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Good morning and welcome to this lecture number 15 of the course, Stochastic 

Hydrology. 
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 If you recall in the last lecture, we continued our earlier discussion on frequency domain 

analysis. We introduced the spectral density function and then in the last lecture, we 

solved an example starting with the monthly stream flow data. Then we plotted the 

correlogram for the monthly stream flow data. We examined from the time series plot 

and the correlogram that there are periodicities indicated in the data. So, the monthly 

data, time series data, when we express in the frequency domain and carry out the 

spectral density analysis, spectral analysis, the line spectrum as well as the power 

spectrum show prominent peaks in the spectral densities indicating that the periodicities 



that were shown up by the correlogram as well as the time series plot are indeed present 

in the data.  

So, the spectral analysis actually brings to the forth the periodicities present in the data 

and through the example, we could see that the periodicities in the monthly data that we 

considered were present at period of 12 months, 6 months 4 months and 3 months how 

do we identify this we look at the spikes provided in the line spectrum or the power 

spectrum the associated w value the omega value we convert that into the corresponding 

periodicity that is 2 pi by w p. 

 So, we identified that there are periodicities corresponding to twelve months 6 months 4 

and 3 months for the monthly stream flow data that we considered then in the same 

example we had also could see how many of these periodicities are infect statistically 

significant. So, we introduced a statistical test by which you can examine the 

periodicities that you identified through the spectral analysis whether those periodicities 

are statistically significant or not in the same example what we then did is that we 

converted the stream flow data to a standardized series by deducting the mean of the 

associated month and by dividing by the standard deviation of the corresponding month 

and then carried out the same analysis of correlogram of plotting the correlogram and the 

spectral density function we saw that the periodicities that were shown in the original 

data were absent in the standardized data. 
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 Then we also introduced to the arima models subsequent to that example we introduced 

to the arima model how to formulate the arima model if you recall we said arima model 

that is auto regressive integrated moving average model. So, you have the auto regressive 

terms and the moving average terms and the term I there indicates the order of 

differencing. 

In discussing the arima models we also introduced the concept of partial auto correlation 

if you recall the partial auto correlation indicates the relationship between the dependant 

variable let say X t on the independent variable X t minus 1 or X t minus k let us say you 

are looking at lag k when it is dependants that is X t’s dependants on all the terms are 

partial out or removed out. So, this indicates the partial auto correlation the partial auto 

correlation in addition to the correlogram and spectral analysis gives some other 

information that is present in the time series. 

The time series plot itself the correlogram the spectral density and the partial auto 

correlation function all of these together will tell us which kinds kind of models are 

useful for the particular data. So, in today’s lecture we will continue with that discussion 

and see how we formulate the arima models auto regressive integrated moving average 

models and perhaps how we identify which type of models how many terms in the 

models are there needs to be included how many A R terms need to be included how 

many of MA terms need to be included in the model for the specific application in 

question. 

In the last lecture I just mentioned that these are the type of models that I will be 

covering in the course are called as the box Jenkins time series models and they are valid 

that the coverage that we will do in this course is only meant for stationary time series 

we do not cover the non stationary time series and therefore, your original time series if 

it is non stationary you must first convert that into a stationary term series which means 

first you have to identify whether the series that you are considering is stationary or non 

stationary if you look at the correlogram if the series is non stationary then the 

correlogram decays rather slowly where as if the stationary in the case of stationary time 

series the decay is quite fast for example, here i have shown a correlogram of a stationary 

time series the decay is quite rapid whereas, for the case of non stationary time series the 

decay is rather slow indicating that the dependence does not die down quickly and 

therefore, it becomes a non stationary time series. 



 So, the first indication is of non stationary is if the correlogram does not die down fairly 

rapidly then you must suspect non stationary in the data then we must have the (( )) or 

the means to remove the non stationary and convert the time series that you have into a 

stationary time series only then apply the type of models that we will be discussing now. 
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One way of removing the non stationary is by standardizing the time series in the 

example that we saw in the last lecture we saw that once you remove the once you 

standardize the series and plot the spectral density as well as the correlogram it indicates 

that there is no there is no correlation present in the data or the data becomes random and 

the series becomes stationary. 

 So, one way of doing removing the non stationary is simply standardizing the time 

series, but, in the arima models we also considered what is called as the differencing the 

differencing the time series first order differencing second order differencing etcetera 

which I will introduce presently this is a simple way of removing the periodicities and 

making the time series a stationary time series not only the periodicities if you have 

trends trends can also be removed by differencing. 
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 So, in general we we use a differencing to convert the non stationary time series into a 

stationary time series what I mean by differencing is that if you have a series X t you 

take the first difference; that means, X t minus X t minus 1 just deduct the previous value 

and compute the new series Y t constitute the new series Y t. So, if you have X t minus 

X t minus 1; that means, the first order differencing where you are simply deducting the 

previous term this is called as the first order differencing what does it do for example, if 

you have a series like this 2 4 6 8 10 12 and. So, on if you plot X t versus t you have an 

increasing trend in the data 2 4 6 8 and. So, on let say I do the first order differencing 

here then what I will get 4 minus 2 6 minus 48 minus 6 10 minus 8 etcetera. So, the new 

series will consist of two two two two and. 

 So, one. So, if you plot now Y t versus t you have a horizontal line this is; obviously, 

stationary. So, what was originally non stationary just by first order differencing in this 

particular example we have converted into a stationary time series. So, in general the 

differencing has the effect of removing now some amount of non stationary in the data 

why I said some amount of non stationary is that in this particular case all the non 

stationary has been removed, but, in the actual data when we are considering let us say 

stream flow at a particular location and. So, on depending on the strength of the 

periodicity the strength of the trend etcetera that are present in the nature of trend the 

nature of periodicities that are present not all the non stationary may be removed just by 

the first order differencing may be you all have to go to the second order third order 



etcetera even then it may not be possible to remove completely non stationary in the data 

in which case we try other methods for example, standardization and. So, on. 

As we explain in the previous lecture the presence of non stationary in the data can be 

examined by various statistical test. So, once you do the differencing and constitute the 

new time series on  the new time series newly constituted time series by differencing 

you again do the analysis of correlogram and then the spectral density spectral analysis 

and. So, on to examine whether this series that you constituted now is. In fact, stationary 

when when you achieve the satisfactory degree of stationary then you can use the type of 

models that we will be discussing in the course. 
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So, similar to the first degree of first order of differencing you also have second order of 

differencing where you take the first difference of the difference series itself the x dash t 

here is X t minus X t minus 1. So, X dash t is the first order difference series in the 

second order differencing you take the differencing on the already difference series. So, 

x double dash t which is the second order differencing is given by X dash t minus X dash 

t minus 1. So, if you write like that if you write it in a long form. So, what is X dash t x 

dash t is X t minus X t minus 1 this is the first order differencing on X t and minus x 

dash t minus 1 is the first order differencing on X t minus 1 which is X t minus 1 minus 

X t minus 2 you are taking the first order differencing on X t minus 1 which means this 

will be X t minus 2 X t minus 1 plus X t minus 2. So, x dash x double dash t which is the 



second order differencing can be written as X t minus 2 X t minus 1 plus X t minus 2 like 

this you carry one the third order differencing 4th order differencing etcetera in general 

in hydrology most hydrological applications where do we have auto regressive moving 

average type of models we go typically up to the second order differencing not more than 

that. 
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Let’s look at one example here let us say you have this time series this is the same time 

series that we have considered earlier for 12 month I have shown here X t these are the 

observed values let say observed monthly stream flow values you take the first 

differencing. So, X t minus X t minus 1 you get minus 2 7ty point8 then X t minus X t 

minus 1 here that is x 2 minus x 3 you get minus 18y 4 point 1 x 3 minus x 4 you get 4 1 

0.1 and. So, on like this it you get the first order differencing. 

Then for the second order differencing you do X dash t minus X dash t minus1 which 

means X dash 2 minus X dash 3. So, you get minus 86.7 because these are both are 

negative then this minus this that is minus 594.2 and. So, on. So, you get the second 

order difference series. So, like this from the original series you can get the first order 

difference series second order difference series and. So, on then you can examine 

whether this series that you obtained by first order differencing is infect stationary or this 

is stationary if this is non stationary still you go on to the higher order differencing series 

and examine whether this is stationary still not satisfied then you go to the next order 



differencing which is the third order differencing in this case and then examine whether 

that is stationary. So, on; obviously, I have shown only twelve values here, but, this has 

to be done for a longer series typically we may have a monthly monthly data for 50 years 

60 years etcetera on that series you have to do this examine test of stationary or lack of it. 
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Now, we will consider the same data that we considered in the example of spectral 

analysis. So, there are 300 and 48 values only 12 values I have shown here. So, this is 

between 1979 and 2008 this is monthly stream flow data. So, you have n is equal to 348 

only part data is shown and the time series plot etcetera is shown earlier. So, this is the 

time series plot that you have for 300 and 48 values. 
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We have also shown earlier the correlogram for this as well as the spectral density for 

this the correlogram indicates that there is a significant periodicity present I again repeat 

that right from the time series plot you suspect that there is a periodicity because just if 

you look at the time series plot there is A Regular pattern the flows are increasing and 

then decreasing and. So, on in a fairly good regularity and that information is also seen in 

the correlogram which indicates that there is a periodicity present in the data we want to 

verify this and pin point exactly where the periodicity is present are present and 

therefore, we convert this into the frequency domain and carry out the spectral spectral 

analysis plot the line spectrum or the power spectrum which brings out the spikes and 

these spikes correspond to the periodicities and this periodicity is of 12 month periodicity 

and this is 6 months and this is 4 months and this is 3 months. 

Which means that we have now seen that this is time series that we are considering is the 

not stationary time series because there are significant periodicities present in the data 

why do I say significant because we also examined for the periodicities that were 

identified in the spectral analysis corresponding to 12 months 6 months 4 months 3 

months all of them were statistically significant recall that we formulated a statistic 

corresponding to these and then compared it with the f distribution with 2 degree of 

freedom and then concluded that all the periodicities that we had identified here are. In 

fact, statistically significant now the question is if you want to apply the time series 

models which are meant for stationary time series on this particular time series which 



you know is. In fact, non stationary because of the presence of significant periodicities in 

the data then you have to convert that time series into non stationary into a stationary 

time series. So, let us see what happens if you do the first order differencing on the time 

series that we had consider. So, what is the first order differencing it is simply X dash t 

minus that is X t minus X t minus 1. 
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So, let us look at what happens here for the difference first order difference data. So, in 

the original data which is shown here all I do is take X t and deduct X t minus 1. So, I 

formulate a new series X dash t as X t minus X t minus 1. So, corresponding to the 

original series you have a new series now and that series I plot here. So, this is the time 

series of the first order difference data x dash t i plot this time series which is different 

from the original time series like this, but, still you see some kind of a pattern here that is 

the values are increasing periodically increasing with some regularity and then 

decreasing with some regularity and. So, on the corresponding correlogram appears like 

this again indicating that there are still periodicities present here and the line spectrum 

appears like this the original line spectrum was like this. So, the line spectrum is no 

different not much different in terms of the in terms of its indication of the periodicities. 

So, the first order difference data still indicates that there is some non stationary present 

in the data. 
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We will go to the second order differencing now what do I do in the second order 

differencing I take X dash t minus X dash t minus 1 now when I do the same analysis on 

the second order difference data the time series appears like this which is different from 

what was there for the first order difference data the correlogram appears like this still 

indicating that there are significant periodicities that are present in the data and the 

spectral density this is original spectral density here and this is the spectral density for 

the difference data it again indicates that there may be some periodicity of course,,, we 

need to test for the significance statistical significance of these periodicities, but, there is 

an indication that the the time series that you. So, formulated by taking the second order 

differences still is not devoid of periodicities. 

And let us examine what happens in the third order differencing. So, because we are not 

satisfied with what we did in the second order differencing we go to the third order 

differencing what do I do in the third order differencing I take x double dash t minus x 

double dash t minus 1. So, in the first order we take X t minus X t minus 1 in the second 

order we take x dash t minus x dash t minus 1 by and this we call it as x double dash t 

which is a second order differencing in the third order differencing I do the difference on 

the second order difference series which is x double dash t minus x double dash t minus 

1 that is I will take the difference on this difference series itself when I do that I get the 

third order difference series you get the data like this the time series data like this and the 

correlogram is like this again it indicates these are the 95 percent significance lines recall 



that the 95 percent significance lines you form by taking plus minus 1.96 by root n and 

for most practical purposes you take two by root n that is plus minus 2 by root n where n 

is the the number of sample data in which in this case it is 300 and 48. So, these are your 

significance bands. So, it indicates still that there are still periodicities present here and 

even the spectral density shows that there are periodicities present in the data. 

Again for comparison this is original spectrum here and this is your new spectrum in the 

original spectrum you had a spike corresponding to point 5 3 or something indicating a 

periodicity of 12. 12 months, but, that is absent here where as the spike corresponding to 

1.2 or around that is still present and these two have come up now corresponding to 2.2 

the spike has become more prominent in the third order difference data. 

As we saw in the example that we I discussed the spectral analysis the fact that these are 

prominent spikes does not necessarily mean that these are statistically significant 

periodicities we need to examine for the statistical significance of these it may. So, 

happen that these are statistically insignificant, but; however, you are seeing from the 

correlogram as well as from the spectral analysis that the periodicities are not entirely 

removed specially because the correlogram shows that there are significant correlation 

still present in the data and therefore, it indicates that the periodicity may still be present 

the data and therefore, now let us see what happens if we do the standardization on this 

data if you do the standardization you may perhaps end up with a completely random 

series devoid of any periodicities of course,,, with the third order differencing you may 

have significant correlation which you may use in the models because you are talking 

about correlated data when you are looking at time series models. 

In doing standardization essentially what we were doing is you are taking out the mean 

you are deducting the mean and dividing by the standard deviation. 
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 So, if you look at the standardized data Z dash t is equal to X t minus X t x i bar by S i 

recall that this I is the month corresponding to the time period t. So, in this case t goes 

from 1 to 300 and 48 and I goes from 1 to 12. So, corresponding to every t you have an 

association with the particular month in the year and you are taking out the particular 

mean of that month and dividing it by the standard deviation of that month when you 

standardize the series you will see that the time series looks more or less random like this 

and most of the correlations are all insignificant there is hardly any correlation that is 

outside the significance bar except for the first one and the line spectrum shows that the 

data is random. 

 So, there are no specific spikes here which are much different from the other spikes 

compared this to the original spectral density you see that this spectral density is 

indicates much more random data corresponding to in comparison with the original data. 

So, standardization of it the data indicates that the by standardizing we have removed the 

periodicities present in the data now we can use the time series models on the 

standardized data or you can also use on your third order difference data if you are sure 

that by doing this you have removed this periodicities; that means, periodicities that are 

coming up now are statistically insignificant. So, we could have used you could use the 

arima type of models on the third order difference models where the difference the order 

of differencing is third order. 
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Now, we introduce another important comments. So, what what did we do now we saw 

methods by which you can remove the trend or the periodicities present in the data by 

differencing first order differencing second order differencing and. So, on the presence 

of the periodicities let us say that even after differencing you still have certain 

periodicities present in the data indicating indicating that there are certain lag correlation 

at particular lags which are still quite significant now these can be addressed by arima 

models by introducing those a particular lag terms I will discuss this in greater detail 

later on where we are talking about contiguous and in contiguous herm models where 

specific terms can be included without including the previous terms anyway right now 

we will not worry too much about it, but, right now what we will do is we will introduce 

an a interesting operator called the operator b which is useful in writing down the arima 

models in more compact and relevant forms. 

The effect of the operator b is to shift the argument to that one step behind simply shifted 

one step behind for example, when I use the operator b on X t it is simply equal to X t 

minus 1 when I use the operator b on X t minus 1 it simple X t minus 2. So, the operator 

b shifts the argument to one step behind that is all. 

Now, this becomes a very handy tool in in expressing the various arima models in more 

compact and relevant forms say for example, you have the A R 1 model auto regressive 

model of order one it is written as X t is equal to phi 1 X t minus 1 plus epsilon t this is 



our original A R 1 model. So, I will use the b operator now. So, X t is equal X t minus 1 i 

will write it as B X t. So, phi 1 into B X t plus epsilon t that is X t is equal to phi 1 b a. 

So, I will take all the X t terms on one side. So, I will write it as X t into 1 minus phi 1 b 

is equal to epsilon t. So, 1 minus phi 1 b becomes the term for A R 1 component. So, we 

are saying X t into the A R component is equal to epsilon t. 
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Let’s say we want to write for A R 2 model what is A R 2 model it is X t is equal to phi 1 

X t minus plus phi 2 X t minus 2 plus epsilon t. So, now, I will use the b operator 

wherever there is a X t minus 1 term I will put b into X t and X t minus two term I will 

put it as b into X t minus 1. So, I will write this as X t is equal to phi 1 B X t this B X t is 

X t minus 1 plus phi 2 B X t minus 1 X t minus 2 is B X t minus 1 plus epsilon t as it is 

now I will further expand X t minus 1 is b into X t.. 

So, I will further expand this. So, this is phi 1 b into X t plus phi 2 this was B X t minus 

1. So, I will write that as b into B X t because X t minus 1 is B X t. So, together I will 

write this as b square X t that has to be X t z. So, this is X t b square X t plus epsilon t 

and therefore, I will write it a X t into 1 minus phi 1 b minus phi 2 b square is equal to 

epsilon t. So, we write the A R models as X t into some term in terms of b and and in 

terms of the associated parameters and on the right side we keep the noise term epsilon t 

for the A R models. So, the this becomes A R 2 component compared this to A R 1 

component this is 1 minus phi 1 b and for the A R 2 component 1 minus phi 1 b minus 



phi 2 b square. So, in general you can say you can write it as X t minus X t into look at 

this for the second term what a what we have 1 minus for the second term I is equal to 1 

to 2 of phi i b to the power I.. 

So, for a p eth model we can write for the p eth order A R model we write this as X t into 

bracket 1 minus summation I is equal to 1 to p. So, many terms of the A R model phi I 

phi 1 phi 2 and. So, on here b to the power I. So, b to the power 1 plus b to the power 2 

negative is outside of the summation and right side is epsilon t. So, this is how we 

express the A R model in a more compact form using the b operator. So, any time you 

see the models expressed like this you immediately must relate it with A R models and 

the order of the A R model is given by how many terms you have in this. So, there are p 

terms here for an A R p model. 
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Now, recall that we said auto regressive integrated moving average models what we 

explained. So, far was A R models that is you do not have differencing you do not have 

MA terms MA terms is moving average terms. So, these are arima if you want to write it 

in the general form arima p 0 0; that means, there is no differencing involved there is 

order of differencing is 0 and there are no MA terms involved therefore, the order of MA 

terms is zero. So, A R p model is arima p 0 0 in general we write the arima model as p d 

q arima p d q it means that you have corresponding to auto regressive you have p number 

of terms the order of differencing is denoted by d and the number of moving average 



terms is q. So, arima p d q indicates A R you have p number of terms of A R the order of 

differencing is d and the number of MA parameters is q. So, this is the general notation 

that we follow for any arima model. 

Given a time aeries X t and the given given the order of differencing first you do the 

differencing on the time series of that particular order and then apply an arma model 

what do I mean by arma model arma model is with zero differencing; that means, you 

you will have arma p comma q. So, first you do the differencing and then write the 

associated arma model we we will discuss this through some examples later on 

subsequently in the lecture, but, we will continue our discussion on how to apply the b 

operator. So, let us say that you have a auto regressive moving average model; that 

means, you you have done the differencing already there is no differencing you are 

simply writing the A R parameters and the MA parameters. So, you have p of A R 

parameters p number of A R parameters and q number of MA parameters. So, in general 

arma p q model is written as X t is equal to phi 1 X t minus 1 plus phi 2 x 2 minus 2 X t 

minus 2 etcetera there are p terms.. 
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So, phi p X t minus p plus there are q number of moving average terms the moving 

average in the context of arma models is not the same as the moving average that we 

discussed earlier when we were talking about taking averages in the windows across 

which is moving across the time series this was slightly different from the notation here 



we talk about the moving average in the context of the residuals that results from the 

model. So, this is you have q number of moving average terms theta 1 e t minus 1 plus 

theta 2 e t minus 2 plus etcetera plus theta q e t minus q. So, you have q number of 

moving average parameters theta one theta two etcetera up to theta q and you have p 

number of auto regressive parameters phi 1 phi 2 etcetera phi p plus the noise term or the 

residual term e t now remember see here notice that e t minus 1 e t minus 2 etcetera up to 

e t minus q is what you have written for X t.. 

So, when you go to X t plus 1 the next term this e t gets into the MA parameters here and 

then you will have a term of e t plus one when we do the numerical example it will be 

clear of how we account for the residuals in the moving average terms now these are. In 

fact, the residual terms that you have here are. In fact, important in examining whether 

the model that we have fit to a particular data passes all the tests or not. 

 So, we need to do the statistical test on the residual series after we fit the model on a 

particular time series let us say you have a stream flow every monthly stream flow for 

last fifty years data and then you have estimated the parameters and then fit the model 

and then you get the residual series on the residual series you need to do the test. 

The assumptions that are involved in this model are that the series of residuals it has a 

zero mean and they are all un correlated in the numerical example we will show how to 

do the test on the series of residuals that you get. So, this how a general arma p q model 

is written you have p parameters p terms of auto regressive terms and you have q terms 

of moving average terms plus the noise epsilon t e t or epsilon t. 

Let us see how we express this using the the difference using the b operator for which let 

us say you are talking about a term of first order differencing X t minus X t minus 1 is 

equal to e t this is a your what is the model here you have only integration you have 

neither the A R terms nor the MA terms. So, you have only the integration which means 

in our arima p d q notation what does this mean p is 0 q is 0 and d is 1. So, only- you are 

only doing the differencing of the series. So, X t minus X t minus 1 is equal to e t if you 

write like that for clarity let me write it down. So, this is nothing, but, arima p d q or p is 

0 here you do not have any A R terms d is 1 you are doing the first order differencing 

and q is 0 there are no MA parameters. So, this is arima zero one zero model how I had 

written X t is equal to X t minus 1 plus e t that is all. So, you are doing the differencing 



here now let me express this in terms of the b operator. So, X t minus X t minus 1 is b 

into X t will be equal to e t. So, you are putting the operator b on X t to get X t minus 1 

that is X t into 1 minus b is equal to b t. So, this is how the first order differencing looks 

let us see how the second order differencing looks let us say that I am not writing any 

arima model here I am simply looking at the second order differencing I want to express 

this using the operator b. 

 So, this is x double dash t which is a second order differencing is equal to x dash t minus 

x dash t minus 1 the second order differencing what is x dash t it is the first order 

differencing therefore, i will this as X t minus X t minus 1 and what is the x dash t minus 

1 it is X t minus 1 minus X t minus 2 that is the first order differencing on X t minus 1. 

So, this will be X t minus 2 X t minus 1 plus X t minus 2 that is X t minus what is X t 

minus 1 that is b into X t plus what is X t minus 2 X t minus 2 is b into X t minus 1 and 

X t minus 1 there is again b into X t therefore, this will be b square X t. So, if you take 

out X t outside what you are left with 1 minus 2 b plus b square which is 1 minus b the 

whole square into X t. 

So, the first order differencing was X t into 1 minus b the second order differencing is 1 

minus b whole square into X t that is X t into 1 minus b here X t into 1 minus b whole 

square if we take the third order differencing and do the same exercise again you will get 

X t into 1 minus b whole to the power three fourth order X t into 1 minus b to the power 

4 and.. 
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So, on. So, in general the d eth order difference which we need for arima p d q models in 

general the d eth order differencing can be expressed as X t into 1 minus b to the power 

d. So, this how we get the d eth order differencing in terms of the operator b. 

Let us look at the arima one one one model; that means, the first order differencing is 

done on the series and then you apply the arma one one model. So, as I said any time you 

have the order there is a differencing order present that is any time when d is not equal to 

0 first you carry out the differencing on the original time series. So, we first carry out 

first the differencing of this order. So, this is first order differencing. So, Y t is equal to X 

t minus X t minus 1 i will constitute another series now which is a first order difference 

series and then apply the arma model of order one one on the series Y t on the difference 

series Y t. 

 So, I write Y t is equal to X t minus X t minus 1 and then write an arma model with 1 A 

R term and 1 MA term. So, on Y t i write this as Y t is equal to phi 1 Y t minus 1 plus 

theta 1 e t minus 1 plus the t e t. So, you have 1 A R parameter and 1 MA parameter plus 

the noise term here and this you are writing it on the difference series Y t equal to X t 

minus X t minus 1 and this difference order is one here. 

If you had an order two first you reconstitute the series Y t by taking the second order 

difference and then you write the arma model on the difference series that you obtain. 



So, first you carry out the differencing and then write the arma model on the difference 

series. 

So, now we will use the b operator to express this model what is Y t now I am just 

expanding Y t is X t minus X t minus 1 is equal to phi 1 into X t minus 1 minus X t 

minus 2 because Y t minus 1 is here plus theta 1 e t minus 1 as it is plus the noise term 

epsilon e t. 

X t minus this I will write it as X t minus X t minus 1 is B X t is equal to phi 1 X t minus 

1 is B X t minus X t minus 2 is b square X t as we have done earlier plus theta 1 b e t 

remember the b operator operates on any of the terms and it simply shifts a particular 

argument to one time step behind. So, when b operator operates on e t you get e t minus 

1. So, I will write e t minus 1 as theta 1 b e t plus epsilon e t as it is. So, collecting all the 

terms on of X t on the left side you write X t is equal to X t into 1 minus b minus phi 1 b 

plus phi 1 b square is equal to e t into 1 plus theta 1 b that is how you express an arima 

one one one model. 

So, given any arima p d q model you should be able to use the b operator and express 

this in a more compact and more elegant form using the b operator. 

Now we will we now know that given the time series first you identify the order of 

differencing that you would like to do this the first order differencing second order 

differencing and. So, on and then identify the number of A R parameters and the 

numbers of MA parameters and therefore, you will have a particular model ready with 

you. So, you have this kind of model. 

So, given any structure of arima model you now know how to express that arima model 

in in a compact form like this using the b operator now we will address the question of 

given the time series of a particular variable how do we identify which of these large 

number of models fit that particular time series or which among these large number of 

models can be used- to represent the particular time series. 

What I mean by that is in the general form arima p d q you virtually have infinitely many 

models possible p can vary from one to let us say 20 25 and. So, on although there is you 

can keep on going depending on the data then similarly, q MA parameters there 

particularly keep on going 1 2 3 4 5 6 and. So, on. So, and the order of differencing first 



order differencing second order differencing etcetera. So, virtually you can theoretically 

form infinitely many number of models using this general structure. So, for a given time 

series which among these infinitely many possible models are. In fact, feasible are can be 

used for the given time series is our primary question that we need to answer. 
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Now, in the box jerkin’s type of analysis we follow three primary steps three major steps 

namely identification of the models structure that is p d q how many terms of p how 

many terms of d that is which order of differencing and how many MA terms that we 

would like to include. So, first you identify the model’s structures. 

Then once you identify the model’s structure let us say that you have identified that there 

is one A R term one order of differencing and one order of MA term then you are left 

with the problem of estimating the parameters you have a parameter phi 1 here you have 

a parameter theta one here in this particular case. So, in general for A R arma p q model 

for example, you will have p parameters to estimate for the A R terms and q parameters 

to estimate for the MA terms. 

 So, once you write the model’s structure you come with the second question of 

parameter estimation. So, you need to estimate the parameter and then calibrate the 

model what do I mean by calibration calibration that for the data you will have the 

residuals that arise from the data by applying this particular model that you have 

identified and those residuals must satisfy the assumptions that we have made for the 



residuals namely that they should have a zero mean and they should all be uncorrelated 

they should constitute series with uncorrelated values then we do the model testing on 

the remaining data and the validation. 

 So, these are the primary three steps one is identification model identification another is 

parameter estimation and calibration and the third one is model testing or validation with 

the remaining part of the data. So, typically what we do is if you have a series of let say 

fifty years of monthly stream flow data how many values you have 50 into 2600 values 

typically you build the model on the first half of the data take n by 2 values and fit the 

data do the calibration etcetera and do the validation on the remaining part depending on 

the length of the data this can be either n by two that is you build the model on n by 2 or 

if the data is fairly small then you do not have fairly numbers of n by 2 and therefore, 

you may have to go by go with 3 n by 4 or 75 percent of the data you use to build the 

model and the remaining part to test and validate validate the model. 
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All this nuances of model building we will discuss we show the application and case 

studies. So, one where depending on the length of data you may have to sacrifice on the 

validation part and validation amount of data that is available for validation and. So, on. 

So, you do not have to be realistically bound by always n by 2 for model building and 

model testing and. So, on it it actually depends on the length of data that you have and as 



I mentioned right at the first right in the first lecture in hydrology mostly you are 

constrained by the length of the data that is available to you. 

So, identification of the model’s structure which means we need to see how many of the 

auto regressive models or auto regressive terms to be included and how many moving 

average terms and what level of differencing that you need to do and. So, on. 

So, as I mentioned the first step in identification of the model is examining if the series 

that you have is stationary or not. So, you plot the correlogram if the correlogram shows 

a very slow decay either you may have sinusoidal correlations or the correlogram 

indicating sinusoidal variation or it may have a slow decay either exponential decay or 

normal non-linear non-linear decay if you have a slow decay then it indicates that the 

series is not stationary once you identify that the series is non stationary then we need to 

make the series stationary for use of the arima models. So, we may adopt like I just 

demonstrated you may have adopt differencing that is first order differencing second 

order differencing etcetera to make sure that you remove non stationary then you obtain 

the order of A R and MA components for the model. So, once you difference it then you 

can obtain the order of A R and MA components. 

The partial auto correlations that we discussed in the last lecture we introduced in the last 

lecture is a very handy tool for identifying the A R components if there are significant 

partial auto correlations present in the data let us say there are only 2 significant partial 

auto auto correlation or auto partial auto correlation present in the data it indicates an A 

R model of two may be may be appropriate for the particular time series provided it also 

satisfies certain conditions on the auto that is correlogram. 

So, if you want to identify just the A R components you have to look at both the 

correlogram as well as the partial auto correlations together if you are auto corral or the 

correlogram shows a decay and the partial auto correlations show significance presence 

of one or two or may be more partial auto correlations which are significant then it 

indicates the A R terms to be of that order let us say you may have A R 2 or a A R 3 

depending on how many partial auto correlations are significant or not. 

Now, this discussion on identification of exactly how many A R terms and how many 

MA terms to be included has significance only when you want to you want to short list 

on a few models and then examine which among them are more appropriate for your 



particular application and. So, on we will continue this discussion in the next lecture of 

how to identify how many of A R terms and how many of MA terms are appropriate for 

the particular situation. 

So, to summarize then in this lecture we discussed how to formulate the arima models 

the general formulation of arima models and how to do the differencing the first order 

differencing second order differencing and what effect the differencing has on removal 

of periodicity. So, we tested with one numerical example that the time series that we 

considered had significant periodicities present then we did the first differencing second 

differencing third differencing etcetera whereby we saw that the series becomes the 

periodicities are removed as we keep doing the differencing. 

We also saw that standardization removes periodicities on the same time series we did 

the standardization by standardization I mean Z t which is a standardized series we 

expressed it as X t minus x i bar by x i where x i in the case of monthly time series x i is 

the mean x i bar is the mean of the particular month’s flow to which the time t belongs 

then we wrote the arima models using the b operator. So, B X t is equal to X t minus 1. 

So, the effect of the b operator on any argument is simply to shift the argument one time 

step behind. So, we we examined how to write a general arima model using the b 

operator in a more compact form then towards the end of the lecture we has we have just 

listed out the steps that are involved one is identification of the model by which I mean 

identification how many A R terms and how many MA terms and what is the level or 

what is the order of differencing that you need to do 

. So, this gives the identification of the structure of the model then we do the parameter 

estimation and calibration in the second step and in the third step we do the validation 

and model testing. So, in the next lecture we will see details of each of these three steps 

how do we identify how do we estimate the parameters and how do we do the testing. 

So, we will meet in the next lecture thank you very much for you attention.. 


