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Welcome to this the lecture number 32 of the course stochastic hydrology. If you recall 

in the last lecture, we discussed essentially about the principal component analysis, but 

as a prelude to preparation to the principal component analysis, we discussed some 

basics of the matrix algebra especially, dealing with the eigen values and the eigen 

vectors. Now, for a square matrix, we saw that the eigenvalues can be got by determinant 

A minus lambda i is equal to zero, where A is the square matrix for which you need the 

eigen values and lambda are the eigen values and i is the identity matrix. Now, once you 

get the eigen values, you can also go on to get the eigen vectors by putting A X is equal 

to lambda X, where, X become the eigen vectors. If you have a the matrix A of size n by 

n, then you will have n eigen vectors corresponding to the n variables of the A matrix. 
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Then we went on to do the principal component analysis, where we express Z is equal to 

X A, where Z is a transform data X is your original data. If you have p variables and 



each of the p variables having n observations, then this will be of the size n by p and A is 

the vector of A is a matrix consisting of the eigen vectors. So, you will have p by p size. 

So, that is how you get the transformed data Z. Now, this is what we did in the principal 

component analysis. Towards the end of the principal component analysis, in the 

previous lecture, I mentioned that there are advantages of dealing with the principal 

components, when we are regressing using the regression with multiple variables, large 

number of variables and the typical example that we provide in hydrology is, let say the 

runoff at a particular location is dependent on several rain gazes, several rainfall values 

in the catchment, and then apart from the rainfall values it may also depend on other 

variables. 

For example, it may depend on the soil moisture, it may depend on the vegetation, it may 

depend on the area of the catchment and so on. So, there are several variables on which 

the runoff is dependent and you want to develop the regression, for the runoff in terms of 

all of these variables, there are two features in this particular exercise; one is the number 

of variables themselves number of variables itself is large let say you may be dealing 

with ten variables twelve variables and so on. With each of the variables having large 

amount of data, let say rainfall at the location, have you have fifty years of data similarly 

runoff, you have fifty years of data and rainfall, may be for several the locations at each 

rain gaze you may have fifty years of data. So, the size of the problem becomes large 

when you are dealing with large number of variables and large amount of data. 

Additionally, many of these variables may be correlated among themselves, as I 

mentioned, if you are looking at soil moisture and rainfall together in the regression 

model as independent variables, the soil moisture and rainfall themselves will be highly 

correlated. So, to account for these correlations in essentially to remove these 

correlations among the independent variables and to reduce the size of the problem; that 

means, instead of dealing with ten variables I may want to deal with only three variables. 

To achieve this purpose, we carry out the principal component analysis. So, there are two 

major advantages of the principal component analysis; one is the original set of 

correlated variables are transformed to a set of uncorrelated components and this is a 

linear transformation of the original variables and in doing so, what we are also doing is 

that, we are identifying which of these components explains most of the variance present 



in the process and therefore, we we can afford to choose only a few of the principal 

components and ignore the remaining. 

So, what was a regression of on ten variables may, now be reduced to a regression only 

on two variables although these two variables that, we are now dealing with will not be 

directly related with the original variables. There some kind of a linear transformation of 

the original variables. So, the original variables would have lost their identity in the final 

regression, we may not be able to say that the first component is in fact, rainfall again 

component soil moisture and so on. Both these components will be a linear combination 

of all the variables that we considered earlier. So, we will progress now and see how we 

use the principal components in the regression. Remember, our idea is to develop a 

relationship between the dependent variable. Let say the runoff and the set of 

independent variables which we have identified based on the physical processes that 

governed the runoff process and we have the data on all of these variables on dependent 

variable. We have and concurrent values of the independent variables concurrent because 

we are saying that the rainfall during that period. Let say, you are talking about a month 

time period rainfall during that month produces the runoff, during that particular month 

and therefore, you should have concurrent values of all of these variables dependent 

variable as well as all the dependent variables. 

On the independent variables, we do the principal component analysis. In the last lecture, 

I introduced how to do the principal component analysis on any sets of variables. So, on 

the independent variables, now we carry put the principal component analysis. What is 

the idea? The idea is, again that we want to transform this set of independent variables 

independent in the sense, that they are independent of the dependent variable, but among 

themselves they may be correlated. So, we want to transform this set of independent 

variables x one, x two, x three, etcetera up to x p, into another set of variables which we 

call them as principal components, by using the transformation and that is what we do 

and then regress the dependent variable. Now y with respect to the principal components 

and not with respect to the original variables and that has several advantages let us see. 
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So, essentially regression on principal components is necessary, because we want to 

develop a stochastic model on the dependent variables using all these independent 

variables and the derived principal components as we derive from the first set, we do the 

principal component analysis on the independent variables and these principal 

components are used as independent variables in the regression. 
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So, why now we regress with the principal components, that is what we call as regression 

on principal components. What do we do in this, there are p variable, p independent 

variables here and for each of the p variables you have number of values available with 

for example, i is the i eth observation of the j eth variable. So, you may have several 



variables j is equal to one to p, p variables you may have the independent variables we 

standardize. Generally, rather than just centering because these independent variables 

may come with different units like, I said rainfall may be in depth units soil moisture 

may be in percentage area may be in area unit and so on. So, to account for the different 

variables that come with different units we standardize all of them. So, that you are 

writing it as x i j minus x bar j over s j. Now the capitals and small are used 

interchangeably in regression as I mentioned earlier.  

So, do not worry too much about the capitals and the small as long as you understand 

that this is the observed value of the i eth observation and j eth variable and therefore, we 

are talking about the mean of the j eth variable and the standard deviation of the j eth 

variable. So, that is how you standardize all the independent variables. The dependent 

variable being the single variable we can just use a centering. So, we call this as 

centering, this is observed value for the dependent variable i eth observation minus y bar. 

y bar is the mean of the dependent variable. So, the dependent variable we center and 

independent variables we standardize and then use the principal component analysis on 

the independent variables. 
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Then the transform matrix Z, remember this is the this defines our X, which is the 

independent variables or the transformed independent variables or the standardized 

independent variables, if you wish and these are the principal components. So, this is 



matrix consisting of the eigen vectors. So, on this we get the transform data Z. So, Z is 

transformed from the standardized data on the original independent variables, which is 

the p variables. So, this is a n, n by p matrix and this is p by p matrix, because we are 

talking about the eigen vectors and Z is again n by p matrix of the transformed data, then 

we look at the dependent variable. 
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Let me explain that, you have the dependent variable let say, this is the y matrix which is 

n by one vectors because there are n observations and this is Z which is a n by p matrix. 

So, this is n by one and this is n by p and these are the coefficients of the regression this 

is a coefficient matrix and that is p by one vector of unknown parameters and our aim in 

the regression is to determine these unknown parameters. Recall from the lecture, before 

the previous one, where we discuss the multiple linear regression on how to obtain these 

unknown parameters for a multiple linear regression, exactly the same procedure we 

follow here and then obtain the betas. Now, in the scalar form it is written as y i is equal 

to j is equal to one to p summation beta j z i j, this is a scalar form of this matrix form. 

So, essentially we solve this now and then obtain beta Z is known Y is observed values 

of the dependent variable and therefore, we can obtain B the matrix B. 
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So, from your multiple linear regression, just compare this, how did we estimate B in 

that case. In this case, when we are writing Y is equal to Z B, we write B cap, which is 

the estimated value of B as Z dash, Z inverse Z dash Y, where our Z is this Z now X A, 

this is Z and our Y is n by one. So, Z is let us look at the dimensions, now what is Z, Z is 

n by p matrix. So, Z is n by p. So, this is p by n Z dash and Z is n by p and therefore, you 

will get p by p and Z dash is again p by n and this is n by one. So, p by n, n by p. So, you 

get p by p here inverse p by p and then p by n therefore, you get n by n and then n by 

one. So, you will get n by one. I am sorry lets look at that this is, n by p z is n by p minor 

matrix and this is Z dash is p by n. So, you will get p by p and this is Z dash is p by n. 

So, you will get p by p, p by n and n by 1. So, this will be p by 1 b dash will be p by 1. 
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So, that is what you get here this is beta 1, beta 2, beta 3, etcetera up to beta p. This is p 

by 1 this is a matrix that you obtain from this expression here. So, essentially we write y 

is equal to z into B and then our aim is to obtain this B. And this is how we obtain B 

from this. Once these are fixed that is these are obtained or these are estimated beta 1, 

beta 2, etcetera beta p, then your regression equation is in place. 
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So, let us look at an example now, here what we are doing is that let say, we have a basin 

where let say, this is a basin and then you have the runoff values available here. And then 

these are several rain gazes. Let us look at this is rain gaze ,1 rain gaze 2, rain gaze 3, 4 

etcetera. A common method is, in the hydrology that you get some averaged rain value 

and then relate it with the y here. But it may so happen that, you would like to use all of 

these rain gazes independently let say, there is x one here x two x three and so on. You 

may want to use all of them and then relate with the runoff at this location. So, we may 

want to write y as a function of x 1, x 2, etcetera x p. There are p independent variables 

and then we want to estimate the runoff, at this point which we also we call it as yield of 

this stream let say, there is a stream here and then these are all the stream locations. So, 

this rainfall is contributing to runoff at this location and this runoff, we want to estimate 

based on the values here x one, x two, x three, x four and so on.  

There may be p such rain gazes. Let us do this exercise, the first point to be noted here is 

that, x one and x four may be correlated x one and two, may be correlated because they 

may come from the same hydrologic region. We are talking about this watershed here 

and therefore, they may come from the same hydrologic religion. This is a homogeneous 

hydrologic region and therefore, the rainfall here and rainfall here and at all these 

locations may have significant correlations. And the other thing is that you may have so 

many rain gazes. Here, that the size of the problem may become slightly unmanageable, 

if you are having let say, ten variables twelve variables and so on. Additionally, apart 



from the rain gazes, you may also have some other variables being put into the runoff 

estimation. For example, you may want to put in a vapour transportation because from 

the run rainfall part of it also goes as a vapor transportation and therefore, you would like 

to account for that in the runoff that is observed. You have the observed values of y let 

say, for the last fifty years, every month you have the observed values. So, six hundred 

values, you may have, you have concurrent observed values on rainfall at this location 

which gives x one rainfall, at this location which gives x two and so on. For all the p 

variables, for all the p sites you have rainfall values observed concurrently with the 

runoff values. 

Now, we want to fit a regression equation of the type y is equal to f x one, x two, etcetera 

x p. We will use the principal component analysis and then fit this regression equation. 

So, on the principal component for the principal component analysis the first thing we do 

is to standardize the original data that is a on the independent variables and also center 

the dependent variable data then we have to carry out the principal component analysis 

how did you carry out the principal component analysis? Once you have the data matrix 

x, which is n values, corresponding to each of the p variables, which means a it is an n by 

p matrix. We calculate the covariance matrix from this; that means, covariance of p 

variables with p variables. So, we get a p by p matrix of covariances. On the p by p 

covariance matrix which is a square matrix, we get the eigen vectors and the eigenvalues 

for the covariance matrix and we use these eigen vectors as the principal components and 

then obtain the associated principal components for the covariance matrix and then use 

the regression equation on these principal components. 
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So, let us see how we do that in the example. So, if you have rainfall annual, rainfall at 

ten stations. So, these rainfall values we denoted as x one, x two, x three, etcetera up to x 

ten. So, there are ten stations. So, you have ten variables associated with it, the observed 

annual yield associated with these nineteen years of annual rainfall are also given; that 

means, this is annual rainfall and the associated annual yield by yield. We assume 

understand that it is a runoff at that particular location. Which means that is a yield of 

that water shade which is just the runoff that is observed. So, we have concurrent values 

for nineteen years on the annual yield as well as on these ten stations which are taken as 

independent variables here. So, we want to obtain the prediction model for the yield 

associated with the rainfall. So, we want to develop a relationship between the annual 

yield and the rainfall in all these ten stations. 
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So, let us look at how the data is organized we have nineteen years of data. So, these are 

the annual values. So, this is the year number and the annual yield is given here, for all 

the nineteen values this we take it as a dependent variable y and these are all the rainfall 

values given at the ten stations. So, at the ten stations you have the associated rainfall 

value now both are given in millimeter units. What do I mean by runoff wing in 

millimeters that you have observed the runoff. Let us say, you have observed the volume 

of runoff divided by the total area of the catchment, you will get runoff in the depth 

units. So, all of these are in depth units. Now, as you can see you may have a significant 

correlation between x 6 and x 9. For example, x 6 and x 10, x 2 and x 4 and so on. So, 

among these variables, there may be some combinations of variables which have 

significant cross correlation; that means, they may be correlated with themselves.  

Now, such problems in regression are called as those of multicollinearity; that means, 

there is a significant correlation among two or more variables among the independent 

variables. So, this correlation needs to be addressed when we are developing a regression 

relationship. As I said, the first step is that we standardize all the independent variables 

and generate the vector x, which consist of the matrix x which consist of the standardized 

independent variable that will be p by n which means ten by nineteen that is n by p that is 

nineteen into p variables.  



So, let us look at the regression equation now. What we do is to demonstrate the utility or 

the usefulness of the principal components. First, we will use all of these ten variables as 

they are and develop a multiple linear regression ship linear regression between y and 

these ten variables as they are we will not do any principal component analysis to begin 

with. 
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So, when we do that we express y as x b this is from your multiple linear regression y is 

a vector of 19 by n there are 19 values and there is only one variable. So, 19 by n x is a 

matrix of 19 values of ten variables. So, this is 19 by 10 and B is a vector of unknown 

parameters and there are ten such parameters one associated with each of the variables. 

So, this is 10 by 1. So, you get beta cap as x dash, x inverse, x dash y, this is from your 

original regression. And So, you will get or regression of this type, we also introduced 

the intercept there you just recall form your multiple linear regression, then you get 

expression of y as a function of these ten variables and you get the intercept as 782.4 to 

get the intercept what you would have done is you would have put the first values of all 

the betas as one, all the x one as one you just refer to the multiple linear regression to get 

this intercept and you get the coefficients beta one, beta two, etcetera up to beta ten 

based on this equation here. 
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Now, this is what we obtain, when we regress the dependent variable on the independent 

variables as they are observed without doing any principle component analysis as you 

can see here, all the ten variables have been used and there are ten regression 

coefficients. Here, if we use this regression equation as obtained here and we get the R 

square value, this is what we discussed in the previous lecture R square value is given by 

B dash, X dash, Y minus n y bar square, where y bar is the mean of the Y data by Y dash 

Y minus n y bar square n is the number of data X dash is the transpose of your X matrix 

B dash is the transpose of B vector. 
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So, when we do that you get for this example, R square as point nine eight eight. So, this 

is this would have been nice and acceptable provided the size was not big by ten 

variables and provided we were sure that all of these are uncorrelated. For example, there 

is no correlation between x one and x y x one and x four and so on. So, all of these, if 

they were uncorrelated and the size was not as large as this then it would have been 

acceptable, but we would like to express this regression in terms of the principle 

components, where we we derive a set of variables which are all uncorrelated and then 

we should be able to choose less than ten number of variables may be six may be three 

may be two and so on. 
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So, that is what we will try to do, try to achieve through the principal component 

analysis. So, what we do is, we perform the principal component analysis now on the 

independent variable that is x one, x two, x three, etcetera x ten. We will do the principal 

component analysis on that then regress the y which is the dependent variable on the 

principal component analysis. So, the aim as I mentioned is to reduce the size of the 

problem and to account for correlations among the rainfall values at the ten stations. 

What do I mean by account for it is not as, if we are calculating the correlations and 

putting it into the regression, no we want to convert the original set of independent 

variables which are all correlated among themselves to another set of variables which are 

uncorrelated among themselves and that is what we mean by account for the correlation 

among the independent variable and also do not get confused between the usage of 

words independent variable. 

They are independent in as much as they do not depend on the dependent variable 

whereas, the dependent variable depends on these variables and therefore, they are called 

as independent variables, but they may not be independent among themselves and that is 

what leads to multicollinearity, as I mentioned the multicollinearity by multicollinearity, 

I mean some of these variables that we are using in the regression are correlated with 

each other to do that, then we have ten stations and we have observations going from i is 

equal to one to nineteen in this particular case. 
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So, nineteen years of data at ten stations. So, that data x i j we deduct x bar j at the j eth 

stations you take out the mean of that j eth station data and divide it by the standard 

deviation of the j eth station data. 
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That is, you take any station the mean of this and the standard deviation of this you use 

to standardize the data at station number six that is what we do here and so we obtain 

corresponding to each of the station. We obtain the n values nineteen values which are 

all standardize values. And then that dependent variable y, we simply center it we take 

the mean of this and then y minus y bar. So, we center all of this and obtain the 

dependent variable data. 
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The mean of all of these stations are given here and the standard deviation and of the 

dependent variable the mean is given here the standard deviation is not necessary for y. 

So, we will use these means at this particular location j is the station. So, j goes from one 

to ten here and i is the year of observation. So, you use for the j eth station you use x j 

and s j standard deviation. Similarly, for y you use this mean 3569 as y bar and you get 

the standardize annual rainfall and centered observed basin annually. 
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So, this is centered values and these are standardized values. So, x one to x ten you get 

the standardized values and similarly these are the dependent variables, centered values 

now you focus on this sets of values x one to x ten you have 19 values associated with 

each of them. 
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We will get the covariance we will obtain the covariance matrix for these ten variables in 

preparation for our co principal component analysis S p. How do we obtain the 

covariance let say, these are the variables. I write them as let say x 1, x 2 etcetera x 10. 

Similarly, x 1 x 2 etcetera up to x 10. So, these are the variables. So, x 1 to x 1 that is a 

covariance and x 1 to x 2 covariance x 1 to x 3 and this is what we obtain here on the 

standardized variables. Remember we are talking about the standardized variables and 

that is why you get the covariance x 1 x 1 as 1 itself and this will be all diagonal 

elements will be one here. So, this covariance is x 1 to x 2 let say I want to compute the 

covariance between x 1 and x 2 it is given by x 1 i 1 is the first first variable and for the i 

eth period i is equal to 1 to n minus x 1 bar x 2 i minus x 2 bar etcetera by n minus 1 n is 

nineteen in this case. 

So, like this you form a ten by ten matrix. So, x 1 to x 10 similarly, x 10 to x 10. So, you 

can get a ten by ten matrix which is a square matrix and for this square matrix. We now 

obtain the eigenvalues and the eigen vectors for obtaining the eigen vectors first you 

have to get the eigenvalues. So, let us get the eigenvalue, if I denote this as the matrix s 

the covariance matrix we denote it as matrix s here and therefore, I should be able to get 

the eigen vectors and the eigenvalues corresponding to the matrix s. 
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How do I get that? So, the eigenvalues are obtained by determinant S minus lambda I is 

equal to 0, I set it as determinant S minus lambda I is equal to 0 and then obtain lambdas 

here S is a ten by ten matrix and therefore, I will get ten lambda values here. So, the 

eigenvalues this is obtained from the matlab routine, we get eigenvalues as four point 

nine five nine four five and. So, on. So, there are ten eigenvalues that are obtained form 

for the covariance matrix. We use these eigen values and associated with each of the 

eigen values we get one eigen vectors, like that we get ten eigen vectors we use this S 

minus lambda I into X is equal to 0 this is a matrix and this is a matrix. So, we obtain the 

eigen vectors now this is eigen vector number one, eigen vector number 2, etcetera. So, 

this eigenvector is associated with this lambda one this eigenvector is associated with 

this eigenvalue lambda 2 and so on. 

So, associated with each of the eigen vector there is a eigen value. As I mentioned, they 

come in pairs there is an eigen value and there is associated eigen vector. So, this is what 

we obtain for the covariance matrix, then we use these eigen vectors and look at the 

percentage variance explained by each of the eigen vectors there are ten such principle 

components, eigen vectors consisting of the principal components here. Let us not get 

confused this is principle component number, one which is the eigenvector number one 

principle component number two number three and. So, on there are ten such values 

here, now we will see how much of percentage variance is explained by the first eigen 

vector the second eigen vectors third eigenvector and so on. To do that we look at the 



eigen values associated eigen values. Let say, this is lambda one lambda two and so on. 

So, I will get the percentage variance explained by this eigenvector by using the 

corresponding eigenvalue. 
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So, I will get lambda j by trace S where trace s is simply the summation of all the 

eigenvalues that is S in this case, will be this plus this plus this etcetera. So, I can write 

trace S if you recall from your last lecture, as we will write trace as is equal to simply 

lambda j over j all the eigen values summation of all the eigen values. And we get the 

percentage variance explained by a particular eigen vector y using this on the associated 

lambda j. So, this says that the first eigenvector explains 49.447 second one explains 

26.310 and so on. This is arranged in descending order. So, this is how we obtain the 

percentage explained by this various eigen vectors.  

Now, look at this, if we take the first six components that is 49.447 plus 26.310 and so 

on. If you take first six about 95 percent of the variance is explained by the first six 

component. So, we have the option of developing the regression only using the first six 

because we are satisfied that 95 percent of the variance is explained by this components. 

So, I can ignore the remaining four, if you want to include all the hundred percent of 

variance then all the ten principle components have to be included. So, let us look at first 

the six components, that is, I use only the first six eigen vectors and develop the 

relationship of the dependent variable on these six principle components, essentially this 



is the advantage you know when we are using the principle components. We can see how 

much of percentage variance or how much of information content is in fact captured by 

using these six eigen vectors is the question that we are trying to answer. So, in this 

particular case, we are saying that 95 percent of the information can be captured in terms 

of the variance. In terms of the variance, we can capture about 95 percent of the 

information by using these six component and therefore, it is not necessary or you can 

afford to ignore the remaining four components that is the interpretation here. So, we 

will use these six components and then regress the dependent variable on the six eigen 

vectors now or six principle components. So, to say. 
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So, what we are doing now Z is equal to X A is, what we are saying and A is the 

principle components and we are using only the six principle components. So, A is a 

vector of ten into six there are six principle components look at this now, the first column 

is the first eigenvector which is the first principle component second principle 

component third principle component etcetera look at the eigen vectors, here this is the 

first principle component, second principle component up to six we go one, two, three, 

four, five, six and these are the six principle components we have considered. And these 

ten are associated with the ten variables. So, you had initial ten variables. So, you have 

got ten values corresponding to that remember eigen vectors this dimension is p by p 

which is ten by ten out of that we are taking up to six therefore, we are taking ten by six 

matrix here from this and then using the principle using the regression relationship and 

this is your original X value by original X value. I mean it is a transformed X value 

standardize X values. So, this comes from the standardized X values here. 
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This is point one seven two minus one point two one. So, we use this entire data here, 

after transforming after standardizing and then put the regression relationship. So, this is 

point one seven two minus one point two nine. So, this is your nineteen by ten values the 

matrix is nineteen by ten and this is ten by six. So, you obtain a matrix of nineteen by 

six, for Z that will be n by p and now this p is restricted to six now. 
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So, this is the matrix Z, we get this is the transformed data as after I do the multiplication 

X Y A, when I do this, I get the matrix Z as nineteen by six now, this one has to be 



regressed on the dependent variable Y. What did we do now, we use the principle 

component analysis and transform the original data into Z now we use this Z to regress 

on Y, Y will be regressed on this transformed data Z. 
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So, we write Y is equal to Z B, where Y is the dependent variable and Z is this 

transformed data now this matrix is obtained and B is the matrix, the vector of unknown 

parameters which we want to estimate. So, being a multiple regression, multiple linear 

regression we have seen how to estimate B. So, we call it as B cap is equal to Z dash Z 

inverse Z dash Y much the same way as we did for our multiple linear regression with 

the original variable except that we are now using the transformed data the transform 

data is obtain from transforming the standardized values, standardized vector of 

standardized matrix of standardized values of the independent variables. And multiplying 

that matrix with the principle component and we have used six principle components, 

associated with the six eigen vectors which explain about 95 percent of the variance in 

Y. So, we know Z therefore, we can get Z dash Z inverse and Z dash is obtained and we 

know Y, Y is the centered values of the the vector of the centered values of the 

dependent variable. So, we know Y and therefore, we can get B dash. 
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Now, B dash is the estimated values of the parameters beta one, beta two, etcetera beta p, 

in this case we get six beta values. So, Z, Z dash Z inverse this matrix Z dash Z inverse. I 

will give you directly this is a six by six matrix and this is a symmetric matrix diagonal 

diagonal symmetric matrix and this is what you get here and using this we get B cap 

which is the estimated values for betas as six by one matrix as one ninety two point two 

and so on. 
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So, this is your beta one this is beta two and so on. So, we have now estimated the 

coefficients for the regression relationship with beta one, beta two, etcetera beta six and 

we can write the regression relationship. Now, using this as if we do not have the 

intercept directly we use all the six species, we write this as one ninety two point one 

five six P c one, etcetera P c two, P c three and so on. This is your y. 
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And the associated R square value we obtain as point nine seven eight, which is slightly 

smaller than what we obtain earlier which was point nine eight or some such thing. Now, 

there are two important things, here important aspects we are writing Y is equal to Z B 

and that in the long form, we are writing this as y is equal to these are the beta one, beta 

two, beta three, etcetera values the P c one, P c two, etcetera are in fact, the eigen vectors 

that we have obtained these are the eigen vectors let say, we are looking at six values. I 

am sorry. 



(Refer Slide Time: 40:52) 

 

(Refer Slide Time: 46:06) 

So, let us look at the eigen vector there these are the eigen vectors. So, that is how we 

obtain regression relationship on Pc’s that is the principle components, which are 

essentially the eigen vectors. Now, there are some interesting features on this particular 

regression equation you see you obtain beta one as one ninety two point one six beta two 

and this value and so on, by using six principle components. Because we said that 95 

percent of the variance has to be explained by this model and therefore, I go up to six 

values let say that, I sacrifice some more information and not go up to 95 percent. But I 

will restrict myself to first three principle components alone. So, I may not be able to 

explain 95 percent, but may be slightly smaller than that let say 85 percent or 86 percent 

and soon and then discarding some other principle components, I redevelop the 

regression relationship. 

Let say, out of this six, I redevelop discarding this three, now an interesting point here is 

that, when we do that these coefficients still remain the same this is because they are 

orthogonal to each other. Remember, the principle components are orthogonal to each 

other and that feature brings to the fore the fact that, if you discard some of the beta 

values or some of the principle components and then redo the regression your 

coefficients still will remain the same and this is quite interesting. 
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Let us look at that, these are your percentage explain from your earlier table, we used 

these are the percentage explained we have arranged them in a descending order. In fact, 

in this particular it comes in the descending order. So, when we used 95 percent of the 

variance we went up to the sixth principle component. So, we used all the six principle 

components we use the same table now and look at only the first three principle 

components. So, the first three principle components explain 85 percent of the variance 

approximately let say that I am satisfied with using 85 percent of the information; that 

means, I want to reproduce 85 percent of the information in terms of the variance and 

therefore, I restrict my regression relationship only to these three principle components 

and develop the regression relationship, again much the same way as I did just a while 

ago using all the six principle components, I do this now on these three principle 

components. 
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So, we do the same thing our x matrix remains the same and our A matrix now is 

restricted only three variables, these are the three principle components. So, I will get a 

ten by three matrix instead of the ten by six that I got earlier, I use this transformed data 

now and then Z is equal to X into A. So, this is a z matrix this will be nineteen by three, 

instead of the nineteen by six, that I got earlier. 
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Then we develop the regression relationship which is y is equal to Z into B and y is this 

this remains unchanged and z is modified, now z is ten by three now. So, I get beta cap 

as Z dash Z inverse Z dash Y. So, I get the beta cap Z dash Z inverse the intermediate 

values are given, look at this now, if we took only the first three components, I am 

getting the matrix up to this point this is my first three components whereas, if I took all 

the six components I would have got this matrix. So, this is just a subset of the earlier 

matrix. So, I get this principle component and then obtain the B cap which is the 

estimated values for the parameters b as 192.2 13.3 minus 33.3 point three, look at the 



earlier estimates these three components still remain the same. So, when I change my 

dimension these have not got changed these are just the same and I have just discarded 

discarded these other remaining three. 
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Now, that is the interesting feature of the principle component. So, we can just ignore 

these three and first use the first three in our regression relationship. So, the equation 

now is the first three coefficients only will come into the picture and these three 

coefficients are exactly the same as we obtained earlier using the six components and I 

obtain r square value of 0.961 which is smaller than if I had used six components. So, if I 

use all the ten variables in their original shape, I got some other r square value I got some 

ah regression relationship r square value higher than the other two then I reduce the size I 

used six components I got R square value of 0.97 or some such thing I reduced it further 

and then I get a R square value of 0.961. Now, this in some sense indicates amount of 

information that can be reproduced by using this particular regression relationship. 
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So, this is what we do in regression using the principle components, now there are 

certain advantages of doing this; as I just mentioned, let us say that you took 95 percent 

of the variance, and then that is a that is those eigen vectors which would reproduce 95 

percent of the variance, in our example it was six. So, six of then you took and the obtain 

the regression relationship. On that, if you discard the three the remaining three 

coefficients still remain the same that is the beauty of this. So, the numerical values of 

the betas as you obtain using large number of principle components will remain the 

same, even if you discard some of them some of the later betas and then the 

interpretation of the betas in terms of the independent variables is simplified. Now, 

because we are saying that these betas are these principle components that we are using 

in the regression relationship are explaining so much of the variance. 

But you know when we do this principle component analysis, even if we use let say only 

three of principle components in the regression relationship still the complete observed 

data on all the ten variables are necessary. This, I keep on repeating that the betas or the 

principle components that we are using. Now, should not be related one to one with the 

original variable these principle components are linear transformation of combination of 

all these ten variables and therefore, even if we use only three principle components the 

original data must be available for all the ten variables. So, that is minor disadvantage. 

So, to conclude now in today’s lecture, essentially we picked up on the principle 

component analysis that, we discussed in the previous lecture and saw how we use the 



principle components in the regression relationship. So, essentially of you recall the 

principle component analysis is done on the principle components are the eigenvector 

which are obtained in the covariance matrix. 

So, if you had ten variables you have a ten by ten covariance matrix and on this, you 

obtain the eigen vectors and these eigen vectors are in fact, the principle components. So, 

for a ten by ten matrix, you get ten eigen vectors and each of these eigen vectors 

represent a principle component and instead of doing your regression of the dependent 

variable on the original independent variables, we do the regression of the dependent 

variable on the principle components or the eigen vectors. This has the advantage that the 

eigen vectors are uncorrelated. So, the first eigenvector has no correlation with the 

second eigen vectors and so on. And also we have the advantage that, we can reduce the 

size of the regression instead of using ten principle components or ten variables original 

variables. We may use just six in the example that we just saw we used only six because 

the six eigen vectors explained or contributed to 95 percent of the variance in the original 

problem original dependent variable.And thus, we can reduce the size depending on how 

much percentage the particular set of principle component can explain. In fact, in many 

realistic situations we may have twenty variables thirty variables and.  

So, on associated with that we may have twenty eigen vectors, out of which only the first 

three may explain up to ninety percent or ninety five percent of the variance and 

therefore, you can afford to ignore all the remaining principle components and 

developing the relationship just based on the first three principle components. So, these 

are the advantages. Next, we move on to multivariates stochastic models; that means, we 

now know how to develop regression relationships based on multiple variables. We will 

extend this, specifically to hydrologic problems where we are dealing with multiple 

variables and then we want to develop stochastic models on that. So, we will continue 

the discussion in the next lecture. Thank you for your attention.  


