 072 024 .017 048] ™ -
02T 05 a V82| |0390 -0 185 0211 <0 197 0451 0308
02 0 a
049 042 051 OT8 O 0,387 -0 188 -0.053 -0 543 -0 127 0 215
038 -121 001058 057 073 028-145-058 059 & 0029 0382 0735 0074 0128
113 100 070-080 107 122 131 05013 007
083 090158095 108 081 079-213.164.288
a17 L1110 -
Z =|1:.am.122.110 147 081 072081008 07| [040¢ 0005 0179 0121 059 D058
062 038 001044 Q8T 054 011059 160 053) lo 377 .0 187 -0 220 0588 -0 116 -0 396
-105 023 082063 092 058 097048082 110} | e et S
048 091 03T 108 138 0 038 080 028 052) |0722 0482 0521 -0 117 0237 0 W8
01 07T 020 092 000 O
023 000 008 068 021 O
051 037 085 124 003 1985
294 24T 178 230 253 17 Q80038 078 008 , - ey B
: 093 098-142 029 101 027 -107 037 089 tso| [0 9443 0470152 03N 038
L i
(; 042 014-138 028 078 080 .011.035 068 017 10x6
J

8
Lis 1or os2 115 o o051 108 083 107 108M4gx 10

0298 -0.327 -0.380-0.111 0246 0400

T0T 088132 088) o317 0338 0122 0484 0089 O8O
0238 102 082 028
016 .090 08g) 10136 0528 0237 -0.200 Q4120110
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Example — 1 (Contd.)

((1.283 -1.278 1.259 -0.492 0.138 0.045)
1.133 0182 1.776 0.367 -0.088 -0.381
1.825 2512 0.974 0410 0.245 0.386
1.273 1.972 0.998 0.828 0.040 0.127
1176 2403 0.134 -1.034 -0.232 -0.649
-1.907 -0.547 0.724 0.067 0.087 -0.705
2395 1519 0.673 0.048 0.429 0.160
Z=X A= |[3719-2327 1.050 -0.058 -0.483 -0.172
-3.115 0333 -0480 0.475 -0.042 -0.194
0.830 1.247 -0.735 0.055 -1.484 -0.236
-1.700 0.084 -1.054 -0.154 0.348 -0.373
= 1.345 -0.585 -0.305 -0.126 -1.214 1.016
- 0430 -2241 0.012 -0.817 0.203 0.574
0.243 -0.433 -0.168 0.391 0.583 1.067
1.338 -2.177 0.7 1328 O.157 -0.178
5527 -2835 -0.199 -0.183 0.169 -0.843
-1.202 0.857 -2516 0.433 0.246 -0.259
! -1.219 0.388 -0.975 -0.743 0.058 0.311
(; 19x6

(2341 0.821 -0.416 -0.792 0.808 0.081

HIPTHEL

So, we do the same thing our X matrix remains the same and our A matrix now is
restricted only three variables, these are the three principle components. So, | will get a
ten by three matrix instead of the ten by six that I got earlier, I use this transformed data
now and then Z is equal to X into A. So, this is a z matrix this will be nineteen by three,

instead of the nineteen by six, that | got earlier.
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Example — 1 (Contd.)

Regression analysis is performed on these

components 3142 [-1.283 -1.278 1.259)
y 133 1133 0192 1776
¥F=ZB 3825 1.825 2512 0974

139.9 1.273 1972 0.908
. e 198.5 1178 2403 0.134
B=(Z z) ZY ~463.0 ~1.907 -0.547 0.724
-500.0 2385 1519 0673

-629.2 -3.779 -2.327 1.050
J =552 | 7 —|-3115 0333 -0.480
183.7

k 0.830 1.247 -0.735
-397.0 -1.700 0.084 -1.054
216 1.345 -0.585 -0.305

-224.6 -0430 -2.241 0.012

80.9 0.243 -0.433 -0.168

308.3 1.338 -2.171 -0.751

) 1036.7 5.527 -2.835 -0.199
0 706 -1.202 0.857 -2518
0 -3284 -1.219 0366 -0.975
: w40 (2341 0921 -0.418)
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Example — 1 (Contd.)

Considering first three components  Considering first six components

89.01 0.00 0.00 0.00 0.00 0.00
0.00 47.36 0.00 000 0.00 0.00
. 000 4736 000 0.00 0.00 18.85 0.00 0.00 0.00
(ZZ) = 0.00 00 0.00 655 0.00 0.00
0.00 000 18 0.00 0.00 0.00 0.00 552 0.00

0.00 0.00 0.00 0.00 0.00 462

89.01 0.00 0.00

1922

. . 1922 133
B=(ZZ) Z¥ = 133 -33.1

331 e

r -64.1
(‘\# -15.7

Then we develop the regression relationship which is y is equal to Z into B and y is this
this remains unchanged and z is modified, now z is ten by three now. So, | get beta cap
as Z dash Z inverse Z dash Y. So, | get the beta cap Z dash Z inverse the intermediate
values are given, look at this now, if we took only the first three components, 1 am
getting the matrix up to this point this is my first three components whereas, if | took all
the six components | would have got this matrix. So, this is just a subset of the earlier
matrix. So, | get this principle component and then obtain the B cap which is the

estimated values for the parameters b as 192.2 13.3 minus 33.3 point three, look at the



earlier estimates these three components still remain the same. So, when | change my
dimension these have not got changed these are just the same and | have just discarded

discarded these other remaining three.

(Refer Slide Time: 52:38)

Example — 1 (Contd.)

The regression equation is

y =192.1569 P, + 13.29536 P, — 33.1304 P,
3

R* =0961

Now, that is the interesting feature of the principle component. So, we can just ignore
these three and first use the first three in our regression relationship. So, the equation
now is the first three coefficients only will come into the picture and these three
coefficients are exactly the same as we obtained earlier using the six components and |
obtain r square value of 0.961 which is smaller than if | had used six components. So, if |
use all the ten variables in their original shape, | got some other r square value I got some
ah regression relationship r square value higher than the other two then I reduce the size |
used six components I got R square value of 0.97 or some such thing I reduced it further
and then | get a R square value of 0.961. Now, this in some sense indicates amount of

information that can be reproduced by using this particular regression relationship.
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Regression on Principal Components

+ The numerical value for the p's retained in the
regression will not be altered by reducing the size.

+ |nterpretation of p’s in terms of the independent
variables is simplified.

« The resulting regression coefficients are more stable
when applied to a new set of data.

» Disadvantage is that even if some of the pri
components are eliminated, all of the origin
variables must be still measured.

So, this is what we do in regression using the principle components, now there are
certain advantages of doing this; as | just mentioned, let us say that you took 95 percent
of the variance, and then that is a that is those eigen vectors which would reproduce 95
percent of the variance, in our example it was six. So, six of then you took and the obtain
the regression relationship. On that, if you discard the three the remaining three
coefficients still remain the same that is the beauty of this. So, the numerical values of
the betas as you obtain using large number of principle components will remain the
same, even if you discard some of them some of the later betas and then the
interpretation of the betas in terms of the independent variables is simplified. Now,
because we are saying that these betas are these principle components that we are using

in the regression relationship are explaining so much of the variance.

But you know when we do this principle component analysis, even if we use let say only
three of principle components in the regression relationship still the complete observed
data on all the ten variables are necessary. This, | keep on repeating that the betas or the
principle components that we are using. Now, should not be related one to one with the
original variable these principle components are linear transformation of combination of
all these ten variables and therefore, even if we use only three principle components the
original data must be available for all the ten variables. So, that is minor disadvantage.
So, to conclude now in today’s lecture, essentially we picked up on the principle

component analysis that, we discussed in the previous lecture and saw how we use the



principle components in the regression relationship. So, essentially of you recall the
principle component analysis is done on the principle components are the eigenvector

which are obtained in the covariance matrix.

So, if you had ten variables you have a ten by ten covariance matrix and on this, you
obtain the eigen vectors and these eigen vectors are in fact, the principle components. So,
for a ten by ten matrix, you get ten eigen vectors and each of these eigen vectors
represent a principle component and instead of doing your regression of the dependent
variable on the original independent variables, we do the regression of the dependent
variable on the principle components or the eigen vectors. This has the advantage that the
eigen vectors are uncorrelated. So, the first eigenvector has no correlation with the
second eigen vectors and so on. And also we have the advantage that, we can reduce the
size of the regression instead of using ten principle components or ten variables original
variables. We may use just six in the example that we just saw we used only six because
the six eigen vectors explained or contributed to 95 percent of the variance in the original
problem original dependent variable.And thus, we can reduce the size depending on how
much percentage the particular set of principle component can explain. In fact, in many

realistic situations we may have twenty variables thirty variables and.

So, on associated with that we may have twenty eigen vectors, out of which only the first
three may explain up to ninety percent or ninety five percent of the variance and
therefore, you can afford to ignore all the remaining principle components and
developing the relationship just based on the first three principle components. So, these
are the advantages. Next, we move on to multivariates stochastic models; that means, we
now know how to develop regression relationships based on multiple variables. We will
extend this, specifically to hydrologic problems where we are dealing with multiple
variables and then we want to develop stochastic models on that. So, we will continue

the discussion in the next lecture. Thank you for your attention.



