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Good morning and welcome to this the lecture number 18, of the course, “stochastic 

hydrology”. In the last lecture, we went through the ARIMA model selection, based on 

the means square error criterion. In the earlier lecture, we had discussed the model 

selection based on the maximum likelihood criterion. Essentially, what we do is that we 

select a set of candidate models and then estimate the parameters, using the calibration 

data, the first part of the data. We use so the parameter estimation methods, typically, the 

Markov’s algorithm or algorithms that are available in matlab, and then estimate all the 

parameters of the candidate models.  

Then corresponding to each of the candidate models for the validation data, we compute 

the likelihood values in the maximum likelihood case. In the mean square error case, we 

calculate the mean square error when the model is applied for the validation period. We 

choose that particular model in the case of forecasting that particular model which resorts 



in the minimum mean square error. In the case of long term synthetic generation of the 

data, we choose that particular model, which results in the maximum likelihood. 

Then in the last lecture, we also take we also discussed the procedure for model testing 

and validation. Essentially, if you recall, we do all this test on the residuals or the 

residuals that arise out of application of the model, on the validation data. You have built 

the model and apply that model for the validation period, because you have the data for 

the validation period, you obtain the residuals as differences between the actual data, 

actual observed data and the model simulated data that gives you the residuals. 

So, you get a residuals sequence for the length of the validation period. That residual 

series you examine for the major assumptions that you we have made in building the 

model, namely that the residuals have a zero mean. Therefore, we test for the 

significance of the residual mean. If the residual mean is significant then it fails the test; 

if the residual mean is not significant that means that it can be approximated to be 0 and 

therefore, it passes the test.  

Similarly, we examined two tests for periodicities, one by defining a particular statistic 

where it examines the periodicities one at a time. So, you form the statistic and then 

compare it with the associated F value to examine whether that particular periodicity is 

significant or not. So like this one by one you test the periodicities. 

 We also discussed the cumulate periodogram test, which is also called as the Bartlett’s 

test for significance of periodicities where we formulate the cumulative periodogram and 

then draw the confidence bands, 95 percent or 99 percent confidence bands, around the 

cumulative periodogram. If the cumulative periodogram resulting from the residual 

series lies within this band, significant band, then the series passes the test. In the sense, 

that the series does not have any significant periodicity present in the in the series. 

The last series of test was on examining whether the series is in fact uncorrelated or it 

forms a white noise, for which we examine two tests we discuss two tests, one is 

Whittle’s test and the Portmanteau test. Both of which define a particular statistic and 

this statistic, if you recall is dependent on the covariance matrix. What we will do in 

today’s lecture is that we will see how a model is actually applied to several case studies, 

and how we carry out this test and so on. In the last lecture, I could not discuss any 

numerical examples, so today we will see what we mean by one time step forecasting? 



How do we apply these models in the onetime step forecasting? How we select the 

models for long term synthetic generation of the data? Then we will also discuss 

primarily in today’s lecture, I will discuss certain case studies of actual observed data 

how we apply that observed data for model building. 
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Now, for the data generation, remember the data generation, we are talking about long 

sequences of data generated based on the models that we have built on the historical 

data. So, let us say that we have an AR 1 model that is auto regressive model of order 

one. We write this as X t is equal to phi 1 X t minus 1 plus e t. 

So, let us take one simple example where I fix up phi 1 as 0.5. We will see how we apply 

this model. So, I will write this as X t is equal to 0.5 X t minus 1 plus e t. Now, e t is a 

series, which has a zero mean and the series is uncorrelated. So, to apply this we choose 

the e t such that they have zero mean and they are all uncorrelated. For example, if you 

take the standard normal deviates they all has zero mean and coming from a purely 

random sequence they are uncorrelated. 
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We choose the e t sequence, following these two. Let say, how do we apply then. To start 

the generation process as we did in the Thomas fiering model case, we start the 

generation process by assuming an initial value. Let say X 1 is equal to 3.0. Typically, 

this is assumed to be the mean of the series itself. Then X 2, I write as 0.5 into X t minus 

1 which is X 1 in this case plus the e t term.  

Now, these e t terms I may be choosing from the standard normal deviates; so 0.335. So, 

I get X 2 as 1.835. Then I will use this 1.835 in the generation of the next value, phi 

remains the same, X 2 now when I am generating X 3, and then I put another e t value 

from the same sequence of random numbers. I get 2.14 and this 2.14 I use to generate X 

4 and so on. So, this is how we use the AR 1 model to generate numbers, to generate the 

particular variable values. X 1 we assumed and X 2 X 3 etcetera these are generated. 
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Let us take an ARIMA models that is auto regressive moving average model of order 

(1,1), which means it has one AR parameter and one MA parameter. So, X t is equal to 

phi 1 X t minus 1; this is AR parameter plus theta 1 e t minus 1 plus e t. This is the 

ARIMA 1 1 model. Let say phi 1 is equal to 0.5 and theta 1 is equal to 0.4. This is now 

written as X t is equal to 0.5 X t minus 1 plus 0.4 e t minus 1 plus e t. when we are doing 

the model testing, let say this is our model that we have built, when we are doing the 

model testing we use this e t minus 1 as the e t that is used in the previous term, that is 

for t minus 1. I will explain what I mean by that. 
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Let say we start with the same value X 1 is equal to 3.0. so, I get X 2 is equal to phi 1 

into X t minus 1, which is phi 1 into X 1 plus theta 1 into e t minus 1 to begin with we 

assume there is no e t minus 1 here. Therefore, it is zero plus e t. Now, this is an e t term 

that I am using, choosing from a set of numbers which have zero mean and they are all 

uncorrelated. So, this is 0.667, I get 2.167. 

When I go to X 3 to generate X 3, I write phi 1 into X t minus 1 which is X 2 which is 

this 2.167 plus theta 1 0.4 into e t minus 1. So, e t minus 1 is the random term that we 

have used in generating the previous values, so that becomes 0.667 plus e t. Now, e t is a 

new number drawn from the same sequence of random numbers. Like this it keeps on 

going, so you generate several values in the series like X 1, X 2, X 3, X 4 and so on. So, 

this is how we do the long term synthetic generation of the data using the ARIMA 

models. Remember here, I have talked about AR and MA, I is the order of differencing 

which we do before we build the ARIMA model. 

(Refer Slide Time: 10:58) 

 

Now, let say we want to use the ARIMA model that we have chosen for one time step 

ahead forecasting. That is we chose the model from amongst set of candidate models by 

computing the mean square error of those models and then finally, we chose this 

particular model. 

Now, as mentioned in the last lecture, what do we mean by forecasting? One time step 

ahead forecasting indicates that we are in a particular time period and then we want to 



forecast what is likely to be the value of that particular variable for the next time period. 

Let say at the end of the June month, we know the data that has actually occurred for the 

June month. Now, we want to forecast what is likely if you are talking about the stream 

flows, what the likely stream flow is during the next time period which is July, if we are 

talking about the monthly time series. So that is a problem here.  

Now, the when we are talking about the forecast, we are just looking at the expected 

value of that particular variable during the next time period from arising from this 

particular model. So, if we take the expected value of X t phi 1 e expected value of X t 

minus 1 plus expected value of e t, now expected value of e t is the mean of e t which is 

0 because that is how we have used in the model. And therefore, I can write the forecast, 

which is typically written as X t cap for the variable X t is equal to phi 1 X t minus 1. 
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Now, if we want to do the same thing for ARIMA 1 1 model, X t is equal to phi 1 X t 

minus 1 plus theta 1 e t minus 1 plus e t. Remember, this e t minus 1 is coming from the 

model application for the time period t minus 1, which is a known value; e t minus 1 is a 

known value, which was responsible for generating the previous value. 

So, expected value of X t is equal to phi 1 x t minus 1 plus theta 1 e t minus 1 plus 0. 

This sequence has a zero mean. Therefore, I write it as 0. So, this is an error in forecast 

in the previous time period. So, you had applied this in the previous time period 

compared it with the actual data for the validation period and then you obtain this e t 



minus 1. Therefore, that is a known value and when you take the expected value of a 

constant if you recall it will be the constant itself. Let say for example, phi 1 is equal to 

0.5 and theta 1 is equal to 0.4 as we considered earlier. We write this as X t is equal to 

0.5 X t minus 1 plus 0.4 e t minus 1.  

(Refer Slide Time: 14:08) 

 

For the forecasting when we are applying it for the validation period, let us say X 1 is 

equal to 3.0 and I want to forecast the X 2 value. I write it as X 2 cap using that value 

model, which is phi 1 which is 0.5 into X 1 as 3.0 plus theta as 1.4 and e t minus 1 which 

is 0. So that will be equal to 1.5. Now, look at what we do for the second value. X 2 is 

2.8, this is an observed value, this is not the forecasted value, this is observed or it is the 

data and this is the forecasted value. so, we compute the error e 2 as observed minus the 

forecasted, which is the 1.3 and this is what goes into generating the next value, so in 

forecasting the next value. 

So X 3 cap, I write again as phi 1 X 2 plus theta 1 e 2 and e 2 is 1.3 here. Now, when we 

are doing X 2, remember you take the observed value so you take the actual observed 

value for forecasting the next one. So, essentially as I mentioned in the last lecture 

essentially what we are doing is in this particular case, we are standing in time period t is 

equal to 2, and then forecasting for t is equal to 3. Now, this is X t that is X 3 cap and X 

2 is known, so we obtain the error based on the forecast. The time period to use that error 

in generating the next value for X 3, next forecast for X 3 that is 1.3 this is what we are 



using this 2.8 is the observed value like this we keep going. Now, X 3 again, we compute 

the error based on the observed value of X 3 and then generate X 4 and so on. 
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So, X 3 is 1.8. This is again the observed value. X 3 cap is the forecasted value, so we 

get the error as minus 0.12, this minus 0.12 is what we use in the forecasting of the next 

value and so on. So, this is how we obtain the forecast based on the ARIMA models. 

What we will do is we know how to generate the values and we know how to forecast 

the values; one time step ahead forecasting. I keep on mentioning that one time step 

ahead forecasting models but, you can also have two time step ahead forecasting models 

two time step ahead forecasting models and so on. 

The difference there would be in one time step ahead forecasting models what did we do 

we forecasted X t based on X t minus 1, which means standing at the end of the time 

period t minus 1, we are forecasting X t. Let say we want to use two values, two previous 

values, typically in hydrology, we do not deal with such situation, but any many of the 

other areas of engineering, typically they use several of these time lag values for 

forecasting. 

Of course, when I say that in monthly time series forecasting and so on, we may consider 

previous lags; X t minus 3 X t minus 4 and so on. When I discuss the case studies I will 

make that more clear. So, in two time step ahead forecasting what we do is standing at X 

t; that is we want to forecast X t based not only on X t minus 1, but also on X t minus 2. 



So, we want to forecast in two time step ahead forecasting. I am sorry I will explain that 

correctly. One time step ahead forecasting we did from t to t plus 1 let us say. 

So, we obtain up to t, it is known and you are forecasting here, for one time step ahead. 

So, this known data we use in the two time step ahead forecasting. Up to this point, the 

whole history is known. We use all of that to forecast not only t plus 1, but also t plus 2. 

So, this is two times step ahead forecasting. Let us say that you are talking about 

forecasting of a flow increase in a particular river. So, standing in particular time period, 

let us say one hour you are standing a particular hour. 

Then you would like to say that the next hour, the level will be so much, the hour next to 

that the level will be so much. In the case of flows standing in June month, you may 

want to say what the forecast is for July and what the forecast is for August, based on 

these models. Now, when we are applying it for two times step ahead forecast, the 

assumption is that you have the observed values only up to this time period t. 

So, using this forecast you have forecasted X t plus 1 cap. Now, when we are forecasting 

for X t plus 2, you use the forecasted value for X t plus 1, namely the X t plus 1 cap that 

you use, because you do not have when you are doing two time step ahead forecasting. 

Both these two time step ahead actual values will be available only at the end of this two 

time steps. So, when you are doing two times ahead forecasting in obtaining your errors 

here, you will use the forecasted values, because you are doing two time step ahead, the 

values will be known only when you reach the end of time period t plus 2. 

Anyway, this we will discuss further when we look at some applications. Now, what we 

will do is that the mean time series analysis procedure that we have studied so far, 

namely the correlogram; correlogram gives us certain information, the partial auto 

correlation function gives us certain information, the power spectrum gives us certain 

information. All of these available information from the historical data, we synthesize 

and build the models. Once we build the models, we validate the models, based on the 

residual series. Now, these several steps, we will apply to several case studies, several 

different case studies.  

In certain case studies, I may only discuss correlogram and spectral analysis and so on, in 

certain case studies we will go all the way up to building the ARMA model, and see how 

they can be applied for actual data generation as well as forecasting. Now, you must 



remember, I have kept on telling in the course that the daily rainfall data, behaves much 

differently from let say a much normalized, much smoothen process, like a monthly 

stream flow or seasonal stream flow and so on. 
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Let us look at first the daily rainfall data and we consider this daily rainfall data for 

Bangalore city, for certain duration and we plot for this daily data, we plot the time 

series, auto correlation function, serial partial auto correlation function and power 

spectrum. 

Then what we will do is we will add the daily data to obtain the monthly data and do the 

same analysis and see how they appear differently. They appear different from each 

other. Then add all the monthly data and obtain the yearly data and look at how the 

yearly data looks compared to the daily data. What we may expect in an urban area? The 

rainfall, daily rainfall, is in some sense it indicates a random process. I mean, the number 

the rainfall data may be uncorrelated and they you may not get any significant 

periodicities if you are looking at short duration rainfall such as daily rainfall. In fact 

these short duration rainfalls are what cause the urban flooding. Therefore, it is important 

to understand how the rainfall process itself is behaving. 
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So, let us look at the time series. Certain length of the data, I have taken and then I have 

plotted the time series. This is how the time series looks like. There are large numbers of 

zeros here and then from the time series you cannot make out much in the daily case. If 

you go to monthly or yearly cases, we may perhaps suspect that there is some 

periodicity, but when we are talking about rainfall and you are plotting for short time 

duration, such as day, it is very difficult to understand whether there are any significant 

period which is present in the data and so on. 
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So, we will plot the correlogram. Now, when I plot the correlogram, as you can see these 

are the significant bands here that is 95 percent significant bands. Most of the 

correlations, with respect to most of the lags that is correlations with respect to most of 

the lags, are within the significant bands, indicating that they are all insignificant. There 

are hardly few initial lag correlation significant and there may be some of these, which 

are significant at perhaps regular intervals. We will have to check this with the spectral 

analysis. So, this indicates that the daily rainfall data is likely to be uncorrelated. 

Although, there are certain significant periodicities, for example, we are not getting a 

peak like this 0.15, 0.2, and so on, except for lag 0, which is lag one perhaps near to 0, 

which is close to 0.15. This value is not exactly for lag 0, lag 0 correlation is always one. 
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Now, we will see what happens when you look at the partial auto correlation. Again, 

partial auto correlation, this is a significant band here. Remember, I mentioned during 

discussion on auto correlation that being a auto correlation its significance band will also 

be same as the significance bands for the correlation, which is in this case we take it as 

plus minus 2 by root n; n being the data n being the length of the data I am sorry n being 

the number of data points. So, for most of the partial auto correlations are insignificant 

except for the very first few, may be first one, second one and so on. Then we will look 

at the power spectrum. 
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 Power spectrum, if you had regular periodicities, what you would have seen that most of 

these spectral values will all be in certain band and suddenly you will see a large spike. 

But, that you are not seeing it. In the particular case, it indicates that there is an important 

contribution to variance somewhere around this point or may be around point just less 

than 0.1 and so on. 

But, by enlarge, it is spread. There is no significant value around, which there is a 

contribution to variance. So, the daily data, typically behave like this, daily rainfall data 

typically behave like this where you are unable to say much on what kind of regularity 

exist in the data or what kind of deterministic component you can extract form the data 

and so on. Obviously, because this is all typically you find uncorrelated values of 

rainfall. When you are talking about smaller durations of daily rainfall or 6 hourly 

rainfall etcetera, which are important in the flooding situation, it is extremely difficult to 

get a good deterministic component. They behave mostly like a purely random process. 

Let us now add up all the daily values and generate a monthly time series. In this case, 

we have about 32 years of data and this is the monthly time series. Now, the monthly 

time series appears to tell us that you may suspect certain periodicities. They seems to be 

certain regularities here, in terms of fluctuations and this one becomes more clear, when 

this information that we are suspecting the time series to hold, becomes much more 

prominent when we do the correlation or the correlogram analysis. 
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So, in the correlogram you see a sinusoidal variation. Remember, between this and this, 

notice that between this and this, there are 20 values, so it is going like this. There is a 

sinusoidal variation like this, it keeps going on like this and then there is a slow decay as 

you progress into time. We are going about 195 or something, some lag, there is a slow 

decay of the correlation. These bounds are again the significance bounds, 95 percent 

significance bounds and most of the correlations are significant as you can see. 

Now, this typically indicates that there is a periodicity present in the data. For example, 

this may corresponds to 6, this may corresponds to 12 and so on. We will what exactly it 

means when we look at the spectral analysis the correlogram or the monthly data 

definitely indicates a presence of periodicity. The correlogram is dying down in a 

sinusoidal form. Compare this with what we did for the daily. So, this was the daily data 

correlogram where most of correlations were insignificant, whereas, when you come to 

the monthly data, most of the correlations are significant and then there is also a 

sinusoidal variation, indicating that there is a periodicity present in the data. 
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Now, we will see how the partial auto correlations show up? The partial auto 

correlations, there are many significant partial auto correlations as you can see, the 

corresponding to one perhaps, there is a significant partial auto correlations. These are 

significant; these are significant and so on. As you go further, however most of the 

partial auto correlations become insignificant. This is for the monthly data. Now, what 

does this tell in terms of our model building that we had discussed earlier that if your 

auto correlogram or the correlogram indicates that that is a sinusoidal or exponential 

decay, and there are certain partial auto correlations, which are significant, this indicates 

a MA model, MA process, in which you can use these significant partial auto 

correlations to build the MA model. 

However, we are not adapting that procedure of identification as I have mentioned. We 

simply build candidate models based on this information and then look at look at the 

particular models to be chosen. I am sorry, I just want to correct that when you have the 

auto correlation decreasing, decaying, slowly with respect to time, and there are certain 

partial auto correlations significant, it indicates an AR process not the MA process. It 

indicates an AR process and then the order of the AR, auto regression, we choose based 

on the number of partial auto correlation which is significant. 
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Now, we look at for the monthly data, we look at the power spectrum. see this indicated 

the correlations, correlogram indicated that there is a certain periodicities and we also 

suspected that there may be a periodicity corresponding to 6 months; there may be 

periodicity corresponding 12 months and so on. So, this information is strengthened, this 

indication is strengthened by the power spectrum. When I plot the power spectrum, I get 

a periodicity corresponding to somewhere around 0.52 or something, then 1.23 and so 

on. 

So, this corresponds to, if we use W k is equal to 2 pi by p and associated W k value if 

we put, this corresponds to a periodicity of 12 months, this 6 months, 4 months and so 

on. So, in the monthly data, for Bangalore city, we observed that there is a periodicity of 

12 months, which is in monsoon situation it is quite common, where there is a regularity 

in the rainfall pattern. But, these are not so intuitively clear that why there should be a 4 

month periodicity, why there should be a 6 month periodicity and so on. As I mentioned 

earlier, while the spectral analysis brings out the fact that there are certain periodicities 

present in the data whether these periodicities are in fact significant or not, we need to 

test separately. 

So, this information only indicates that there is a 12 month periodicity, 6 month 

periodicity and 4 month periodicity here. How do we obtain that is simply by p is equal 

to 2 pi by W k and the W k is associated with that particular spike. You pick up the w k 



associated with this and then get the periodicity. Now, we will go one step ahead. Now, 

we started with the daily data. We did all this analysis; we could not get much of the 

information out of that. Then we added all the daily data obtain the monthly data and did 

the analysis for the monthly data, the monthly data correlogram showed up periodicities 

present in the data and that was fortified by the power spectrum. Now, we will add all the 

monthly data for the 12 periods in the year, 12 months in the years, and then formulate a 

yearly time series and plot the time series. 
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So, yearly time series if you draw, this is between 0 to about1400 millimeters; annual 

rainfall, in Bangalore city. If you plot that this looks slightly haphazard like this, so the 

time series for last about 32 years or something, we have taken here and this is how it 

varies. 
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Let us see what happens to the correlogram of this; correlogram of the annual data. Now, 

the significance bands are here now. Why the significance bands are different from 

monthly to daily to annual? It is because of the number of values that you are using. This 

is 2 by root n and n in the case of monthly time period is let say it is you have annual 

data and one year consist of 12 months and therefore, the number of months will be 

much larger than the number of years, and therefore, the number of values that you use 

to compute this for the annual data, will be much smaller than the number of values that 

you used for monthly data. 

And this is 2 by root n and therefore, as n decreases, this will be larger and larger. So, 

you are getting larger and larger insignificance bands, which mean that if the correlation, 

lie within these bands. Then they are all insignificant. So, as you can see, all the 

correlation for the annual rainfall data, they are all insignificant; statistically 

insignificant. We leave out the lag 0 correlations because that is always one, so all other 

remaining correlations are all insignificant. 
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Let us look at what the partial auto correlations say? Partial auto correlations also bring 

up the same conclusion that all the partial auto correlations, most of the auto, except this 

and this here somewhere around lag 10 and lag 9, they are significant, and then lag 5 is 

significant, zero you leave out and this is what the partial auto correlation function brings 

up. 
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So, as we progress from daily to monthly to annual, the behavior of the process changes 

and this is important in hydrology, because what you are applying the models for; is it 

daily forecasting that you are looking for or is it monthly time forecasting and so on. 

So, depending on that, the information contained in the time series is much different. The 

power spectrum; look at the power spectrum, now compare this with what we had; this is 

for the annual data, compare this with what we had for the monthly data. Monthly data 

showed definite periodicities present in the data and the daily data showed that power 

spectrum more or less behave like it is for a white noise. Now, here there are some lower 

frequencies and some higher frequencies that are dominant, so you cannot say much 

about the time series from the power spectrum data alone. 
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Now, we will go to a much smoothen process of stream flow data and we will consider 

the annual stream flow data. There may be certain trends in the annual stream flow data. 

Let us say, the stream flow data may be increasing or decreasing slowly and so on. This 

information on the trend, existing trend, is important for water resource managers, to use 

for planning for the next 10 years 15 years and so on. But, apart from the trend itself, we 

would like to build models for synthetic generation of data as well as for forecasting of 

data. 
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So, let us look at annual stream flow data. So, this is for 60 years at a particular location. 

There is a certain trend on an average, these are all increasing, so there is a increasing 

trend over the last about 60 years. These are in cumec, so this is a discharge value with 

respect to time in years. 
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Now, we will plot the correlogram for this. I have gone up to about 30, which is actually 

50 percent of the data available, but typically we go up to about 15 percent of the data 

available. So, if you plot the correlogram, the correlogram indicates an exponential decay 



here. As you are progressing with respect to time, there is an exponential decay on the 

correlogram. this is the stream flow data. 

Then we look at the partial auto correlation. So, we plotted the time series, we plotted the 

correlogram; correlogram indicates that there is an exponential decay in the correlogram. 

Now, we look at what is a partial auto correlation, what does a partial auto correlation 

say? If you see that there is decay in the correlogram and there are certain partial auto 

correlations significant, you can suspect it to be an AR process auto regressive process. 
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So, let us look at the partial auto correlation. At lag 2, the partial auto correlation is one, 

nearly one here and then at lag three also it is significant, and then there are no 

significant partial auto correlations. This is just coming up out. These two are just above 

the significance bands, but typically you can say that one and two, lag one and two are 

significant, so you may suspect this to be an AR 2 process. 
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Now, we look at the power spectrum, the power spectrum indicates for this particular 

case study that the lower frequency dominant. When I discussed examples of theoretical 

AR models, typically this is what we brought out that the power spectrum for one AR 

two model; you may have lower frequencies dominating, for some other AR 2 model you 

may have middle level frequencies dominating and so on. But, typically it is a 

correlogram and the partial auto correlation function, these will indicate or this will give 

good indications for the auto regressive process. 

In this particular case, we can say that this follows closely the AR two processes. Now, 

what we do is because we saw a trend here, the time series had a trend. We want to 

remove the trend. So, what is the procedure? In the ARMA model procedure that we 

adopt to remove the deterministic components, we do the differencing first. So, X t 

minus X t minus 1 that is a first differencing. So, let us see on this if we do the 

differencing, we get the time series for the first difference data that is first order 

difference data. 
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As you can see here what was appearing like this in the original time series, now when 

we do the differencing, it appears something like this, which means that the trend that or 

so apparent in the time series, has been removed now. We will do the correlation, 

correlogram analysis on this time series. 
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Now, when we do that, the correlogram for the first difference data, you can see that 

there is only one correlation. The lag one correlation that is significant and unlike what 

you saw in the earlier case where there is several correlations significant. (Refer Slide 



Time: 43:31) These were as you can see almost up to lag of about 12, they are all 

significant, and although they are decreasing with lag they are all significant, whereas for 

the difference data you see only lag one correlation coming up as significant. 
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The partial auto correlations again indicate that most of the partial auto correlations are 

insignificant. There is one at a very high lag that you can ignore when you are building a 

model and there is one at the beginning of the series, which is may be around lag two or 

something, it is significant. So, by differencing essentially you change the nature of the 

information contained in the data. One you remove the trend, because you remove the 

trend the correlogram behaved in different fashion, the partial auto correlation function 

behaved in a different fashion. 
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And now look at the power spectrum. The power spectrum for the difference data; it 

indicates unlike your power spectrum of your original data, which had significant 

contribution to various variance in the lower frequency. This is slightly more distributed 

now. So, you have frequency, you have contribution to variance almost up to about 1.2 

or something, W k up to about 1.2. 

Now, what we will do is we will look at some case studies on ARMA models. So, both 

the case studies that I just discussed where with respect to only getting the information 

contained from the time series plot, from the correlogram plot, partial auto correlation 

function plot and the power spectrum plot. So, we just visually look at, we prepare all 

these plots and then visually look at this and then try to get the best information that is 

possible from these plots. 

Now, we will do the actual model building exercise where starting with the observed 

data, we select certain candidate models, and then obtain the parameters, obtain the 

residual series that is for the calibration period we obtain the parameters. Then for the 

validation period, we obtain the residual sequence and then we do the test for the residual 

series to examine or to ascertain, whether the model that we choose either based on the 

maximum likelihood criterion or the minimum mean square error criterion, in fact passes 

the test all the thetas that I indicated earlier. 
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We will take the monthly stream flow data for Cauvery River at Krishna Raja Sagar, in 

Mysore. So, this is monthly stream flow data, this is cubic meters per second. The data is 

available for 1934 to 1974; we will plot the time series. We will plot the auto correlation 

function, partial auto correlation function and the power spectrum. Then we see that if 

there is periodicities present in the data, because we are talking about monthly stream 

flow data, as I have been saying repeatedly that the monthly stream flow data are almost 

certain to show up monthly, periodicity. I am sorry, periodicities corresponding to 12 

months, especially in the monsoon regions like ours. 

So, the time series of the data, we plot all of this. Then once the periodicity is indicated, 

let us see how we can remove the periodicities. So, in this particular case, we simply 

standardize the series, obtain another series by standardizing and then look at whether 

the periodicities are present or not. 
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So, that is a exercise we do now. So, this is the original time series. There are 480 values 

here that is about 24 years of data, so you have the monthly stream flow data. As you can 

see, there is a regular pattern here. So, you get suspect that they seems to be some 

periodicities present here. 
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Then we plot the correlogram as was shown for the previous example, the correlogram 

shows a sinusoidal oscillation like this and large numbers of correlations are all 

significant. We have gone up to about 230 or 240; we had 480 values so we gone up to 



240 n by 2. There is a slow decay here but, the decay is rather slow, because we have 

gone up to 240 and then they are still significant. So, this shows that there is a significant 

periodicity indicated by the correlogram. 
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Now, let us look at what do the partial auto correlation say? The partial auto correlations 

also are significant at several lags, especially towards the end, but if you leave out these 

further points, there are significant partial auto correlations at the initial locations. Even 

these are significant, but there are somewhere around let say 8, 10 etcetera these are quite 

significant here. 
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Then we do the power spectrum; the power spectrum much like the power spectrum that 

we considered in the stream flow case that I discussed in case two, these show up, I am 

sorry, in the case one, where we added up the monthly rainfall data, these show up 

significant periodicities and this periodicities corresponding to 12 months, this to 6 

months, 4 months, 3 months and 2 months. 

So, these periodicities in the monthly data are indicated by the power spectrum. Now, 

what we do is we want to remove the periodicities. We do not even examine whether 

these periodicities are significant or not. We have observed that there are periodicities 

present in the data, I just want to remove the periodicities. We could have tested with 

first order differencing, second order differencing, etcetera whether any effect is there by 

the differencing on periodicities. But what we do is we directly go to standardization. Let 

us see whether the standardization removes the periodicities. 
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So, I do the standardization. How do I do the standardization? If you recall, we simply 

take; this is for the standardized data, so this is Z t is equal to X t minus X i bar by S i. 

This is how I obtain the standardized stages. Now, X i bar is the mean of the month to 

which the time period t belongs and S i is the associated standard deviation. So, that is 

how we standardized the data and then plot the standardized data. 

By the data alone, we would not be able to say much here, from the standardize data 

except that this looks much different from your original data. Original data did show up 

some regularity when that regularity is not seen in the standardized data but, we will plot 

the correlaogram. That will give us much better information.  
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As we plot the correlogarm as you can see here, the original data showed up a regular 

sinusoidal decay in the correlogram, whereas, that kind of behavior is completely absent 

in the correlogram in the standardized data. So by standardization you have removed 

much of the periodicities but, this we can ascertain by plotting the power spectrum. 
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The partial auto correlation function again, most of the partial auto correlations, become 

insignificant and there are certain partial auto correlation, which are significant towards 

the end of this. However, we are not yet at the stage of model building, so we will not 



consider this information at present. But, let us look at power spectrum, because our aim 

was to examine whether by standardization, we are in fact able to move the periodicities 

or not. 
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So, the power spectrum here shows that most of the periodicities are all removed, 

because you are seeing that there are no significant spikes here, which indicates that 

there is a major contribution to variance at that particular point. So, the power spectrum 

more or less shows that the variance is uniformly distributed or more or less uniformly 

distributed across all the frequencies. 
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So, what we now do is that we have removed the periodicities but, there are certain 

correlations present in the data. There are certain significant correlations present in the 

data. We use now the standardized series and use the fact that it does not have any 

significant periodicities present in the data. We will build a model, ARMA model on this 

data and do the entire test that are prescribed for the data. 

I repeat here again, the procedure that we are adopting in this particular course is not just 

the identification, parameter estimation or the calibration and validation, as has been 

classically described by Box-Jerkin type of models. We adopt more or less the 

procedures prescribed by Kashyap and Rao, 1976, the text book, which I have been 

referring in the last lecture. We adopt that procedure in which we formulate the candidate 

models.  

In formulating the candidate models, we use the information provided by the 

correlogram, information provided by the spectral density and the partial auto 

correlations, just to see which of the parameter, how many of the AR parameters and 

how many of the MA parameters to be included. So, the partial auto correlations, auto 

correlogram, auto correlations and the spectral density, together give us some indication 

on how many of AR terms, how many of MA terms, which of the terms to be included in 

the non-contiguous models and so on. 



So, this is information that we get from the earlier analysis that we have done. Based on 

this, we form certain number of candidate model, we do not pin point to a particular 

model. We form number of candidate models and then associated with each of the 

candidate model; we obtain the likelihood values and the mean square values. So, this 

discussion we will continue in the next class. So, what we discussed today is essentially 

how to use the ARMA type of models for one time step ahead forecasting and for long 

term data generation. 

 Then we examined three case studies. In the first case study, we started with daily 

rainfall data, and then we aggregate it to monthly rainfall data and then considered also 

the annual rainfall data. Then we saw the different information contained in the 

information, contained in these different series like the daily series, monthly series and 

the annual series and then we considered also a monthly stream flow data.  

Before that we considered the annual stream flow data, which showed a trend and by 

first order differencing, we showed how the trend has been removed from that particular 

data. Remember, these are all actual case studies, where we are using actual observed 

data. The first one was for Bangalore rainfall data, the second case study is from a U S 

site, the data has been downloaded from U S site but, the analysis has been done by one 

student here and then the third case study was for the Cauvery river data. 

We have considered the actual observed data and then made these analysis to see what 

kind of information is obtain from all of these analysis techniques that we have 

discussed. Now, in the next class, we go one step ahead and then look at the same case 

study, the third case study, and see how we build the model, both for long term synthetic 

data generation as well as for forecasting. Typically, we will also discuss how the 

residual series are obtained, how we do the test statistical test, how we decide whether 

there is any significant periodicity present in the residual series or not and so on. 

So, thank you very much for your attention, we will continue our discussion next time. 


