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Good morning, and welcome to this the lecture number 19 of the course on stochastic 

hydrology. In the last lecture, we have essentially seen how the ARMA type of models 

can be used for data generation and also for the data forecasting. By data generation, I 

mean you want to generate a sequence of data, which essentially reproduces the behavior 

of the historical time series. Now, this sequence typically is generated for a long length, 

typically of the order of 50 years 100 years and so on. 

In fact, in certain cases where we would like to use this data for examining the 

performance of the system, long term performance of the performance of the system, we 

go as long as 200 years 300 years and so on, using these types of models. Then we also 

saw how we use the ARMA models for one time step ahead forecasting that is standing 

at the end of a particular month, let us say June month, we would like to forecast what 

would be the stream flow during the next month. So, this is called as one time step ahead 

forecasting.  

The ARMA models can also be used for two times step ahead forecasting, three times 

step ahead forecasting and so on. Then in the previous lecture we also saw some case 

studies. We started with the case study of daily rainfall in an urban area; typically we 

took the Bangalore rainfall data on that. And then we saw from daily rainfall, if we 

aggregate it to monthly rainfall how the behavior changes. In the daily rainfall, we did 

not see any periodicities. In fact, the daily rainfall behaved much like a completely 

random process, in the sense that the values were all uncorrelated. We could not detect 

any significant correlation, autocorrelation and the spectrum showed that it behaves more 

or less like a white noise. 
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But when we aggregated these to a monthly time series that is simply adding up all the 

daily rainfall values into a monthly rainfall value, we saw that the periodicities 

corresponding to 12 months came up, and periodicities corresponding to 6 months, and 4 

months came up, which were not present in the daily data. Then we went on to aggregate 

this monthly data to annual rainfall. Again, in the annual rainfall, we did not detect any 

significant periodicities this may be because of the limitations of the data itself, because 

we do not have large number of yearly data. 

If you had in fact large number of yearly data, let us say 100 years or 150 years of data 

and so on, and then you did the test for periodicities for annual values of rainfall. 

Perhaps, you may come out with some decadal periodicities and so on. But for the case 

study that we considered, we did not detect any significant periodicities in the annual 

rainfall. So, for the monthly rainfall, when we did the analysis, the monthly rainfall data 

showed up significant periodicities. 

I’m sorry it showed up periodicities at 12 months, 6 months and 4 months. But, whether 

they are statistically significant or not, we need to examine using the test that I have 

discussed in the earlier lectures. 

Then we consider another case study where we took the annual stream flow, which had a 

increasing trend. Then we examined how we can remove the trend from the data by 

differencing. So, we consider the first order differencing that means X t minus X t minus 



1, so from the X t, which is the annual stream flow, tiding corresponding to the time 

period of N year and X t minus 1 is the previous value. We constructed a new series Y t 

is equal to X t minus X t minus 1, and then also did check on the different series whether 

the trend has been removed. We in fact observed that the trend has been removed. 

So, we did the same analysis then on the annual stream flow as we did for the rainfall 

data. We examined the correlogram, the specter density, and the partial autocorrelations 

and so on. Based, on this analysis that we said it may perhaps follow a purely AR model, 

AR 2 perhaps because the number of partial autocorrelations that were significant in that 

case study was two. Then we considered the monthly stream flow of the Cauvery River 

at KRS reservoir. We will continue this case study today, but essentially what we did in 

the last lecture is that we first plot the time series. The time series immediately shows 

that there may be perhaps some periodicities present. Then this fact is verified by the 

correlogram; correlogram again shows up that it is a sinusoidal correlogram and that 

indicates that there are periodicities present. 

The spectral analysis shows up, which are this periodicities and we identified in the last 

lecture that you have periodicities corresponding to 12 months, 6 months, 4 months and 

3 months. This is typically true of most of the monsoon driven stream flows where you 

will have regular regularities in the flows, because these flows are essentially produced 

especially in the peninsular region of the country. These are essentially produced by the 

rainfall and the rainfall in the monsoon regions has a regular pattern. Therefore, you will 

typically get a 12 month periodicity, 6 month periodicity and perhaps in certain cases 4 

months’ periodicities. 

This need not be true for all the types of stream flows that you may have globally, across 

the globe, because it is the way the stream flows are produced. Perhaps, if you have a 

continuous small intensity rainfall all through the year, like it happens in some of the 

European regions, then you may not get so significant periodicities corresponding to 12 

months and 6 months and so on. Therefore, the information that the data is giving us is 

important with respect to the region in which we are present and the particular process, 

the particular physical process by which these variables are generated. What I mean by 

that is here in the daily monthly and annual rainfall, perhaps this may be monsoon driven 

rainfall or at certain daily levels it may be just a convective type of rainfall and so on. 



So, the periodicities that you examine or the periodicities that come up and the 

correlations, lag correlations that come up, will all depend on how these are actually 

generated and what kind of relationships that exist with respect to the process that has 

taken place in the earlier time periods. We will continue with the third case study that is 

the stream flow, monthly stream flow at KRS reservoir. Remember, in all earlier cases 

that I discussed in the last lecture, we did not go on to build the models, we just looked at 

the spectral density, we looked at the correlogram, we also looked at the partial 

autocorrelation and then try to get what is the best information that we can extract from 

these analysis. 

So, now we will proceed with the case study three, and see how we build the models and 

how we test the models for validity or validation tests we carry out. So, these are case 

studies on ARMA models. 
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We are considering case study 3 where we are looking at the monthly stream flow in 

cubic meters per second, it also denoted as cumec, and we are taking the period 1934 to 

1974. This is for Cauvery River at Krishna Raja Sagar reservoir. Now, the time series of 

the data autocorrelation function, partial autocorrelation function and power spectrums 

are plotted and I showed it in the last lecture, but for completeness, we will again see 

those plots. 



Now, this time series indicates presence of periodicities. We would then ask the question 

how would we remove these periodicities and one of the ways of doing that will be keep 

on differencing the series. consider the first difference, second difference, third 

difference etcetera and keep examining the different series for the presence of 

periodicities, until you are satisfied that all the periodicities have been removed from the 

data. Another way of doing it, as I discussed in one of the earlier lectures, is that you can 

use standardization. So, we use the standardization. As standardization, I mean Z t you 

can construct a new series Z t is equal to X t minus X bar i by S i. 
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So, that is how you construct the standardized time series. I will just come to that again. 

So, this is how the time series look like. Always the first two step, when we do time 

series analysis is once you have the data on the particular process. In this particular case, 

we are considering the stream flow. Simply plot the data as a time series, so time on the 

x axis and the particular variable on the y axis. The time series plot shows certain type of 

regularity here, like this it is going in a regular manner. 

So, it shows that there is certain kind of inherent regularity or periodicity present in the 

data, which as I said can be expected in most of the monsoon driven stream flows. 

Typically, you get you get high flows during the monsoon periods and very low flows 

during non monsoon periods and so on. So this keeps on oscillating like this now this 



information contained comes up more clearly when we plot the correlogram, so we plot 

the correlogram. 
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Correlogram shows a sinusoidal variation like this and it is going on in a periodic 

manner. So, it shows that there is definite periodicity present in the data, also in most of 

the correlograms; you will observe especially the hydrologic time series especially when 

you are considering the flows monthly flows etcetera. 

There is a slow decay in the correlogram. As you can see here, there is a slow decay in 

the correlogram. Although most of the correlations are still significant, as you can see 

these are the significant bands. How do we plot these significance bands? It is plus or 

minus 2 by root N, so this significant band is simply 2 by root N and on either side. So, 

this 2 by root N, this N is a number of data. In this particular case, we had 480 values for 

the Cauvery data, so 480, so 2 by root N and this will give you the band. 

What does the correlogram indicate? The correlogram indicates that there is a periodicity 

present in the data. Now, can we say there is a periodicity associated with 12 months 

because it has been oscillating around 12 months? Let us say the first 12, first 6 months, 

it goes, then 12 months it goes up and so on, like this it is oscillating. So, you suspect 

that there may be a periodicity corresponding to 6 months, there may be a periodicity 

corresponding to 12 months and so on, because there is a regular oscillation that you are 

seeing and it is in fact sinusoidal type of oscillation. 



To confirm, that there indeed is a periodicity present in the data and to look at which are 

these periodicities that are being thrown up from the data, we do the spectral analysis. 

So, recall that in the spectral analysis, we convert the time domain information, the time 

series into a frequency series, in the frequency domain. And then we analyze the same 

time series, X t in the frequency domain, and then look at the distributions of the 

frequencies or the variance that exist in different bands of frequencies. Let us not lose the 

site of what we are doing in the spectral analysis; especially we are looking at the time 

domain having as being constituted of a large number of frequencies. Then we are 

looking at the variance content or which of these frequency bands contribute more to the 

variance that has been observed in the data. 

That shows the periodicity that means there may be certain frequencies at which there is 

a significant contribution to the variance and then there are certain other frequencies 

where there is much less contribution to the frequency. If you have a purely random 

sequence then the distribution will be more or less uniform. That means there is no single 

frequency, which contributes more to the variance than any other frequency, in the case 

of purely random frequencies. In fact, if you consider white noise as we saw in the last 

lecture and also as we see in the case studies that we consider, if you have your white 

noise then the spectral density will be more or less scattered and it will not show up any 

significant frequencies around which the variance is contributed significantly. 
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So, let us look at how the frequency diagram looks like. Now, this is for the monthly 

time series; this is the original time series of the Cauvery River. You get a periodicity 

corresponding to Wk and are equal to somewhere around 0.52 or some such thing. 

This in fact corresponds to a periodicity of 12 months. How do we get it? We get it from 

Wk is equal to 2 pi by P, we will simply do 2 pi by whatever value that you get, here 

0.52 or some such thing. When you do the tabulation, you will know this. So, this is 

around 0.52 and therefore, the periodicity comes out to be 12 months. Similarly, the 

periodicity corresponding to this spike is 6 months and this is 4 months and this is 3 

months and so on. 

What was not so obvious in the correlogram? In the correlogram, we only noticed that 

yes there may be certain periodicity in the data, because it is oscillating in a sinusoidal 

manner and there is regularity in this oscillation; it is also decaying slowly with respect 

to lag. Therefore, we suspected that there is a periodicity present in this data. Now, this 

information comes up most strongly in the spectral density. So, when you plot the 

spectral density, you will see that there are spikes present in the spectrum. So, these 

spikes correspond to a periodicity of 12 months. We convert the omega k that you get 

here, these are denoted both Wk as well as omega k, this corresponds to 12 months, 6 

months, 4 months and 3 months. 
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We also look at the partial autocorrelation function. So, this is for the original series. 

You see that there are several partial auto correlations that are significant, typically when 

you are looking at the partial autocorrelations, we look at initial lags. These further away 

points are not so important when you are looking at the partial autocorrelations. We may 

be looking at let say up to first 50, first 60 and so on, so there are certain, in this 

particular case, 480 values are there. So, you can look up to about 15 percent of the total 

data, so you look at these partial autocorrelations you see that there are partial 

autocorrelations, which are also significant. 

How do we use the partial information provided by the partial autocorrelation? As I 

mentioned, in the identification of the models, you look at both the correlogram as well 

as the partial autocorrelations to see whether the model can be approximated with the AR 

model or a MA model. If you have the correlogram slowly decaying, which in this case 

we have observed that it is and you have some significant partial autocorrelations 

present, then you may suspect that you may model it with an AR model. 

And the number of terms of AR model corresponds to the number of significant partial 

autocorrelations. When you have seen that the correlogram is showing a slow decay, it 

may be an exponential type of decay or as we saw in this particular case, it may be a 

sinusoidal form of decay. Now, this is information that we get from the data analysis. So, 

typically in any of the data analysis we do this. That we plot the time series first, we see 

if there are any periodicities that are indicated in this. In fact, in the earlier case study 

that we considered the moment we plotted the time series, the annual stream flow case 

study that you can look back it immediately showed that there is a trend. 

So, the time series plot itself gives us an important insight into the type of process that 

we are dealing with and therefore, the first step always is to look at the time series. Now, 

when we are considering the stream flows, you must remember that the stream flow 

models that we are building have to be done on what are called as the normalized stream 

flow series, which means that if you have any regulated contribution to the stream flow. 

Let us say that you are looking at a gauge site at which you have observed the data. But, 

this gauge site has been governed by the data, as this gauge point has been governed by 

let us say that or let me show the particular feature that I am just mentioning. 
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Let us say you have the data at this particular location. This is the stream gauge, and this 

stream gauge has given you last 50 years of data. You may have a reservoir here. Let us 

say you may have a reservoir like this and what you are getting here is regulated flows 

from the reservoir. What do I mean by that? You are having a control flows let down into 

the stream and this gauge is measuring only the control flows perhaps in addition it may 

have its own catchment here. It has its own catchment, so you are getting a regulated 

flow plus the catchment flow. 

So, when we are doing the time series analysis, we must make sure that the effect of this 

upstream structure is removed in some sense. There are ways of doing it perhaps in the 

applications part; I may discuss some of these methods. You remove the effect of the 

upstream structure, construct the time series. This was observed time series, which is 

from the regulated flows and plus the catchment area you construct a normalized time 

series, Y t, which choose this X t, which has been observed and then you remove the 

effect of this storage here, storage structure, and then account for the flows that would 

have naturally occurred and that would have been observed at this location. 

You normalize the series and then on this normalized series Y t, you do the time series 

analysis. Always students tend to do this mistake especially during the projects that they 

take up as part of their academic degrees and so on. That whatever gauge flow is 

available they start doing the time series analysis but, in the case of stream flow, 



particularly you must be careful in looking at what exactly is the gauge measuring; 

whether it is measuring the natural flows or is it measuring the natural flows plus certain 

component of control flows. 

So, this must be kept in mind when we are doing the time series analysis. So, let us come 

back to this, so if you do not have any major control structure upstream of this and you 

look at the time series, then this is how typically it looks for monthly time series in the 

monsoon regions. All right now, let us progress we saw that these were the power 

spectrum indicated 12 months, 6 months, 4 months, periodicities and so on. 
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Now, let us say that we want to examine the effect of standardization on the periodicities. 

So, this is the original time series, this original time series now we standardize. We 

standardize by like I mentioned last time you take Z t is equal to X t minus X bar i by S i, 

where X i bar is the mean of the flows of the month to which time period t belongs. 

Similarly, S i is a standard deviation associated with that month. So, this is how we 

construct Z t. So, this is what I have plotted here is Z t with respect to time. So the 

standardize time series immediately shows that this is much more random compare to 

what we had earlier. This looks to be a random series. Then we look at the correlogram 

associated with this. 
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So, the correlogram again we put the same bands of plus minus 2 by root N. These bands 

remain the same because N remains the same. You see that most of the correlations 

become insignificant except for the first few correlations and the periodicities that were 

so permanently shown up by your earlier correlogram of the original time series, they are 

absent in the correlogram and this is confirmed also by the power spectrum. 
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So, if you look at the power spectrum for the standardize time series as I mentioned, it 

shows that there are no periodicities here except that for the first one, and first two, 



perhaps. There are no periodicities here, which are more significant compare to any other 

periodicities, which means that all the frequencies contribute more or less uniformly to, 

all the bands of frequencies contribute more or less uniformly to the variance and the 

partial autocorrelation looks something like this. 
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Most of partial autocorrelations are also insignificant, except towards the very end of the 

spectrum that we are looking at here. Now, this is information that we get. Now, the 

summary of this information is that we may feel that there are autoregressive terms. 
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That may be important, because we are looking at the correlogram being slowly 

decaying and there are certain partial autocorrelations, which are significant. Therefore, 

we may suspect that there may be some auto regressive terms here. But similarly, you 

may also have moving average terms, because the partial autocorrelations also may show 

certain decay in this particular case and therefore, now we want to start constructing the 

models. 

As I mentioned, we will not adopt the classical approach of identification of the model, 

based on the partial autocorrelations spectral density and the correlograms and so on and 

then validation and then parameter estimation and validation. What we will do in studies 

is that from all of these analysis that we have done, we know how many of AR terms 

may be present and how many of MA terms may be present. Let us say that you are 

looking at the correlogram and then you are seeing that correlations at lag 12, keep on 

turning out to be significant. 

At lag 24 it is significant, at lag 6 it is significant and so on, also correlations at lag 1, 2, 

3 may be significant. So, you may want to consider those terms, AR terms associated 

with this particular lags. Then you may also have MA terms, which are shown by your 

partial autocorrelations. So, you pick let say 2 or 3 MA terms, typically in hydrologic 

applications, as I mentioned in one of the earlier lectures, you go up to 6 or 7 AR terms 

then 2 or 3 MA terms for monthly time series more or less this will be adequate. 

So, you now construct a candidate set of candidate models and then do all the analysis on 

the candidate models. Let us see how we do in this particular case? So, this model 

building can be done on the original series or some transformed series. You may 

consider either loud transform series or you may consider a square root transform series 

and so on. So, we consider the standardized series. Now, because essentially it has to be 

a stationary time series, so we consider the standardized series. The total length of data 

set is 480 or you have 24 years of data, so 480 values, I am sorry you have 40 years of 

data, so you and it is a monthly dataset, so you have 480 values. 

We consider half of this data for calibration of the model that means parameter 

estimation and essentially parameter estimation, because we would have fixed the 

structure of the model itself and then the remaining half we use it for validation. So, 240 

values, we use it for validation. We consider both contiguous and non-contiguous 



models, this case. Like I mentioned, the non-contiguous models, for example, you may 

have AR 2 for non-contiguous model, which considers X t minus 1 and perhaps X t 

minus 12. You know that there is a significant correlation still present in the standardized 

series at lag 12, so we would like to put lag 12 there. But, in the contiguous model, if you 

want to put lag 12, what you will do? phi 1, phi 2, phi 3, etcetera, up to phi 12, you have 

to go, which means a number of terms you are increasing number of parameters are 

increasing.  

Whereas, in the non-contiguous model, if you want put, let say lag one and lag 12, just 

the two of them. So, you write the ARMA model as X t is equal, to let me write that. 

You will write the ARMA model as in the case of non-contiguous model. You will write 

this as X t is equal to that is phi 1 X t minus 1 plus phi 2 X t minus 12, we will take plus 

epsilon t or something, and this is a noise term. So, instead of taking all the intermediate 

term, we consider only those terms, which we feel are significant. So, like this we 

construct the non-contiguous models. In fact, for consistency you may call it as phi 12, 

so phi 1 and phi 12 only may be important here, but that is a matter of notation. 

Similarly, for MA terms also, what we may do is we may consider the first term as well 

as a twelfth term or first two terms and the twelfth term, first three terms and the twelfth 

term and so on like this. By doing this, what we are achieving is we are making sure that 

the number of parameters in the model, which need to be estimated from the data and the 

data length, is fixed. Therefore, if you consider large number of parameters, the 

parameter estimation becomes less reliable. As you have large number of parameters to 

be estimated with the same length of data, then the models becomes much more 

cumbersome and therefore, less reliable. So, we will always go with the least number of 

parameters and this is what is generally called as Principle of Parsimony. So, in time 

series analysis we always go with Principle of Parsimony. 
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So, as I mentioned for example, a non-contiguous AR 3 model, with significant 

dependence at lags 1 4 and 12, this we may write it as X t is equal to phi 1 X t minus 1 

plus phi 4 X t minus 4, plus phi 12 X t minus 12 plus the noise term. The intermediate 

terms here are phi 2, phi 3 we have left out and similarly, phi phi 2, phi, eleven, we have 

left out. We are simply looking at those particular terms, which indicates significant 

dependence through their lag correlations and we include only those particular terms. 

Similarly, we do that for the moving average terms also. We write the moving average 

terms for an ARMA 3 3 model. Let say where we are considering same lag 1 4 and 12. 

Then we write phi 1 X t minus 1, plus phi 4 X t minus 4, plus phi 12 X t minus 12, plus 

the same dependences we take theta 1 e t minus 1, plus theta 4 e t minus 4, plus theta 12 

e t minus 12 plus the noise term. So, this is how a non-contiguous ARMA 3 3 model is 

written. What we would have done for a contiguous ARMA 3 3 model? we would have 

said phi 1 X t minus 1, plus phi 2 X t minus 2, plus phi 3 X t minus 3 plus theta 1 e t 

minus 1 plus theta 2 e t minus 2 plus theta 3 e t minus 3, so we would have gone 

continuously up to the last term there and add the noise term. 

 We in the candidate model selection what we do is we construct both contiguous models 

as well as non contiguous models depending on which terms we feel are significant and 

which terms need to be indicated, included in the model, we include those terms, those 

AR as well as MA terms and then construct the contiguous models also. So, for this set 



of identified candidate models, we do the parameter estimation then we do also the 

validation and we compute the likelihood values associated with each of these models. 
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Let us do that and see which model we select in the contiguous model as I said exactly, 

which terms to include is to be decided based on the correlogram and spectral analysis of 

the series under consideration. So, correlogram typically shows up some of the 

significant lags. So, look at the correlogram then include those particular terms now. let 

say you had a series of a set of contiguous models and another set of non-contiguous 

models, which one do you chose? As I mentioned, you compute the likelihood values for 

each of these models then look at the maximum likelihood value from each of these. 

So, one model comes up from the contiguous and another model comes up from the non 

contiguous. Now, this is now a matter of judgment. You may either look at the likelihood 

value itself and if there is a significant difference between the maximum likelihood value 

of the non contiguous models compared to the maximum likelihood value of the 

contiguous models, then you have to choose that particular model either the contiguous 

or the non-contiguous, which gives you whose likelihood value is more than the other 

one. Whereas, if they are quite close to each other, if the maximum likelihood values of 

the candidate models of the models that you have selected are close to each other, then 

you may go with the particular model which has lesser number of parameters. 
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 Let us see what happens in this particular case. We compute the likelihood value for 

each of the models. These are candidate models that we considered for the contiguous 

case; ARMA 1 0, 2 0, 3 0, 4 0, etcetera up to 6 0. Then we start including the MA terms 

1 2, we go up to maximum of two terms, then we go up to AR 3 terms, in the case of 

ARMA 3 1. So, these are the candidates’ models we consider. We went up to AR 6; 

because your correlogram showed that there may be certain correlations, which are 

significant, so that gives us an idea. See here, you are seeing standardized series; there 

are quite a few significant correlations so you have gone up to AR 6. 

Similarly, the partial autocorrelations show that there may be some significant partial 

autocorrelation up to about 6, so you want to include the AR up to AR 6. In fact, you can 

go up to AR 10 and so on. Just to make sure that you do not miss the actual model but, 

typically the MA terms, we consider for only up to 2 or maximum 3 in several cases. 

Then you go up to ARMA 3 1. So, this is how we constructed the candidate models. In 

fact, ARMA 3 2 also can be one of the models, so for each of these models these are 

contiguous models. So, you know how to formulate the models for each of these models. 

We first estimate the parameters and then you also get the likelihood values. 

Let say that the likelihood value is this, is actually the log likelihood value, you have 

minus N by 2 log sigma i minus n i; n i is a number of parameters. Say for example, here 

it is three, and in this case it is again three, in this case it is 4. So, the total number of 



parameters sigma i is the variance of the residual. For any of these models, you would 

have computed the parameters. Then in the calibration period, you would have got the 

residuals and that residual variance is sigma i, so n is total number of values. In this case, 

it is 480, so you know for every model you can get the likelihood value. Like this you get 

the likelihood values for each of these models. 

The model that gives you the maximum likelihood value is the model that is chosen. So, 

in this particular case 31.63 happens to be associated with ARMA 4 0 and that is also the 

maximum values. So, we say that ARMA 4 0 model is chosen for long term synthetic 

generation of the data for the Cauvery river flows at Krishna Raj Sagar as far as 

contiguous models are concerned. 
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Now, we will do this also for the non-contiguous models. We construct the non 

contiguous models, every time taking the last term to be X t minus 12 or e t minus 12. 

That means the twelfth lag; we are taking it as significant, so the last AR and MA terms 

correspond to the twelfth lag. Let me see if we have, let say that I want to write ARMA 2 

0 non contiguous model with the twelfth lag. How do I write this? I will write this 

particular model as non-contiguous model. This is non contiguous model, so I will write 

this as X t is equal to phi 1 X t minus 1. The first term I keep it the same, the second term 

I will put it as X t minus 12. X t minus 12, you can use it as phi 12 or phi 2, in this 



particular case, we can go as phi. Let me rewrite this so this is how you write the non 

contiguous model. 

So, in the non-contiguous model, we are essentially writing only and we are taking only 

those terms, which we feel are significant and are important. So, this is how we write the 

ARMA 2 0 models, similarly, you can write ARMA 2 2 model, phi 1 X t minus 1 plus 

phi 2 X t minus 12 plus theta 1 X t theta 1 e t minus 1 plus theta 2 e t minus 12 plus 

epsilon t. So, this is how we write the non-contiguous model. Once, you write these 

models you can go to your parameter estimation algorithms and estimate the parameters 

and apply these models to the calibration data. in this particular case, the first 240 values 

we apply get the residuals, get the variance of the residuals and then calculate the 

likelihood value. 

So, for the non-contiguous models, the likelihood values turn out to be like this 28.5 to 

28.5 etcetera. So, the ARMA phi 0 of the non-contiguous type of models comes out with 

a likelihood value of 30.85, which is the maximum likelihood value. So, we either 

choose now the non-contiguous ARMA 5 0 model or the contiguous ARMA 4 0 model. 

Now, the likelihood value that is present here is 31.63 and this is 30.85. What are the 

terms that this model will have? It will have all of those ARMA 4 0 models that the 

contiguous model had plus it will have a additional term corresponding to the twelfth lag 

that is the way I have formulated the non contiguous models. 

So, this has the first 4 terms; X t minus 1, X t minus 2, X t minus 3, X t minus 4 and the 

twelfth term X t minus 12, and that leads to a maximum likelihood value of 30.85 and 

there is not too much of a difference between these two maximum likelihood values. So 

you can go with either contiguous or non-contiguous. But typically, we keep in mind the 

Principle of Parsimony of Parameter Parsimony, which means that you go with the lower 

number or go with the model which has lower number of parameters and therefore, we 

chose ARMA 4 0 models, which also has a higher likelihood value in this particular case. 

So, for the data generation then for the Cauvery river flows, for monthly time periods, 

we choose the ARMA 4 0 model. 
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Let see what, for this time series, I will just summarize this. The parameters of the 

selected model are 0.2137. This is you have 4 parameters phi 1, phi 2, phi 3 and phi 4. So 

these are the parameters and then you may have a constant, which is minus 0.0157. Now, 

this constant, if we write the model in another form where we typically write X t similar 

to your regression, you may want to add a constant to that, so in this particular form what 

we do is phi 1 X t minus 1 plus phi 2 X t minus 2 plus phi 3 X t minus 3 plus phi 4 X t 

minus 4 plus constant plus epsilon t. 

Now, this is what we write and this is a constant term. So, these are the 4 parameters phi 

1 phi 2 phi 3 phi 4 and you know the data and therefore, all these terms are known and 

therefore, you can apply this to your calibration time period and get the residual 

associated with that. 
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Now, we will look at deciding, which is a good model for forecasting, the models that we 

just discussed are for long term synthetic generation of data, so you can use this 

particular model and then generate the data over a long period of time, let say 50 years 

100 years 150 years and so on. You can use this particular model. Remember that this is 

a time series; it has no relevance for the individual months, so this simply generates time 

series of the flows without regard to the particular month in which they belong. In fact, 

we have done this for the standardized series actually. It generates the standardized 

series. From the standardized series you should be able to get back to the flows. 

Now, we will see if we are interested in forecasting; that is monthly forecast models for 

the stream flows, then what we do is we compute the mean square errors rather than the 

likelihood values. So, we choose the model, apply the model to the calibration time 

period and then we use let us say this one I have discussed earlier. But, for the 

completeness sake, let us go through this again and see how we compute the mean 

square error for this. 
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This is a calibration period. So, let say that you are talking about AR 1 model, so we are 

writing this X t is equal to phi 1 X t minus 1 plus e t and when we are doing the 

forecasting. We write this as we take the expected value of X t and this we indicated as X 

t cap is equal to phi 1 X t minus 1 and the expected value of this will be 0. 

So, if we want to apply AR 1 model for forecasting, we look the calibration, we look up 

the calibration period, we would have estimated phi one and then apply this for the 

calibration period. Let say you apply this for time period t starting with time period t 

minus 1, you also have the data here and you have the forecasting here, so this is X t cap 

as obtained from this. So, this would have been estimated now. X t minus X t cap will 

give you the residual and from this we obtained the residual variance. So, essentially 

then what we are doing is the errors that we get from here. So, error e t will be equal to X 

t minus X t cap. This is the error then we get the mean square error so from this we get 

the mean square error. 
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So, we write mean square error as e t square by N, t is equal to 1 to N. This is how we 

get the mean square error. So, associated with each of the models, we know now how to 

compute the mean square error. Now, that is what we look at, which means for each of 

the models of the contiguous type, we again consider up to 6 0 and then up to 3 1, 1 1, 1 

2 etcetera up to 3 1. 

We compute the mean square error associated with this and choose that particular model, 

which results in the lowest mean square error. So, in this particular case, ARMA 1 0 

which is AR 1 model comes up as the best model out of those considered here. 

Typically, when we are looking at normal processes like monthly stream flows, seasonal 

stream flows, etcetera, which are smoothen processes in some sense, and the best model 

is often the first model. It is that is only you are looking at X t minus 1 and then the 

dependence on X t minus 1 and that itself comes out to be the best model; however, if 

you had done this exercise for the rainfall, which we will do, subsequently in some other 

case studies.  

If you do it for rainfall time series, this may not turn out to be the best model for 

forecasting. In fact in MA, in rainfall processes, often we may have to consider MA, MA 

terms, second order, third order, moving average terms. We may have to consider in the 

rainfall time series. So, this is for contiguous models. Let us now formulate the non 



contiguous models following the same principle same method that we use for the non 

contiguous models for data generation process. 
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So, we form the non contiguous models what is ARMA 2 0 in this case? You will have X 

t minus 1 and X t minus 12. Similarly, ARMA 7 0 will have X t minus 1, X t minus 2 

etcetera X t minus 6 and X t minus 12. So, the last term of any of these models will 

correspond to a lag of 12, both in terms of AR terms as well as in terms of the MA terms. 

So, MA when we have two terms, the first term will be e t minus 1, the second term will 

be e t minus 12, so that is how we construct the non-contiguous models.  

So, these are the candidate models that we consider, and then we formulate the models, 

so you will know how many parameters. The parameters are estimated by going through 

any of the algorithms, typically we use the mat lab algorithm armax as I showed in one 

of the earlier classes. 

Once you know the parameters, we apply these models to the calibration time period, 

which is a first 240 values, get the errors associated with that, and then calculate the 

mean square error that is a mean square error value that comes up here. So, these are the 

means square error values and again here you get ARMA 2 0, as the best model, which 

gives a mean square error of 0.96, corresponding to the earlier contiguous models that 

gave a mean square error of 0.97. 



So, the mean square errors are more less the same in both the cases. So, you can choose 

either ARMA 2 0, which is a non-contiguous, which will have two parameters phi 1 and 

phi 2, X t minus 1 and X t minus 12, or you may choose ARMA 1 0 model, which is phi 

1 X t minus 1. 
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Now, this is how you select models for long term synthetic generation, as well as for 

short term forecasting models. For one time step ahead forecasting as I mentioned, often 

the simplest model is appropriate, because you are doing a time series forecasting and as 

long as the processes that we are considering are smoothen process. 

For example, monthly stream flow, seasonal stream flows etcetera, then the simplest 

model will work well for the forecasting as a number of parameters increases, the MSE 

increases. In this particular case, as you can see here the MSE generally increasing as 

number of parameters increase; as 1.89, 2.84 etcetera for the non-contiguous models. 

Similarly, for contiguous models 1.9 to 2.87 etcetera, it goes up to 6, then again here 1 1, 

you have two parameters, then it keeps on, not necessarily, but by enlarge it keeps 

increasing. So, in this case you have 4 parameters which is 1.89. So in general it appears 

to be the MSE value appears to increase in this particular case for, as a number of 

parameters increase. The AR 1 model is recommended for forecasting in this particular 

case and the parameters for this are phi 1 is equal to 0.2557 and C is equal to minus 

0.009. 



So, what did we do? We built two models now, by considering a large number of 

candidate models, we selected one model, which was ARMA 4 0 which is AR 4, for long 

term synthetic generation of the data, and we choose AR 1 the contiguous AR 1, which 

only considers phi 1 X t minus 1, as the models suitable for forecasting. So, this is how 

we select from among a number of candidate models which model is the best for that 

particular purpose. For long term synthetic generation we considered the maximum 

likelihood and for short term one time step ahead forecasting we considered the 

minimum mean square error, and then we choose these two models. the parameters have 

been fixed when we choose the particular models, the parameters have been already 

estimated. 

Now, what we do is we apply these so chosen models on the remaining part of the data 

and get the residuals. The residuals that you so obtain must satisfy the conditions that we 

set forth earlier, namely that the residuals must have a zero mean. They should all be 

uncorrelated and they should be devoid of periodicity. So, these are the test that we 

conduct once we choose the particular model. So, the models that we choose must pass 

all these test only then we recommend that particular model for the purpose for which it 

is meant. 

So, we will continue the discussion through other case studies. First complete this case 

study, in the next lecture, as soon as we start and see how we carry out the test on the 

residuals, how we construct the residuals and how we carry out the test on the residuals. 

So, in today’s lecture then we essentially continued with the case study number three that 

we started in the last class and we built these models, both for long term synthetic 

generation as well as for short term one time step ahead forecasting. We will continue 

the discussion in the next class.  

Thank you for your attention. 


