
Stochastic Hydrology 
Prof. P. P. Mujumdar 

Department of Civil Engineering 
Indian Institute of Science, Bangalore 

 
Lecture No. # 21 
Case Studies – IV 

 

Good morning, and welcome to this the lecture number twenty one of the course 

stochastic hydrology. In the last lecture we dealt with the case study of the kaveri river 

flows at the KRS reservoir, we considered the monthly stream flows of the kaveri river. 

And then we plotted the time series, the correlogram, the spectral density. 
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And then we went on to identify the model and we also, looked at the validation of the 

model both for synthetic generation as well as, for one time step ahead forecasting. Then 

we also considered the case study, of a stream flow in US river, American river where 

the metrologies are entirely different. And therefore, the contributions to the stream flow 

will be much different compared to the monsoon stream flows that we have in our part of 

the country. For the case study four again, we plotted the time series we plotted the 

correlogram, partial autocorrelation function and the power spectrum. Then we 



formulated several candidate models ARMA of the ARMA type. For each of the model, 

we computed the log likelihood function, the mean square error. 

And thereby, identifying a model for synthetic generation of the stream flows as well as 

for, one time step ahead forecasting using the mean square error criteria. Then we 

formulated the residual time series, residual series and then on the residual series we did 

the validation test. Towards the end of the last lecture, I just introduced the case study of 

the Sakleshpur rainfall. The Sakleshpur region comes on the Western Ghats and 

therefore, it has very high intensity of rainfall compared to the rest of the country in the 

rest of the country. So, we will continue that case study today and see how the power 

spectrum appears like and we also like go on to build an ARMA type of model for the 

Sakleshpur rainfall 
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As, I mentioned earlier, you know we are considering the annual rainfall data here, but, if 

you have let us say, monthly data or daily rainfall data. Typically the rainfall as the 

duration becomes shorter and shorter. It becomes more difficult to analyze the rainfall 

with linear models, as we are doing now. So, typically the rainfall for shorter durations 

specifically, daily time steps or even weekly time steps etcetera they are not amenable to 

analysis by linear models. But because, we are considering annual rainfall data let us see, 

how the process itself behaves? 



Now, this is the time series, compare this with the monthly time series of knavery river 

flows. For example, right at the time series plot you would know that, there are inherent 

period as it is present in the data. We have about hundred and two years of data for the 

Sakleshpur annual rainfall. And this 100 and 2 years data does not show at least, by 

examining the time series plot it does not indicate that there are any significant 

periodicities present in the data. But Let us see, what happens if we plot the correlogram? 

(Refer Slide Time: 03:57) 

 

The correlogram for this again indicates that there are no periodicities. In fact, there are 

these are the significant bands, 95 percent significant bands. Most of the correlations up 

to about, like of 25 we have considered here, they are all insignificant only, the first two 

and perhaps the third one appear to be significant. In fact, this is lag zero. So, you leave 

about lag 1 and 2 seem to be significant in this whereas, all the other correlations are 

insignificant. Because, I have discussed correlogram, I think about 4, 5 lectures ago, let 

us how we recall? How we formulate this? 

This is c k which is the co variance at lag k, you are considering the co variance between 

x t and x t plus k. So, x t minus x bar into x t plus k minus x bar by N. And then r k 

which is a estimate for lag k correlation is implicated as c k by c naught, where c naught 

is the variance s x square of the process, that you are considering. So, this is how you get 

r k. So, this is a plot between r k and k and typically, we go up to about 25 percent of the 

data. So, 0.25 N have gone for the correlation. So, the correlation plot or the correlogram 



indicates that most of the correlations are insignificant you may only have 1 and 2 as 

significant and they are also decaying as you go with the lag. The correlations are 

decaying with the lag. 
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Let us, look at the partial auto correlation again as you all can see here, there is only 1 

partial autocorrelation that is significant. That is at lag 1 these are 95 percent significance 

bands similar, to the correlogram how do we formulate this? This is by taking 1.96 by N 

on either side of 0. Or you can use it as a approximation 2 by root N that is 1.96 by root 

N or simply 2 by root N you can take and N in this case is 100 and 2. 100 and 2 years of 

data is available therefore, N becomes N that is how, you formulate the significance 

bands. The same significance bands you also use it for partial autocorrelations because, 

the number of data is still the same as you can see the partial autocorrelation at lag 1 only 

is significant.  

And at all other lags it is all partial autocorrelation is insignificant. How do we get the 

partial autocorrelation? Recall again that we formulate the Yule walker equations. Yule 

walker equations will give you from this, p into phi p is equal to rho p is the Yule walker 

equation. Where p is the autocorrelation function and phi p is the partial autocorrelation 

and rho p is the autocorrelations. When you formulate the Yule walker equation of order 

p, you will get the partial autocorrelation for at that order phi p at that particular lag. So, 



corresponding to each of these lags you formulate the corresponding Yule walker 

equation and get the associated partial autocorrelations.  

Then we also, formulate the power spectrum. The power spectrum again, you compare 

this with the power spectrum that you obtain for monthly stream flows. This is annual 

rainfall that we are considering and in a Western Ghats region. So, this is how the power 

spectrum appears again, recall how we formulate the power spectrum. I k this is N is 100 

and 2 in this case alpha k you get and beta k you get from these expressions where x t is 

your time series, this is time series f k is 2 pi by n. So, you get corresponding to a 

particular k. You get f k and t is the time and x t again is the time series and N is 100 and 

2. 

And therefore, you get alpha k and beta k and you get omega k which is 2 pi k by N and I 

am sorry f k is k by N. If you recall from your spectral analysis f k is k by n. So, 

associated with any given k you can get f k and t is simply time over which you are 

summing it up and then x t is the original time series. So, you can get alpha k and beta k 

once you get alpha k and beta k you get I k. And omega k is given by 2 pi k by N 

corresponding to each of this k and this is the power spectrum which you get on this 

then. 
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We will see again, like we did for the earlier case studies we formulate a number of 

candidate models. Now, the correlogram indicates that it is decaying either in a 



sinusoidal way or in an exponential manner the correlogram may be decaying. And there 

may be one or two significant partial autocorrelations. Based on this we suspect that this 

follows an AR model, AR type of model. That is autoregressive type of model what we 

then do is. In fact, we could have used straight away the AR 2 model based on the fact 

that, there are two partial autocorrelations which are significant and then the correlogram 

is decaying slowly.  

In fact, AR one in this particular case because we may be saying that there is only one 

partial autocorrelation which is significant as you recall. There is just one partial 

autocorrelation which has also just on the border line if you look at the partial 

autocorrelation you may have this also as a significant and this one is also significant. 

So, you may have one or two partial autocorrelations significant you have the option of 

simply choosing based on correlogram as well as partial autocorrelation. But, typically 

what we do as, I mentioned in the last lecture is that we formulate a number of candidate 

models and then look at the likelihood values. 

So, the candidate models we consider in this case are AR 1 to AR 6 and then ARMA 1.1 

to ARMA 3.2, 1.1, 1.2, 1.1 etcetera up to 3.2. Associated with each of these models first 

we compute the parameters for taking by taking first half of the data, in the 100 and 2 

years data we take let us say about 50 years of data. And then compute the parameters 

that is the model calibration. So, calibration we do with the first half of the data. And the 

parameters are estimated based on the first half of the data then we apply the model to 

the second half of the data. And get the associated likelihood values remember the 

likelihood value will have a e bar associated with it that is the residual mean and so on. 

So, residual wave mean and variance you will get the residual, you will get by applying 

the model any particular model to the validation data part. In this case, the remaining 50 

years or 52 years etcetera, depending on how you have considered for the calibration. 

We obtain the likelihood values and we see, that AR 5 model gives the maximum 

likelihood. And therefore, we choose AR 5 for long term synthetic generation of the data. 

So, this is for the simulation of data. 
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Then we also consider, fine before I come to the forecasting part. So, AR 50 or simply 

AR 5 that is ARMA 50 AR 5 this model gives you the maximum likelihood value. The 

associated parameters for these are phi 1 to phi 5 and the constant. So, these are the 

associated parameters recall that we estimate the parameters by the marquardt’s 

algorithm or by the r max function in the mat lab. So, when we do that and when we 

were computing the likelihood values the parameters for all of these models would have 

been estimated already. And with those parameter models parameters in place we would 

have simulated the data and for the remaining part of the data that is N by 2 values.  

And then obtain the associated likelihood values. Now, to summarize the ARMA 50 

model has phi is equal to 0.40499 and so on up to phi 5, and then the constant turns out 

to be minus 0.30664. Now, we have identified this particular model to be suitable for 

long term synthetic generation of the data. And we also, have the residual series with us. 

Now, we do the validation test on the model what are the three validation test if you 

recall? First of all, the residual should have a 0 mean. So, the series of residuals that you 

get you must first examine for the significance of the mean.  

And must satisfy yourself, that you can approximate the mean of the residual to be equal 

to zero. Then we look for the periodicities whether there are any significant periodicities 

present in the residual series. Then we also, test whether the residual series that you 



obtain by applying a particular model is. In fact, a white noise in the sense that the 

residuals are all uncorrelated. So, these are the three tests that we do. 
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So, first for the residual mean recall from the last lecture how we obtain this eta e? And 

this is again for the residual series. And for the 95 percent confidence level the t value t 

distribution value N is in this particular case is hundred and two. So, you get for 100 and 

2 values this is N by 2 actually. So, we go with 52 values, because we have considered 

the first 50 values as for calibration. So, the remaining 52 values we are taking it for 

validation. So, you get t 0.95 corresponding to this as 1.6601 and therefore, the model 

passes the test because the statistic that you have computed is less than the critical value 

of t and therefore, the model passes the test. 

What do you mean by the model passes the test? It means that, the residual series has a 

zero mean. Or you can be confident, that the residual series insignificant, it has a 

insignificant mean then. 
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We look at the periodicity again, the first test of the periodicity this is not the cumulative 

period gram test. This is the first test that I introduced in the last lecture, where you look 

at the statistic eta. And then compare it with f statistic, the critical value of f statistic with 

two degrees of freedom N minus two. Again, N is in this particular case 52. So, you take 

52 minus 2 and then get the associated f value that is 3.085. And the eta values that you 

get, corresponding to each of these periodicities, first periodicity, second periodicity 

etcetera. We will are all less than the corresponding f and therefore, the residual series 

that you obtain from the application of the ARMA 50 model they are all insignificant. It 

has insignificant periodicities and therefore, it passes the test. 
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Similarly, we look at the white noise test and if, you recall it is the Whittles white noise 

test in which we formulate the eta again. And then compare it with the f distribution with 

arguments this is a degree of freedom N 1 which is a k max. k max in this particular case 

we have taken it as 25 the lag maximum lag that we have considered. So, this is 25 and N 

minus N 1. N is 52 and N 1 is 25. So, you get k f 0.95 n 1 N minus n 1 as 1.783 and 

therefore, this eta being less than the critical value of f it passes the test. And we 

conclude that, the residual series that you obtain, by applying the ARMA 50 model on 

the remaining half of the data passes the test of white noise. It indicating that the 

residuals are all uncorrelated. 



(Refer Slide Time: 17:58) 

 

Then we look at remember what we did so far, for this case study is for long term 

synthetic generation of the data. Then we are interested in short term one time step ahead 

forecasting, we use the minimum mean square error criteria. So, we obtain corresponding 

to each of these models, we obtain the mean square error. And then compare the mean 

square errors and pick that particular model which has the maximum, which has the 

minimum mean square error. In obtaining these mean square errors again we use the 

same parameter value that we had obtained earlier. In this candidate models we would 

have obtained the parameters. The same parameters we obtain and then we apply these 

models, for the remaining half of the data and compute the mean square errors. 

If, you recall the error of forecasting we are applying the model now, one time step 

ahead. Let us say, this being a yearly data let us say, we stand in a particular year 1985. 

Let us say, we stand at the end of that year and then forecast for the next year 1986 using 

these models any of these models. Because, we already have the data for that particular 

year the forecasted value minus the actual observed value gives the error. Or the actual 

value minus the forecasted value does not matter because, we are taking the square of 

that that gives the error e t and that e t we square it and get them. So, here we get e t as x 

t minus x t cap this is the forecasted value this is the actual data and this we are doing it 

for the validation time. 



So, e t you get and then e t square you take divided by N t is equal to 1 to n. So, this is 

how, you get the mean square error that is the mean square error that you are obtaining 

this is for the validation period (()). And then when we apply these models this x t bar or 

x t cap is obtained by applying the a particular model forecast arising out of that 

particular model is denoted as x t cap there. And we choose here, the ARMA 1.2 model 

as the best model, arising out of the mean square error criteria. And this is what we use it 

for forecasting one time step ahead forecasting. Let us see, what are the parameters that 

we obtain for this. 
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So, ARMA 1.2 we selected and these are the parameters phi 1, theta 1, theta 2 how did 

we write the ARMA 1.2 model? So, the ARMA 1.2 model in this case we write it as x t 

you have 1 AR parameter. So, I will write it as phi 1 x t minus 1 and you have 2 m a 

parameters. So, theta 1 e t minus 1 plus theta 2 e t minus 2 plus e t this is our ARMA 1.2 

model. So, you get phi 1, theta 1, and theta 2. So, these are the values phi 1.35271 theta 

1.0.017124 and theta 2 is minus 0.216745 and constant is minus 0.009267. I must, alert 

that we need to consider several digits of phi 1 theta 1 theta 2 etcetera because, the x t 

will be quite sensitive to these parameters.  

And therefore, you consider several digits like 3 or 4 or 5 digits you consider for each of 

these parameters. Now, we apply this model now phi 1 is known, theta 1 is known, theta 

2 is known and e t minus 1 e t minus 2 etcetera as I have explained on the application of 



the ARMA models. You use these as errors of the previous forecast for example; e t 

minus 1 is the error of the forecast for t minus 1, e t minus 2 is the error of forecast for t 

minus 2. So, like this you do, then when you are taking the forecast what you do the 

expected value? You take the expected value and therefore, this term vanishes because, it 

has a zero mean. 
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So, apply this for forecasting and formulate the error series e t and then we do the tests 

on the error series or the residual series. So, the first two test that we can conduct on the 

residual series is a significance of the residual mean whether, the we can approximate the 

mean to b e zero. And we compute the statistic, compare it with the associated t value 

much the same way as we did for the calibration part for the I am sorry not for the 

calibration part. It is for a long term synthetic data where, we choose the ARMA 50 

model. Similar test we conduct of the residual mean for the forecasting model also, then 

we also look at whether, the residual mean has any significant periodicities present in 

that. 
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So, we do the significance of periodicities we examine several periodicities typically 

these periodicities that we examine are obtained either from your time series plot directly 

or from the spectra density. In the spectral density if you suspect that there are 

periodicities associated with let us say, 10 years 15 years etcetera, based on the visual 

observation you consider all those periodicities. So, typically we do for 5, 6 periodicities 

which are emanating from the spectral density and then obtain for the residual series 

obtain the eta values compare them with the f statistic in this particular case 2 and N 

minus 2. 

So, N is again 50 years of data and then obtain compare the eta value with the f 

distribution to ensure that all the eta values that you have are less than the critical f value 

and therefore, it passes the test for periodicity.  
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Then the last test we do is for correlation that is we have to make sure that the residual 

series that you obtain is. In fact, a white noise or the residues are all uncorrelated. So, 

this we do by Whittles white noise test and this is a statistic we obtain 0.3605 compare 

this for remember for the Whittles test you take N 1 and N minus N 1. Now, N 1 is the 

maximum lag in this particular case, it is as I said, we would have taken 0.25 of N about 

25 or something. So, N one in this case may b e 25 this also equal to k max that is the 

maximum lag.  

So, you get the critical value of f as 1.783 and whereas, you’re your eta the description of 

this eta I have covered it in the last lecture please refer to the Whittles white noise test 

and the associated eta value is 0.3605. And therefore, this passes the best because eta is 

less than the associated critical value of f. And we conclude that the model that we have 

chosen namely ARMA 12 for one time step ahead forecasting passes all the tests on the 

residual series. And we choose, this particular model for one time step ahead forecast 

what I will do now, is for this particular case study 5, I will give you all the details of 

including let us say, including how we formulate the models.  

And the intermediate results etcetera let me just go through the case study in some detail. 

This is typically we give this kind of projects as part of a course. So, when I teach 

stochastic hydrology for the masters degree at Indian institute of science these projects 

are done by the course students. So, we give 10 percent or 15 percent weight age for this. 
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So, the Sakleshpur rainfall data is given I will also, supply with the data with this and 

then first you look at how the data appears by itself. Let us say, you are looking at the 

time series all of this I have explained. You also, formulate the histogram this is the 

original time series, you form the histogram how do I formulate the histogram? You 

divide the data into several class intervals. And look at the frequency how many number 

of values have appeared in let us say, between 1000 to 2000 and so on. So, like this you 

formulate the histogram. 

The histogram along with the time series gives you an indication of how the values are 

distributed then you form the correlogram this is a correlogram associated with this. And 

then you also look at the partial autocorrelation then you look at the spectral density. 

Now ,in this particular case the spectral density has been, computed both with the tukey 

window as well as the welsh window. 
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The tukey window is what I have explained in the class. So, look at these entire all of 

these figures. These are for the original time series then we compute the MSC as well as 

the maximum likelihood values. So, this is why I am giving you all of this again 

repeatedly is, that I will give you also the procedure by which you obtain these or 

residual series as well as for forecasting model and for the synthetic generation model. 

So, you get the MSC as well as, the maximum likelihood values to consider the 12 

candidate models then, we do the model validation. First you would have got the 

parameters for AR 5 these are the model parameters 1 2 3 4 5. 5 model parameters for 

AR and then there is a constant this is a constant there. 

Then we do the significance test first the test for residual series with to examine whether, 

this has a zero mean you get the eta value and the associated statistic. And then look at 

the result whether this eta value is less than the associated statistic. Then you look for 

statistical test for significance of periodicity, corresponding to each of these periodicities. 

You look at the eta value and the associated f 0.95 and make sure that all is passed the 

test. Then we look at Whittles white noise test all of this I have discussed. So, let me go a 

bit fast we have also, introduced the turning point test which I did not discuss in this 

particular course.  

But you can always go with the Whittles white noise test for the randomness then we 

look at the residuals. So, once the residuals have passed the entire test we also, look at 



the residuals properties themselves. The histogram of the residuals the sample 

autocorrelation function or the correlogram as well as the sample partial autocorrelation 

these are for the residual. Now, there is a concept called normal probability plot, which I 

had not discussed. So, far in the class may be towards the end of the course I will 

introduce this. This is to examine whether particular data series. In fact, follows normal 

distribution or not.  

So, for the time are you do not worry about this look at these 3 figures. So, this is on the 

residual series then again you look at the ARMA 12 model which we selected for one 

time step ahead forecasting do all the tests again, do the test on residual series to examine 

that it has a 0 mean it has insignificance of periodicities. And then it also passes the test 

for randomness or the white noise test and then we also look at the plots of the residuals 

themselves now these plots of the residuals as well as the original time series give us an 

important insights into how the particular model is behaving now what we do is   

Let’s say we have chosen the AR 5 models as the model to be used on this particular 

case study for long term simulation of data. So, we apply that model for let us say about 

100 years 100 and 50 years. We simulate the data and then compare the various statistics 

of the simulated data with those statistics of the original data. Essentially what we do 

now, we have chosen AR 5 model for synthetic generation of the data. We have 

estimated all the parameters, we have convinced ourselves that this model passes all the 

tests. And therefore, this model is ready for application let us apply this model now. So, 

we apply this model to simulate a large number of data belonging to that particular time 

series 

So, and then we compare the statistics. So, remember this is for the original time series 

and then we have simulated it is not for validation period. We have done all the 

validation test kept the model ready now we simulate for next hundred years 1 sequence 

2 sequence etcetera like this next 100 years we simulate the data and then compare the 

data the mean of the original simulated series with the original series. So, this compares 

like this similarly, the standard deviation compares 488 590 then there is a skewness 

minus 0.01867 and this is 1.167 kurtosis 2.90 7.96 it may appear that the model is not 

reproducing well the skewness and kurtosis, but, it was not meant to.  



In fact, you see there was no feature in the model that that would reproduces this 

statistic, but; however, for comparison purpose we have still used these because in 

certain situations you would like the particular model to reproduce certain statistic for 

example, skewness. If the skewness in the original data was significant you would like to 

preserve that kind of a sequence skewness in the final simulated data also in which case 

it is better to compare them. So, while you have not built the model to preserve the 

kurtosis and the skewness specifically, but, the model that you are actually applying for 

long term synthetic data you would be curious to see whether the skewness is preserved 

at all. 

And in this particular case skewness as well as the kurtosis are not well simulated 

whereas, the mean and standard deviation we can take them to be acceptable. So, we 

now compare how the original time series and the synthetic data appear to be. So, this is 

for the original time series the left side what you are seeing is for the original time series 

these are all for the original time series and this is for the simulated data. You can see 

some similarities not. So, much in the time series itself, but, if you look at the histogram 

histogram appears to be similar in some sense here in terms of the distribution of the data 

remember here the scales are different 500 to 3 7 5 100 100 whereas, here it is 0 to 6000.  

So, that is why it appears to be slightly wider in this case. Then you also look at the 

partial autocorrelations the partial autocorrelations seem to be I am sorry this is a 

correlogram correlogram seems to be reproducing it well. In fact, the time series model 

this is AR 5 models therefore, the information on the correlation will be well preserved 

in the original data in the simulated data with respect to the original data. Now, in this 

file here PDF file I have given you the complete data this is the station is Sakleshpur 

state is Karnataka basin is Hemavathy the source is earlier it used to be called as a 

drought monitoring cell now it is called as disaster management cell or some similar 

name it is located Bangalore. 

So, we have obtained the data from this source and this this data I am giving here you 

can use this as an exercise. So, take this data do the complete time series analysis you 

have the data from nineteen hundred and one to two thousand and two here. So, you use 

this data and do the time series analysis that I have discussed in this particular case study 

and satisfy yourself that you get all of these values correctly. 



Alright now we will try to summarize what we did in the case studies let me give the 

summary of the results that we obtain for various case studies. So, that you get a physical 

feel remember I have discussed the case studies only for rainfall and stream flow at says 

different time steps. 

But you should be able to do the same analysis on let us say evapotranspiration if you 

have large number of data corresponding to evapotranspiration you can do the same type 

of analysis several cases do exist in literature where the time series analysis has been 

applied to water quality parameter water quality indicators for example, dissolved 

oxygen at a particular location. 

If you have a series of dissolved oxygen values at a particular location and and the 

stream has a stabilized you in the sense that in terms of the effluents that it is receiving 

and in terms of the hydrology and etcetera it is stabilized and you are only looking at the 

particular water quality indicator time series then you choose that data and then apply the 

data to carry out the analysis that we have discussed. 

Similarly, there may be other variables for example, ground water fluctuations if you if 

you have ground water levels at a particular location for a significant length of time then 

you use that as a time series apply the techniques that we have just discussed and then 

build models for forecasting how the ground water levels at a particular at that particular 

location are likely to be held. 

And similarly, you can build models for synthetic generation of the ground water level. 

So, many of the hydrologic variables that we will be interested in in making decisions or 

in making long term plans can be analyzed using the time series techniques that we have 

discussed. So, before we close the topic on the time series analysis let us summarize the 

case studies themselves. So, first we consider the Bangalore city daily rainfall data. So, 

this is how the daily rainfall data appears let me come back to that. 
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So, we started with daily rainfall then we went on to aggregate the daily rainfall to get 

the monthly time series then aggregated the monthly rainfall to get the annual rainfall 

time series. 

So, this is how the daily rainfall data appears there are a large number of values and you 

can see that you may not be able to see any significant periodicities there is no 

periodicity when you are considering the daily rainfall data whereas, if you look at the 

monthly rainfall data there appears to be some smoothing and therefore, you may suspect 

that there may be some periodicities present here. 

Again if you aggregate the monthly data and then put it into an annual time series again 

the periodicities have gone. So, both in the daily rainfall as well as in the annual data you 

may not see any periodicities then we formulated the correlograms corresponding to each 

of them let us the correlograms in the Bangalore city rainfall this was for the daily 

rainfall this is for the monthly rainfall and this is for the annual rainfall. 

As was suspected in your time series data we thought that the daily rainfall may the 

monthly rainfall I am sorry may have some periodicities present in the data. 
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These are confirmed by the correlogram the correlogram indicates that there are 

periodicities here the correlogram is oscillating in a sinusoidal way. So, there are 

periodicities present here whereas, most of the correlations here in the daily case are all 

insignificant similarly, in the annual case they are all insignificant. 
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We went on to plot the spectral densities for each of these cases the spectral densities 

appear like this indicating that there is no there is no single frequency at which a large 



contribution to variance takes place. So, this is more or less likes a white noise whereas, 

the monthly periodicity monthly data throws up some significant periodicities. 

One corresponding to twelve months is much is quite a significantly different from those 

corresponding to six months and four months whereas, again the yearly data does not 

show any preference for any particular frequencies the high frequencies seem to be 

dominating here, but, there are no significant periodicities thrown up by the yearly data 

spectral analysis. 
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Then we consider the Kaveri river flow and the stream flow of a u s river here and also 

Sakleshpur annual rainfall data here. So, these were the time series plots this is just to 

show how the time series may appear differently for different types of variables and 

different types of locations for example, monthly times monthly stream flow time series 

of a h a monsoon climate typically appears like this. 

Where you can see that there are some oscillations in the data year whereas, here it may 

show certain trend here that may be slight significant slight increasing trend that is seen 

here and this is the annual data annual data does not show up any periodicities or does it 

show any nor does it show any trend here 



So, this is how the different time series appear on a visual inspection let us looks at the 

correlograms also the monthly time series of the Kaveri river yields a periodic or the 

sinusoidal type of correlogram. 
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And the monthly stream flow data of the u s river this also shows periodicities, but, there 

are many of the negative periodicities which are negative correlations which are all 

insignificant and both of them show a slow decay. 

This correlogram shows a slow decay here this also shows a slow decay in the 

correlograms the Sakleshpur annual data on the other hand shows there is only one 

significant correlation and all of them all of the remaining correlations are all 

insignificant remember lag 0 is always one the correlation at lag 0 is always one and 

therefore, you look at only lag one and beyond the all the correlations here are 

insignificant. 
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So, the rainfall typically behaves much different compared to the monthly stream flows 

this is what we observe from here then we look at the power spectrum power spectrum 

essentially confirms our our suspicion that there are periodicities present in the monthly 

stream flow data. So, you see that there is a periodicity associated with w p of 0.52 or 

some such thing which corresponds to 12 months this is 6 months whereas, twelve 

periodicity is are absent in the river that I have considered from u s. So, there is no there 

is no 12 month periodicity here. 

Whereas there is a 6 months periodicity there is a 4 month periodicity now the 6 month 

periodicity appears to be quite significant for the monthly stream flow of a western river 

whereas, in the peninsular Indian river the 12 month periodicity almost always comes out 

be significant whereas, the Sakleshpur annual rainfall data does not show one periodicity 

to be any different from any other periodicity although here it appears to be that the 

frequencies are dominating 
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And then we went on to build models the ARMA type of models for the monthly stream 

flow data for data generation we got AR 4 model and for one time step ahead forecasting 

we got the AR 1 model that ARMA 4 0 or ARMA 1 0 model then for the monthly stream 

flow data of a river whenever I say a river this is we have taken it from a from the web 

USGS site this is AUS river. 

Ah. In fact, those of you who are willing to experiment on different data sets this is a 

good site from which you can download the data time series data and then do all your all 

the analysis that I have discussed in this course unfortunately such a data is not very 

freely available in India and therefore, you may not be able to do all this analysis that I 

have discussed satisfactorily with the Indian data unless you put extra effort and obtain 

data from several sources who are the custodians of the data in the country. 

Now, for the monthly stream flow data of the u s river we got AR 8 0 remember here 

these type of models that we are getting themselves show the difference in the processes 

that have contributed to getting that particular time series. So, as I mentioned in the in 

the peninsular Indian region essentially the stream flows are generated by the monsoon 

rainfall. 

And therefore, you get the significant periodicity every year you get some some kind of a 

regularity that monsoon months have higher flows compared to non monsoon months 

and. So, on whereas, if you look at time series of stream flows in let us say in European 



region that may be much different from the peninsular Indian region which may be much 

different from a u s river and. So, on 

So, it depends on how what kind of physical processes are. In fact, generating the 

particular time series that we have observed, and based on that you get different types of 

models coming up. Because the dependence of values observed at a particular time on 

those observed at some other time depends on the type of physical processes that are 

governing this governing that particular process. 

So, you get a 8 0 model for both data generation and one time step ahead forecasting 

which may be quite surprising to to those who are working on especially peninsular 

Indian rivers where we typically get models of this type and especially for forecasting we 

often come with ARMA 11 or 1 0 model or maximum 2021 type of models or one time 

step ahead forecasting for whereas, per monthly stream flow data of the u s river you get 

a ARMA 8 0 model both for long terms simulation of the data as well as for one time 

step ahead forecasting. 

Then for the Sakleshpur annual rainfall data remember rainfall data behaves much 

differently from the stream flow data stream flow is a much smoothened process we get a 

model of ARMA five 0 for data generation and ARMA one two for one time step ahead 

forecasting I had provided the data for Sakeleshpur annual rainfall. 

And I encourage all of you to go through this data do all the analysis or that I have 

discussed in this particular course with that particular data if you do not have access to 

any other data use that particular data and then do all the analysis. So, with this now we 

conclude that the discussion on time series analysis. 

Ah. So, this is a right time to just quickly summarize what we have covered in the time 

series analysis. So, we formed the series x t and then we discussed about the stationarity 

of time series and we also introduced the concept of ergodicity of time series when the 

time average properties are same as the same ensemble average properties are the same 

as time average properties. 

Then we say the processes ergodic and then we went on to build time series models we 

also discussed analysis in the frequency domain where we express the time series with 



frequencies and then we did the spectral density we did the spectral analysis spectral 

analysis essentially shows up the periodicities present in the data 

We discussed correlogram that is autocorrelations auto covariance function then we 

introduced the concept of partial autocorrelations and then went onto build arima type of 

models. So, first we have to convert the time series into a stationary time series. So, the 

models that I have discussed are all stationary time series models and the type of models 

the specific models that I have introduced are in addition they are all linear models. 

Because how do I write the ARMA 1 0 models we write it as x t is equal to phi x t minus 

1 plus e t. So, they are all linear models there are no non-linear terms or we specifically 

introduce the differencing to make the non stationary time series to convert the non 

stationary time series into a stationary time series. 

So, we looked at the first order differencing second order differencing and. So, on that is 

how do I write the first order differencing it is x t minus x t minus 1 that is all. So, simply 

take the difference of a particular value with that of the previous value the second order 

differencing will be x dash t minus x dash t minus 1. 

So, that is how where x dash t is the first order difference. So, this is how we do the 

differencing typically in most hydrologic time series if you do first order or second order 

differencing the series can be converted into a stationary time series; however, there may 

be periodicities present in the data. 

In which case you may have to account for these periodicities in the time series models 

that you consider and that is where we look at both contiguous and noncontiguous type 

of ARMA models. So, we identify the AR components and m a components essentially 

by the plots of correlogram and partial auto correlation functions and also the spectral 

density. 

So, there is a procedure of identification of the models then calibration in the calibration 

we discussed the estimation of the parameters although I did not cover the algorithm of 

the parameter estimation I have given you the r max function the syntax which you can 

use on mat lab then estimate parameters for any of the ARMA type of model. So, first we 

do the differencing. 



Arima remember arima is autoregressive integrated moving average models now that 

integrated I refers to the differencing. So, the order of differencing when I say arima p d 

q model we have AR terms of order p differencing of order d and m a parameters of 

order q that is how we write arima p d q models   

So, first we do the differencing and then on the difference series you apply the ARMA 

models. So, r max function of the mat lab gives you the parameters of the ARMA type of 

models then we discussed how we obtain the likelihood values corresponding to each of 

the ARMA models and also the mean square error. 

Which means that in the calibration period we take a part of the data typically the first 

half of the data and then estimate the parameters apply the particular models for the next 

half of the data validate the model by validation I mean you obtain the residual series and 

make sure that the residual series passes all the tests namely that there are the mean of 

the residual series is 0 there are no significant periodicities present in the residual series. 

And also that the residual series is uncorrelated or it forms a white nose. So, these are the 

three tests that we do on the residual series. So, we now know for a given time series 

how to get a time series model or the ARMA type of model both for the synthetic 

generation of the data as well as for one time step ahead forecasting. 

So, we will close this discussion today on time series analysis in the next lecture I will 

introduce the Markova chains which is a slightly different topic from what we have been 

doing. So, far. So, we will continue the discussion in the next lecture where I will start 

with discussion on Markova chains thank you for your attention.  


