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Good morning and welcome to this the lecture number 20 of the course on, “stochastic 

hydrology”. If you recall, in the last lecture, we were discussing the case study number 

three, which is on the monthly stream flows of the Cauvery River at the KRS reservoir. 

So, what we did in that case study up till now is we plotted the time series; we computed 

the correlogram and plotted the correlogram. 

We also looked at the partial auto correlations and the power spectrum. Then we went on 

to build the ARMA type of models for both synthetic generations of the stream flows as 

well as for one time step ahead forecasting. What did we do in that? We considered 

several candidate models of the ARMA family. We constructed these candidate models 

based on the information that we obtained specifically form the correlogram and the 

partial auto correlation. 

And then we considered several of these candidate models. Corresponding to each of the 

candidate models, we estimated the parameters by considering half the data. We had 40 

years of data, which means 480 values we had for the monthly time series; we 

considered the first 240 values to calibrate the model. By calibration of the model, I 

mean estimation of the parameters. We use the armax function of the matlab to estimate 

these parameters. You can use this several of any of the other algorithms that are 

available in standard packages, computer packages, you can estimate the parameters 

associated with the ARMA models. 

Remember, that we were working for this particular case study, we were working with 

the standardized flows, and then we estimated the likelihood values for each of the 

candidate models, picked that particular model, which gives the maximum likelihood 

values among those models that we were considering. The model that is chosen based on 

the maximum likelihood value is meant for long term synthetic generation of the data, 



which are typically used for assessment of risk, assessment of reliability of the particular 

system, for fixing up the capacity of the reservoir and so on.  

For all normal purposes of planning and operational decisions that we often come across 

in water recourses, we use the long term synthetic generation of the data. Typically, we 

generate for 100 years, 150 years, even 200 to 300 years and so on depending on the type 

of application that we are interested in. Then we also chose a particular model, based on 

the minimum mean square error. The mean square error criteria, we use for short term 

forecasting and typically we are looking at short term one time step ahead forecasting. 

We considered both contiguous as well as non-contiguous models and for both the 

contiguous as well as non-contiguous models.  

We did this exercise and picked up models corresponding to contiguous models, based 

on the maximum likelihood criteria and the non-contiguous models based on the 

maximum likelihood criteria and then we compare the two. If the maximum likelihood 

criteria are quite close to each other, the maximum likelihood values, corresponding to 

the chosen model from the contiguous type of models and the non-contiguous type of 

models. If the maximum likelihood values are quite close to each other then we choose 

that particular model, which has minimum number of parameters. So, this is the Principle 

of Parsimony; if two models are satisfying more or less the same objective, then we 

choose that particular model which has lower number of parameters. 

Similarly, for forecasting also, we did the exercise both for contiguous as well as non-

contiguous models. In the case of forecasting, the simplest model, namely the ARMA 1 0 

model for contiguous type of models and ARMA 2 0 models for the non-contiguous 

models, they surface up to be the best models, in terms of the mean square error values. 

In today’s lecture, what we then do is we have chosen one model corresponding to the 

maximum likelihood criteria. 
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This model turned out to be ARMA 4 0 model for the Cauvery monthly stream flows, 

and we also choose one model corresponding to the minimum mean square error. Now, 

this model turned out to be the ARMA 1 0 model for the contiguous type of models that 

headed the minimum mean square error. 

Now, once we have identified which model we would like to use for the specific 

purpose, we need to validate this model. Remember, all of this exercise we did on the 

first half of the data. We had 480 values, all of this exercise we did only on the first 240 

values, except of course, first part where we identify the periodicities etcetera, where we 

plot the time series and spectral density and so on. That was done on the entire time 

series, but once we come to the identification of the model, we focus only on the first 

half of the data. 

Now, once we choose the model, we apply this model to the remaining half of the data. 

In this particular case, to the remaining 240 values, and obtain the residuals and then we 

do the analysis on the residuals, to examine whether the residual series that we so obtain 

by applying the model chosen to the validation data set, in this particular case it is 240 

values, the remaining 240 values, obtain the residual series. Then we do the test on the 

residual series for validation. So, typically the validation test will consist of the test to 

examine whether the residual series has 0 mean or the mean is insignificant. 



Then whether the residual are devoid of any periodicities, whether there are any 

periodicities present in the residual series and whether the residual series that we so 

obtain is uncorrelated or it constitutes a white noise. So, these are the three types of test 

and I have discussed earlier how we carry out the test. Today, we will apply these testes 

to the particular case study that we are considering.  
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Just to recapitulate what models that we chose for the particular case study, we will just 

go through this. These are all the details that I have already discussed; half the data set is 

used to construct the model and the other half is used for validation. So, this is what I 

just mentioned.  
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This is the summary results for the contiguous model, this is the way we calculate the 

likelihood values. This is the variance of the residuals when we are applying for the 

calibration period and that is how we get the likelihood values. You choose that 

particular model, which gives you the maximum likelihood value. In this particular case 

it is ARMA 4 0. Similarly, for the non-contiguous models this is what I have discussed 

in the last lecture, so let me go a bit fast. 
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So, ARMA 5 0 turns out to be the best model in terms of a likelihood values. Now, in the 

contiguous models, if you recall, the last term we included as the twelfth lag, so the last 

AR and MA terms correspond to the twelfth lag. This I have explained in the previous 

lecture. 
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Now, what we will do is…Another minor point here that when we did all this exercise, 

the parameters of these models would have been estimated. So, finally, for the chosen 

model, we give you the parameters like phi 1, phi 2, phi 3, and phi 4. This ARMA 4 0 

model, it is also typically written as AR 4. When MA model MA term is absent, we 

simply write it as AR 4 model and this is a constant term. 
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Now, similarly, for forecasting model, we chose the minimum mean square, the model 

that gives you the minimum mean square error. In this particular case, it was ARMA 1 0 

or AR 1 model. 
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And for the non-contiguous model, it turns out to be ARMA 2 0 model. Again, the 

second term, in this particular case, will correspond to the twelfth lag. So, ARMA 2 0 

model for the non-contiguous model will be X t is equal to phi 1 X t minus 1 plus phi 2 

X t minus 12, the twelfth lag is considered here for forecasting model. 



Now, both of this yields the same, almost the same mean square error value, so you can 

use one of the two and then as I said, we use that particular model, which has lower 

number of parameters. In this particular case, it will be ARMA 1 0 model. 
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So, these are some of the details. So, for the ARMA 1 0 model, we again give the 

parameters phi 1 as 0.2557 and C is minus 0.009. Remember, that we are applying these 

models to the standardized series and that is why you get this kind of magnitudes. 
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Now, we will go to the validation test. So, as I mentioned, we have applied, we have 

calibrated the model based on the first half of the data. Now, we will apply these models; 

compete with their parameters to the second half of the model. What do I mean by that? 

Let say 240 values, first 240 values you have used to calibrate the model and therefore, 

the parameters have been estimated. The models have been fixed and this model we start 

applying for the next 240 values. 

So, we generate as I discussed in the last, perhaps lecture number 18, we generate the 

data for the next 240 values and then compute the residuals. How do I compute the 

residuals? This is e t is equal to X t. We have the data; minus this is how the model has 

been simulated. You know the phi j’s, you know the theta j’s and similar to this we 

calculate the estimated value for X t based on the number of parameters that you are 

using. For AR 4 model we would have four models, so 4 AR parameters, so it was from j 

is equal to 1 to 4. We do not have any m parameters, so this summation we do not 

consider plus there is a constant term, which we have estimated earlier. 

So, this is from the simulation from the model. So, this is a simulated data, this is an 

actual available data and that is how we calculate the residual. So, we now form the 

residual series by using this expression. On the residual series, the validation tests are 



done. First we examine whether the residual series we so obtain, has a zero mean or the 

mean is not significant. Then we also examine whether the there are any significant 

periodicities that are present in the residual series. For the significant periodicities we 

also do the Bartlett’s test. This Bartlett’s test is also for significance of periodicities. 

Then we examine whether the residual series in fact is uncorrelated, for that we generally 

do two tests; Whittles test and Portmanteau test. Remember, that I have mentioned 

Whittles test is preferred over the Portmanteau test.  
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For the case study we will see now, what kind of test that we do. First, is the significance 

of residual mean and if you recall, we formulate the statistic eta as N to the power half e 

bar y rho cap to the power half; the rho cap is the residual variance. 

Remember, here the moment you compute the residual series first obtain the variance as 

well as the mean of the residuals, simply obtain the mean and the variance. These will be 

useful for any of the statistical test that we are doing on the residual series. So, e bar is a 

residual mean and rho cap is the residual variance, N is the number of data. Now, in this 

particular case N will be 240, and e bar is the residual mean and rho cap is the residual 

variance. Therefore, you can get eta e, which is the statistic, these are the values. 

Although we have chosen a particular model, you know typically you can do these tests 

only for the particular chosen model, but just for completeness sake, I am giving you for 



all the candidate models that we have considered. These are the data for all the candidate 

models, so these are the type of statistic value that you get. 

Now, the model passes the test for significance of residual mean by passing I mean that 

the residual mean is insignificant or we can approximate the residual mean to be 0 that is 

what I mean by the model test or passes the test. If the eta value that is so obtained is less 

than, let say you are fixing the 95 percent of confidence limit, so t 0.95 comma 240 

minus 1, this 240 is the N that we are considering, So, N minus 1, 0.95 N minus 1,this 

can be either 0.95 or 0.99, typically we consider 95 percent confidence level. 

So, as you can see, this value remains constant, because it only depends on the 

confidence limit and the N value; both of which are constant, so this is 1.645. If the 

statistic that you calculate is less than this particular value, then the particular model 

passes the test, as you can see all of these values are less than the associated t value and 

therefore, all the models pass the test. Although, we are interested in this particular 

model ARMA 4 0; ARMA 4 0 is the model that we have chosen that passes the test but, 

typically you can do this test for all the candidate models just as an exercise. 

Now, we will go to significance of periodicity. So, this is a order in which we carry out 

the test. Typically, first you test for the residual mean, make sure that the residual mean 

it is non-significant in the sense that it can be approximated to be 0. Once you are 

satisfied that the residual mean is 0 or can be approximated to be 0, then you go to 

significance of periodicity. Why we did this for all the models? Let say that the chosen 

model ARMA 4 0 did not pass the test, and then you go to your again likelihood values 

and see which is the next best model. Then look for that particular model, let say that 

after ARMA 4 0 you had, let us look at which is other model that you had for. 

See, this was 30.85, the next value seems to be 29.81, which is ARMA 2 2. Let us say 

that this model did not pass one of the tests, then you go to the next model, next available 

model in terms of the likelihood values and see whether that model test passes the test. 

That is why we calculate this t statistic as well as the likelihood values for all the 

candidate models. So, in this particular case, ARMA 4 0 model passes the test and 

therefore, we progress further. 



(Refer Slide Time: 18:55) 

 

Once, we are satisfied that the residual mean passes the test for its significance, in fact, 

the lack of significance then we go to the next test, which is significance of periodicity. 

Again, we formulate the statistic and this statistic is gamma k square N minus 2 by 4 rho 

1 cap; rho 1 cap is now not the residual variance in this particular case. Now, rho 1 cap is 

the corresponding to the periodicity for which we are testing. We compute the rho 1 cap 

like this. 

Remember, omega k is the omega value for the particular. Let say we are testing for 

periodicity number one, in our case it is periodicity of 12 months. Then omega k is that 

particular value of the periodicity. To make it clear, let say that we had our original 

spectrum like this and this is the omega k, corresponding to the first periodicity, omega k 

corresponding to the second periodicity etcetera, so this test that we are just discussing 

now, is carried out for one periodicity at a time. So, you pick up the first periodicity 

examine whether that periodicity is still present in the residual series. Then go to the next 

periodicity, examine whether that is still present in the residual series and so on.  

So, like this one after the other you carry out the periodicities significance I am sorry one 

after the other, you carry out the test for the periodicities. So, this is for that particular k, 

so you can calculate gamma k, where alpha k is given by this and beta k is given by this; 

omega k is known. Therefore, e t is the residual series, t is equal to 1 to N and N is in this 

particular case 240. 



Alpha k and beta k are obtained from here, so this is alpha k corresponding to that 

particular k and similarly, this is beta k corresponding to that particular k. Remember 

here, t is the time period, so this is going from 1 to N; small n and capital N are 

analogues, they are the same and in this case it is 240, so you can get gamma k square. 

So, once you know gamma k square and rho one cap is estimated like this and you can 

get eta because you know N. 
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So, eta is obtained like this; 2 pi by omega k is the periodicity for which the test is being 

carried out. Let us say you are testing for 12 months, then you can obtain the associated 

omega k. This is typically obtain from your spectral analysis. Now, if this statistic value 

that you calculate is less than the F alpha 2 N minus 2, then it passes the test. Two is the 

degrees of freedom and in N minus 2, N is the number of data in this case and is again 

240, alpha is the significance level. Typically, we use 95 percent value corresponding to 

this. 
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We do this significance of periodicity test on all the models, all the candidate models. 

The first periodicity is 12 months, second is 6, third is 4 and fourth is three months. 

Associated with those particular omega k values, we calculate these statistic values. 

Remember, again that these are all done for the residual series, so on the residual series 

we calculate these eta values and the associated F statistic value, which is a critical value 

is 2 comma 238, n is 240, so this becomes 238 and this is the 95 percent significance 

value. 

These values of F 0.95 can be picked from any standard tables of F distribution. Any of 

the standard text books will provide this F value associated with the degrees of freedom 

and N minus 2, and that comes out to be 3. As you can see all the models pass the test for 

all the periodicities, indicating that none of these periodicities is significant in the 

residual series. We have done the test of periodicities one at a time, so first we 

considered the first periodicity, which is corresponding to 12 months, next 6 months, 4 

months and 3 months. We conclude that all the model pass the test. 

 But as I discussed in the one of the earlier lectures, may be lecture number 16, 17 or 18 

that instead of doing the test on periodicities, one at a time, we would prefer to test all 

the periodicities at a time. That means we have the residual series available with us. 

Now, with this residual series can we examine whether there is any significant 

periodicities present at all in the residual series? Now, this is best achieved by the 



Bartlett’s test or the Cumulative periodogram test. Now, the cumulative periodogram test 

which I will discuss now will apply to case study number three, which is Cauvery River 

flows. 
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If you recall in the Bartlett’s test what we do again we formulate gamma k square, which 

is two by N e t cos omega k t plus 2 by N e t sin summation, sin omega t whole square. 

So, this is gamma k square. this we do for k is equal to 1 to N etcetera, N by 2 then we 

calculate the cumulative periodogram, g k is equal to, by considering g k, g k is equal to 

gamma j square, j is equal to 1 to k, let say k is equal to 2. This goes from 1 to 2, divided 

by gamma k square; k is equal to 1 to N by 2, the whole range, so this is normalized, 

gamma j gamma j square. So, g k is what we require for constructing the periodogram, so 

g k versus k. The plot of g k versus k is called as the cumulative periodogram, so you 

know how to calculate gamma k for a given k. You know now how to calculate g k. 
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From this now, let say that we calculate the g k for the original time series; that means 

the original, all the 480 values, monthly values, we compute g k and then plot for lag k 

versus g k. Typically, we go up to N by 2; lag k we go up to N by 2, in this particular 

case it is 480 by 2 which is 240. Then what we do is the 0.00 here and N by 2 and 1, so g 

k the maximum value is 1, so N by 2 in this particular case it is 240, so 240 and 1. We 

joint that those two particular point by a line around this line we form the confidence 

bands. 

(Refer Slide Time: 27:11) 

 



Now, this confidence band if you recall is 1.35 by the root N by 2. This 1.35 corresponds 

to 95 percent value, so 95 percent confidence value is 1.35 by root N by 2. This comes 

out to be 0.087. 
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Now, this 0.087, we draw a line at each of this points and form a band. Now, this gives 

you the band of confidence for this particular test. On either side, we draw that line and 

as you can see for the original monthly time series where we had 480 values. If you 

conduct this test for the original time series, you see that most of the values lie above this 

band; beyond this band, indicating that there are significant periodicities present. In fact, 

you see a first spike corresponding to a value of 40, so 480 by 40 that corresponds to a 

periodicity of 12 months. 

Similarly, you can capture periodicities associated with each of the spikes. So, this is 

cumulative periodogram. Now, the same test we carry out on the residual. Remember, 

this test that I just mention now, this cumulative periodogram, is not a test on the 

residuals. I am just showing this to indicate that if you have periodicities this is how the 

cumulative periodogram will appear, whereas, you do not want any periodicities to be 

present in the residual series. So, we do the test on the residual series and look at for the 

ARMA 4 0 model how does the cumulative periodogram look like. 

Now, we now consider 240 values, because we are calculating the residual on the 

remaining half, which is one half of the data, which is 240. So, the number of values that 



we consider for lag k is N by 2, which is 240 by 2, which is 120. So, from 120 to 1 and 0 

0, you draw this line and around this line you form the confidence limit.  
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How do we get the confidence limits? Now, 1.35 by root N by 2 and N in this case is 

240. Therefore, you get a band of plus minus 0.123; by plus minus, I mean it is on either 

side either side of this particular line red line that is drawn here. Then we form the 

cumulative periodogram. How do we get the cumulative periodogram? We apply this 

now on the residual series. So, you get g k on the residual series and g k versus k on the 

residual series, this is the plot of the cumulative periodogram, this dark black line shows 

the cumulative periodogram. 

 If the entire cumulative periodogram lies within this confidence band then there are no 

significant periodicities present in the data. As you can see, the cumulative periodogram 

in this particular case of the residual series lies completely within the confidence bands. 

Therefore, there are no significant periodicities present in the data and therefore, the 

residual series corresponding to ARMA 4 0 model passes the test for periodicities. When 

I say it passes the test for periodicities, it means that there are no significant periodicities 

present in the residual series. 

We conducted two tests for the testing, whether there are significant periodicities present 

in the residual series or not. Among the two tests, this particular test, which is called as 

the Bartlett’s test or the Cumulative periodogram test is preferred, because you can do 



the test in one go for all the periodicities, whereas, in the earlier case, we did one 

periodicity at a time. You do the test for the first periodicity, remove that periodicity 

from the data then do for the next one, remove that periodicity if it is significant and then 

go to the next one and so on. 

So, you did one at a time in the earlier case, whereas, in the cumulative periodogram test 

you simply plot the cumulative periodogram, you draw the confidence limits, the band of 

confidence limits, and then for all the periodicities at single time, you can examine 

whether the model passes the test or not. So, this test is preferred over the earlier test. We 

now examine for the significance of mean, we satisfied ourselves that the model that is 

chosen ARMA 4 0, does not have significant mean. The residuals resulting from that 

residual series does not have significant mean, which means that the mean is zero mean 

and can be approximated to 0. 

We also satisfied ourselves that there are no significant periodicities present in the data 

present, in the residual series, by doing the cumulative periodogram test and the test that 

I just discussed earlier. Now, we have to look at another important assumption that we 

made in building the model that the residual series is uncorrelated. This is also called as 

the test for white noise. That means the residual series that we obtain from applying the 

model should constitute a white noise, in terms of absence of any correlations in the 

residual series. 

So, this is what we do by two tests; Whittles test and Portmanteau test, both of which 

require the covariance matrix; covariance matrix of the residual series. So, once we 

constitute the residual series, we form the covariance matrix of the residual series. Now, 

based on the covariance matrix, we define a statistic for the Whittles test and a different 

statistic for the Portmanteau test and then based on this statistic, we formulate based on 

the covariance matrix, we examine whether the series is in fact uncorrelated. 
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So, let us see what the Whittles test is. This I have discussed earlier, but just to 

recapitulate essentially what we do is we formulate the covariance rho k; the covariance r 

k at lag k of the error series e t; error or residual series is the same. So, this we go from k 

is equal to 0, 1, 2 etcetera till k max. We typically consider the maximum k as 0.15 N; N 

is the number of data points. In this particular case it will be 240. So, the covariance is 

taken as e j minus e j minus k. How did we define covariance? It is the expected value of 

X t minus mu into expected value of X t minus k minus mu. So, this was your r k for the 

original time series X t, but since we have verified that the mean of the residual series is 

in fact 0, so I write the covariance as r k is equal to 1 by N minus k e j into e j minus k, 

because the residual mean is 0 and j goes from k plus 1 to N. 

So, k is, let say you are calculating for two, k is equal to 2, you will have N minus 2 here 

and N is 240 and this goes from 3 to N which is 240. Typically, we calculate this for up 

to k max and k max is typically taken as 0.15 N. I am going through the text book 

Kashyap and Rao, dynamic stochastic models from empirical data. Aside, I would like to 

mention that Professor Kashyap is an electrical engineer and has contributed 

significantly to stochastic models, to theory of stochastic models and Professor Rama 

Chandra Rao is a civil engineer. He is a hydrologist both of them were at Perdue 

University and have contributed significantly through this particular classical text book 

called Dynamic Stochastic Models from Empirical Data. There are large numbers of 

examples from the electrical engineering and there are also significant numbers of 



examples from hydrology in this particular text book. I would encourage all of you to 

have a look at this particular text book. 
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Now, you have formulated the covariance. Now, once you have the covariance matrix, 

this is gamma n 1, you have the entire covariance matrix, k max into k max size. We 

formulate gamma n 1 minus 1 by taking out the last row and the last column. So, you 

have gamma n 1 as complete covariance matrix of size k max by k max, then you take 

out the last row and the last column to formulate gamma n 1 minus 1. 
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Then we define the statistic eta e as N divided by n 1 minus 1, where n 1 is the k max 

into rho naught cap by rho 1 cap minus 1, where rho naught cap is the lag 0 correlation 

which is one. And rho one cap is determinant gamma n one; this is gamma n 1, you take 

the determinant of this by determinant gamma n 1 minus 1. As I said gamma n 1 minus 1 

is formulated by taking out the last row and the last column. So, the matrix gamma n 1 

minus 1 is constructed by eliminating the last row and the last column from the gamma n 

1 matrix, so you can get rho 1 cap. Once you get rho 1 cap, you know rho naught cap 

which is one and you know n 1, which is k max typically 0.15 into N, you know N which 

is 240 in this particular case and therefore, you will get eta.  
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Once you get eta, you compare this eta with F alpha n 1, N minus n 1, n 1 in this 

particular case, it is k max. That differences the degrees of freedom and N minus n 1. if 

the eta you have calculated is less than this critical value of F and alpha is typically 

chosen as the 0.95 or something, then it passes the test. 
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So, for the case study now, let us carry out the Whittles test. So, you know how to 

formulate n now. I have not given all the data details of the covariance matrix and so on. 

I leave it as an exercise for you. I will give you the final results here. So, the final results 

for the Whittles test, we do it for all the candidate models, although we can do it only for 

the particular model that we have chosen namely ARMA 4 0. you could have done only 

for ARMA 4 0, but not necessarily only as an exercise, I mentioned you do it for all the 

candidate models, so that if the particular model that you have chosen does not pass the 

test then you can go to another model. 

Typically, we do this test for all the candidate models that you have chosen. Now, we 

consider n 1 variously, as 73, 49, and 25 and so on. So, you can do it for several n 1. 

Typically, you can chase it up to 0.15 N. In our case N was 240; 240 we have considered 

to be half the data, so you could have gone up to 0.15 N. So, you consider for various test 

just to see where the model fails. So, as you can see these are the eta values that you 

obtain for different n 1 value. So, let us say n 1 is equal to 73, I take like this then 

corresponding to that particular n 1, and you will have F 0.95 and 239. 239 being N 

minus n 1, I am sorry, there is a mistake here, this is not F 0.95 239. 

So, this is what you get from the table. This is actually what I have written here that is F 

alpha n 1 N minus n 1. So, this is F alpha n 1 comma N minus n 1. So, these are the 

values that you get; 1.29, 1.39 and 1.52, if these values that you are getting of the 



statistic are less than the particular F alpha values then the model passes the test. As you 

can see most of the models pass the test, but when you come to ARMA 1 2 model, here 

1.581 which is more than 1.52, for both ARMA 1 2 as well as ARMA 2 1 model, these 

models fail the test, whereas, all other models pass the test and we are concerned with 

ARMA 4 0 model, which passes the test. 

So, this is the white noise test to examine whether the residual series e t that we have 

constitute a white noise in, as much as the correlations are all insignificant. That means 

there is no significant correlation present in the data that is the Whittles test, which is to 

examine whether the series constitutes a white noise. 
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We have another test, which is called as a Portmanteau test, which again uses r k, which 

is a covariance matrix. We go from k is equal to 1 to n 1. This is simply r k by r naught, 

which is rho k if you recall. The r k is the covariance at lag k and r naught is covariance 

at lag 0, which is a variance itself and k is equal to 1 to n 1; n 1 is the maximum lag. So, 

n 1 and k max are similar. Now, this test uses the chi square value, the statistic eta e 

follows chi square distribution, so at 95 percent significance value with k max as 

argument, you get the critical values of chi square as 65, 50.8, 36.0 and 21.0 for various 

values k max that I have considered. 

And the eta values that you are obtaining here N is 240, n 1 is the k max here, so for this 

it is 48, for this 36 and so on. So, you can get eta values, the eta values here must be less 



than the associated chi square value. For these two pass the portmanteau test and in this 

case, for k max is equal to 48, all of them pass the test and these two of them fail the test. 

Again, two of them fail the test, so ARMA 1 2 and ARMA 2 1 fail the test for lower 

values of k max and all other models pass the test. 

Again, between Portmanteau and Whittle test, we prefer the Whittle test that means 

suppose there are conflicting results between Portmanteau and the Whittle test then you 

go with the results of the Whittle test. So, that completes the case study number 3, which 

is on monthly stream flows for Cauvery River at KRS reservoir. Let me just quickly 

recapitulate what all we did for case study number three, because this is the most 

extensive case study that I would discuss in this particular class particular course. 

All the other case studies that I will discuss subsequently, we will simply summarize 

what kind of test we do and so on. We simply summarize the results. So, in the case 

study three our aim was to finally, build a model, time series model for the monthly time 

series, both for long term simulation of the data, long term synthetic generation of the 

data, as well as for term forecasting one time step ahead forecasting. 

So, we build the model by considering a number of candidate models. We estimated the 

parameters by taking half the data and then we did the test by constructing the residual 

series, by applying the candidate models to the remaining half of the data. Corresponding 

to each of these residual series, we did the test to examine whether the residual series has 

a zero mean, whether it is devoid of periodicities. All the periodicities are removed and 

whether the residual series is uncorrelated. 

So, these three test we did and then finally, chose ARMA 4 0 model for synthetic 

generation and ARMA 1 0 model for forecasting of the data. Now, similar case study I 

will discuss now, but we will not spend as much time as we did on the first case study. 

Just to give you a variety of the time series that we come across in the hydrology. Next 

again, we will take monthly stream flow, but not in the monsoon region. See, the 

Cauvery River typically comes in a region of the country of India, where it is essentially 

driven by the monsoon patterns, so the monsoon flows contribute to the Cauvery River, 

so it behaved in a particular manner so we chose those particular types of models. 
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Now, I am taking a stream flow data. This is taken from one of the U S Rivers and the 

data is directly downloaded from the U.S site and this is the monthly data from 1928 to 

1964; 37 years of monthly data is available, so about 4444 values are there. So this is 

how the time series looks. You can compare the time series of this type of stream flow 

with any other Indian rivers that we consider. May be you can compare it with the 

Cauvery River and so on. So, you will see the type of difference is that you may get. 
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Then we construct the correlogram and correlogram shows periodicity, but there are 

significant. There are large numbers of periodicities, which are insignificant, as you can 

see. These are the bands of 2 by root N on either side, that is plus minus 2 by root N. As 

you can see most only the positive correlations are significant, most of the negative 

correlations are insignificant in this particular case. Although this does indicate that there 

are periodicities present here. 
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Then we do the spectral analysis the partial auto correlations; the partial auto correlations 

again, there are certain partial auto correlation significant here. The first one is 

significant and similarly, there are several of them significant. The auto correlogram also 

shows that there is decay; there is a slow decay in the auto correlations and the partial 

auto correlations show up some partial auto correlation, which means that if you are 

build a AR model, you can pick up these partial auto correlations and then pick those 

particular terms. 
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The spectral density again shows there are certain periodicities. This corresponds to a 

periodicity of 6 months. There is no periodicity that is shown at 12 months here, 

corresponding to 0.54 or some such thing as we saw in the case of Cauvery, there are no 

significant periodicities here, however, there is a periodicity corresponding to 6 months 

and then perhaps corresponding to 3 months and so on. So, it does show that there are 

periodicities present. 
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Then we go on to build a large number of candidate models like ARMA 1 0 etcetera. It 

goes on up to ARMA 8 0 and then typically we take up to 1 and 2 of the MA terms and 1 

and 2 of the MA terms. So, these are purely moving average models. These are ARMA 

models where you have both AR as well as MA terms. Here you have only AR terms and 

we compute the parameters. We estimate the parameters here phi 1 to phi 8 and theta 1 

and theta 2, so for ARMA 8 0 model you have all the 8 AR parameters, but no MA 

parameters here. So similarly, you get all the parameters corresponding to AR and MA 

terms here. 
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Once we calibrate the models based on half the data, we then calculate both the means 

square error as well as both the mean square error as well as the likelihood. This is a log 

likelihood value. As you can see here, the ARMA 8 0 model turns out to be the best, both 

in terms of the mean square error as well as in terms of the likelihood value, much unlike 

what we saw in the Cauvery river data In Cauvery river data, we got ARMA 4 0 for 

synthetic generation whereas, ARMA 1 0 for our short term forecasting. Whereas, in this 

particular case, which is a US stream, you get ARMA 8 0 as the best model, both for 

synthetic generation as well as for short term one time step ahead forecasting. 
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Then we do the residual test that is test for on the residual series. So, first we check 

whether the mean is significant. We formulate this statistic eta e and then compare it 

with a t alpha N minus 1. In this case N exactly 444, 37 years of values and then you get 

eta e values, which are very small compare to the N value. They typically come to e to 

the power minus 5 and so on, so this passes the test. All the models pass the test and 

typically we are interested in ARMA 8 0; ARMA 8 0 passes the test indicating that the 

residuals do not have a significant mean or this mean of the residual can be approximated 

to be zero. 

Similarly, we do the entire test. I am not indicating all the details of other test. You can 

do it as an exercise and then you satisfy that all the tests are I am sorry I have not given 

you the data, so you would not be able to do those test yourself. So, I am indicating here 

that similar to the residual mean we do the test that I just discussed for the Cauvery case 

study and then ensure that all the models that we have chosen namely ARMA 8 0 passes 

all the test. 
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Now, this is another type of time series that we are considering. the first one, which is 

case study number three, we considered the Cauvery river flows, which are essentially 

driven by the monsoon pattern and that is monthly time series. Then we went to another 

monthly stream flow time series where we consider a western river that is a river in the 

US and then we did the example of fitting the time series. We came up with a model of 

ARMA 8 0 or AR 8 0; AR 8. 

Now, we look at another type of time series, which is Sakleshpur annual rainfall data. 

Sakleshpur is in the Western Ghats of the nation of India, Western Ghats, typically the 

monsoon patterns here are much different compared to any other region in the country, 

so we consider this annual rainfall data. So, the annual rainfall data in the Sakleshpur 

region for 1901 to 2002, 102 years of data is available, so you see the time series. 

Remember, this is annual data. So, you are not getting any, you are not seeing any 

particular pattern here, so you get the time series plot like this. 
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Then we look at the partial auto correlation, this is auto correlation, ACF, and the partial 

auto correlation and then we go on to build the models and then look at the type of 

models that we get for synthetic generation as well as one time step ahead forecasting. 

As I discuss earlier in one of the earlier lectures, annual rainfall can be modeled as using 

one of these ARMA type of models, if we are satisfied that, if we transform it to make 

sure that there is no stationarity; there is no non-stationarity present in the data, whereas, 

if you go down on time scales, let say that form annual you come to monthly rainfall 

then from monthly you come to daily rainfall etcetera, there are significant non-

stationarity that will be present which are not easily removed, even if you do 

differencing. Typically, on the daily rainfall data, let say even if you do the first order 

differencing, second order differencing etcetera the non stationarities will still remain. 

So, when you want to apply the ARMA type of models, first you must make sure that 

you have transformed the original time series to another time series, which is stationary. 

These models are only for stationary time series. So, the case study number 5 which I am 

dealing with is annual rainfall series in a high intensity rainfall region, our namely the 

Western Ghats region of India, we will see how this behave when we apply the time 

series models. 

We will discuss and we will continue this discussion in the next lecture. So, essentially I 

have dealt with today mainly two case studies; case study number 3, which I started in 



the last lecture and we completed the case study number 3 in some detail, where I 

explained all the test that we do on the residual series. Then we quickly run through 

another case study, case study number 4, which is a monthly rain monthly stream flow 

time series of a U S river, United States River, which the data can be downloaded from 

the US GS side. And then we have just introduced another case study. We have just 

looked at the annual time series of Sakleshpur data. This case study, I will continue 

discussion on this particular case study in the next lecture. So, thank you for your 

attention. We will continue the discussion in the next lecture. 


