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Good morning, and welcome to this the lecture number fourteen of the course stochastic 

hydrology.  
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If you recall in the last lecture we covered essentially the details of frequency domain 

analysis. We introduced in that course how we convert the data in the time domain to 

frequency domain, and we introduced the concept of spectral density. And from the 

spectral density diagram, which is typically called as a line spectrum or smoothen 

spectrum is also called as the power spectrum. From this we identify periodicities 

inherent in the data, and then we also introduced the test the statistical test for testing, 

which of these periodicities that we identify through spectrum analysis or in fact 

statistically significant. And then once we identify the statistically significantly 

periodicities. 



We also examined how we remove the periodicities from the data, and then in that 

process we are also introduced a method of standardizing the data. We examined what 

happens by standardizing the data, how the correlogram looks and how the spectral 

density or the line spectrum or the power spectrum looks for the standardized data visa v 

those form the original data. Towards the end of the last lecture we were discussing a 

numerical example of estimating the power spectrum and identifying the periodicities. 
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So, we will continue with that example. So, we considered the data for monthly stream 

flows at a location in that example. So, we will first recapitulate significant features of 

the frequency domain analysis, as I just mentioned spectral analysis helps us identify 

significant periodicities in the data. The correlogram gives us an idea that s periodicities 

are present in this data and then the correlogram the spectral analysis helps us identify 

which of these periodicities are in fact significant. The spectral density as we introduced 

it is also called as variance spectral density; it gives the amount of variance per interval 

of frequency. 

A peak in the spectrum are the spikes like this for example, you may get spikes like this. 

These spikes correspond to periodicities in the data, the w value the omega value that we 

get corresponding to these peaks here they correspond to the periodicities in data. The 

lines spectrum as we introduced in the last lecture is an inconsistence estimate statically. 



Whereas, the power spectrum or the smoother spectrum which is shown here are is a 

statistically consistent estimate. 
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So, we will continue with the example that we were discussing in the last class, we are 

considering the monthly stream flow which is given in comics these are available for 

1979-2008. So, there are total of 348 values only just a few values are shown here just to 

give you an idea of how the time series is arranged. For example June, July, August etc. 

It keeps on going until May of the next year and we have the corresponding flows, like 

this 1 to 12, it keeps going until N is equal to 348.13. For example, correspond to the 

month June. 

Similarly, 25 correspond to month June etc. So, the time P here goes from 1 to 348, but 

there is also an associated month index June, July, August etc, which is important when 

we go to reduction. 
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We will revisit this again until that point. So, we had a time series plot. So, you have 348 

right values for the time series the moment you plot, you will realize that there must be a 

periodicity, because your significant peaks here and series itself at regular interval. 
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So, this information we look at more closely through the correlogram and spectral 

analysis, I have shown in the last class. Let us see what happens to the time series, when 

we standardize at t. If you recall what we did in the last class is last lecture is that we 

identify periodicities in the data through spectral analysis. We saw that there was there 



were several peak corresponding to 12 months corresponding to 6 months, 4 months, 3 

months and so on. So, we wanted to examine what happens to the series when we 

remove the first two periodicities from the data. So, we reconstruct the time series as Z t 

is equal to X t minus Y t where X t is your original series and Y t is the series 

corresponding to the first two periodicities. 

So, this is in the frequency domain the first two periodicities are here alpha 1 and beta 1, 

alpha 2 and beta 2, omega 1 and omega 2. So, this term corresponds to the first two 

periodicities in the frequency domain. So, we reconstitute the time series in the 

frequency domain as Z t is equal to X t minus Y t remove the first two periodicities and 

plot the time series. Look at how the time series looks we saw we the original time 

series. The original time series is here this is your X t and this is your Z t. So, the 

regularity of the peaks that we were seeing has not diminished. 
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So, this is when we removed the first two periodicities. Let us see how the correlogram 

and the spectral density of this new series looks the original data had a correlogram. Like 

this indicating presence of a significant periodicity as you can see the correlogram is 

oscillating regularly and then if you take it further. Let us say you have 348 values may 

be if you go up to 200 or something, you will see that it is slowly decaying as time 

progresses with respect to lag the correlogram slowly decays. 



For the Z t if you plot the correlogram here the significance levels were somewhere 

around point 1 here. So, most of the correlations were significant statically significant, if 

you plot the correlogram of Z t from which the first two periodicities have been removed 

this is how it looks most of the correlations are now insignificant. However there are 

some significant correlations at regular intervals as you can see. So, you again suspect 

that there may be some periodicities still inherent in this Z t; that means see one after you 

removed the first two periodicities there may be some periodicities still inherent in the 

new series Z t. 
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To examine this we plot the spectral density of the new series Z t. So, let us see how it 

looks as you can see here the periodicities which were inherent. This is a power spectrum 

for the original data; this is the power spectrum for the Z t, which is a transform data in 

from which the first two periodicity from the original data have been removed. So, you 

had a periodicity of somewhere near 0.5 and somewhere near 1.1 or something those are 

absent here. These periodicities have been removed and the periodicities corresponding 

to the 4 months and 3 months, this was for 12 months, this was for 6 months and 4 

months and 3 months these became prominent now. 

So, somewhere around 1.6 or something you had a spike here in the original data, that 

becomes prominent and similarly somewhere around 2.2 or something you had peak here 

and that becomes prominent. So, like this when you remove the periodicities, now you 



can remove this periodicity from Z t using the same transformation that we use on X t to 

determine Z t similarly on Z t you remove this periodicity then you will see that this 

periodicity becomes more prominent, and then if there are any other periodicities 

downstream of that that will become prominent and so on. 

So, this is how you will examine visually whether you still have any periodicities present 

in the data. Now whether the periodicities that you have just determined is significant or 

not is a different story that we will take it with statistical test, but that this periodicity is 

in fact present in the data itself becomes apparent. Once you remove the periodicities that 

you have already identified earlier. 
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So, now we will do the statistical test to examine whether a particular periodicity is 

significant or not in the original series. When we plotted the power spectrum you had a 

peak corresponding to a w value of 0.5236. Now this is 0.5236 and we have seen that for 

the monthly data this periodicity corresponds to a periodicity of 12 months, simply 2 pi 

by omega p. Now, we will examine whether this is statistically significant or not to do 

that what do we form the statistic gamma square N minus 2 by 4 rho 1 cap. Where rho 1 

is estimated or rho 1 cap is 1 by N, X t which is your original data alpha cap which is the 

alpha corresponding to the particular periodicity that you are examining. 

So, for the first peak we had omega 1 is equal 0.5236 and alpha 1 is equal to 29.28 and 

beta 1 is equal to 172.93, which we had estimated in the last lecture. So, these are the 



values that we had towards the end of the last lecture. So, this omega is for that particular 

k that you are examining. So, you are examining for the first periodicities. So, you will 

take omega 1 and beta and alpha correspond to the same periodicities. So, alpha 1 and 

beta 1 you take. So, you can estimate rho 1 cap, N is the total number of values that you 

have in this case it will be 348. 
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So, gamma square here is simply alpha square plus beta square you will get alpha square 

plus beta square is equal to 30762 and rho 1 cap you estimate from this. So, rho 1 cap is 

equal to 1 by 348 and all of this term together will be 36810. So, it is 105.78 and from 

that you estimate this is statistic gamma square N minus 2 by 4 rho 1 cap. So, N is 348, 

you will get 25155 with this value you go to the F distribution tables, which are available 

in any standard text books corresponding to 95 percent value 95 percent significance 

level. You get F with 2 degrees of freedom and for N minus 2 as 346; you will get a 

value of 3.0. If the value of the statistic that you have calculated is more than 3.0, it 

indicates that the corresponding periodicity in this case the first periodicity 

corresponding to omega 1 is in fact statistically significant. 

So, in this particular case 25000 is far ahead far more than the corresponding F value 

here for 95 percent significance level and therefore, the periodicity corresponding to your 

value of omega 1 of 0.5236. Which corresponds to a periodicity of 12 months is in fact 

statistically significant. 
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So, the periodicity that we have just examined is statistically significant. Similarly we do 

it for other periodicities as you can see here after the first peak you have a second peak 

corresponding to this value of omega 1, omega 2 and this value corresponding to omega 

3 etc. So, these things also we examine one at a time remember here this statistic is 

written only for a particular value of omega. So, every time you test one periodicity at a 

time. When you do that you will get the values of statistic like this 11000, 4,000, 1295 

and so on. 

So, all of these are much above the critical value of F and therefore, they are all 

statistically significant. Now having identified that this periodicities this correspond to 

12 months, this to 6 months, this to 4 months and this to 3 months having identified that 

these periodicities in the data are statistically significant. We now want to see how to 

remove these periodicities from the data. As I mentioned in the last lecture one simple 

way of doing this is simply remove the periodicity by standardizations simply 

standardize the data. That is Z t is equal to X t minus x bar over sigma or X t minus mu 

over sigma. Let us see what happens to the original time series plot correlogram and the 

spectral density when we remove the periodicity by standardizing. 
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So, let us look at the standardized time series. So, what we are now doing is we are 

transforming the original series into a standardized one. We write because we have used 

the notations Z t earlier in the same problem. So, we will write this as Z dash t which is a 

standardized time series X t minus X i bar over S i then i here corresponds to the 

particular month to which t belongs. As I mentioned earlier t goes from 1, 2, 3, etc up to 

348. Which are the total number of values, but correspond to every t we have an i which 

identifies it with the particular month for example, t is equal to 1 corresponds to i is 

equal to 1, t is equal to 3 corresponds to i is equal to 3, t is equal to 13 corresponds to i is 

equal to 1, again t is equal to 14 to i is equal to 2 and so on. 

So, we identify the month to which the time period t belongs and deduct the particular 

mean of that particular month June has its own mean. So, you deduct the mean of June 

when you are taking i is equal to 1 and so on. Similarly, the standard deviation 

corresponding to that particular month. 
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So, we formulate Z dash t by this particular transformation. So, the original time series X 

t is now transformed into Z dash t and for example, you are looking at the first value X 1. 

For the first value you deduct the mean of June month and standard divide by standard 

deviation 52.24 and so on, for this month June. 
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Similarly, do you take the July month 3 you take the August month and so on? 13 again 

you take June month, 14 July month and so on. So, like this you formulate the Z dash 

series this is called as the standardized series this is one way of standardizing, where you 



deduct the mean and divide by the standard deviation. So, you have now ready with you 

the Z dash series. So, Z dash series for example, looks like this as just the first year 

values I have shown first 12 months. So, X t and Z dash t. So, Z dash t series is like this. 

So, you will have 348 values of Z dash t for t is equal to 1 to 346 till 348, we will do the 

spectral analysis on this new series. Now Z dash t and see how it looks we saw we the 

spectral density figure or spectral diagrams of the original time series X t.  
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So, the time series when you plot for the standardized data it looks like this whereas, the 

original time series was this. So, this is a standardized data time series for the 

standardized data this flow is standardized flow. As you can see here this is a much more 

random series compared to the original time series the original time series had some 

periodicities and so on. So, you see some regularity in the original time series whereas, 

by standardizing you are seeing a much more random series here, but whether it is truly 

random or whether there are still inherent periodicities in this etc can be seen only if you 

plot a correlogram plot the correlogram of this series and do the spectral analysis on this 

series let us do that now. 



(Refer Slide Time: 20:03) 

 

So, if you plot the correlogram your original correlogram look like this. That is a 

correlogram of the original time series looks like this and the standardized time series 

when you do the correlogram this looks like this.  

(Refer Slide Time: 20:54) 

 

 

So, most of the correlations are statistically insignificant here. So, the periodicity seems 

to have been removed in the standardized series, but this can be verified through the 

spectral density. So, the correlogram shows that is the statistically significant 



periodicities have all been removed and most of the correlations here except for the 

really. Early 1s they are statistically insignificant this information can be seen better in 

the spectral density. 
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If you look at the spectral density this is how it looks in your original series the power 

spectrum looks like this. The power spectrum of the original series showed significant 

spikes corresponding to the periodicities of 12 months, 6 months, 4 months and 3 months 

here. Whereas, the spectrum of the standardized data looks much more random here no 

single periodicity are no single spectrum spectral density is anymore different from any 

other periodicity here and therefore, the variance is spread more or less uniformly as you 

can see from the spectral density of the standardized data. 

So, standardization removes the periodicities present in the data, but this may not be 

always true. So, you need to really examine after standardizing the data you need to 

examine whether the periodicities had in fact been removed by doing the transformation 

corresponding to standardization. For example you may have daily rainfall data what we 

have done, just now is for the monthly stream flow data which is much more smoothen 

process corresponding to compare to the daily rainfall data. For example, if you have 

daily rainfall data with several 0s and then once in a while it rains, but it rains very 

heavily during that time period and then this may have long term periodicities present in 

the data. 



If you are then looking at standardization with respect to the daily mean and the daily 

standard deviation the periodicity the long term periodicities that are present in the data 

may not be removed we will see some applications of the spectral density towards the 

end of this course where we I will be dealing with only the applications of all the topics 

that we had covered in the course. During that time we will see how the rain fall time 

series behaves how the monthly stream flow time series behaves how aggregating the 

rainfall over season and then looking at seasonal time series of the rainfall will be much 

different from the spectral densities and the correlations of the daily time series and so 

on. 

So, the information content in the time series comes to the surface by doing all these 

analysis. So, the inherent information that we have in the time series comes to the surface 

through the correlogram through the power spectrum and so on. So, what we have just 

examined is that the periodicities that were significantly shown up in the original time 

series have been removed by doing the standardization. So, standardization is one way of 

removing the periodicities. So, we see that corresponding to this value we had a 

significant periodicity. So, we will check again corresponding to that value of omega k 

whether the periodicity is present or not. 

So, we again recalculate the statistic as we defined here earlier we calculate this is 

statistic gamma square N minus 2 therefore, rho 1 cap and then corresponding to this 

omega 1. We test the statistic the statistic value comes out to be minus 4.7 E to the power 

minus 12 very low values very insignificant values compared to the critical value of F 

which is 3.0 which shows that any of these periodicities are statistically insignificant or 

they can be taken to be absent in the data.  

So, the periodicities are insignificant. So, essentially what we have tested this through 

the exercise that we just did is that in the original time series, we saw some periodicities 

which were all statistically significant we standardize the data and reexamined to make 

sure that the periodicities that were present corresponding to 12 months, 6 months and 3 

months have all been removed from the data by ensuring that the periodicities 

corresponding to this are all statistically insignificant. 

Now, we will go to an interesting topic in the time series analysis, these are the models 

that we will be dealing with now onwards are called as aroma models auto regressive 



integrated moving average models. Now these are box Jenkins types models and they are 

very popularly used in hydrology, especially for modeling monthly flows seasonal flows 

and such the process which are of interesting hydrology most hydrology applications. 

Where we want to use these models for forecasting as well as generation of the models 

data generations. 

Recall, that we introduce a model earlier on may be about three lectures ago, for data 

generation using the first order Markov process and that we also called it as non 

stationery first order Markov process. We will see that was in fact an auto regressive 

model when we look only at the stationery model. So, before we went on to the non 

stationery model, we introduced the primary stationery model that in fact turns out to be 

the first order auto regressive model. So, the Arima models we use extensively in 

hydrology for data generation as well as for real type forecasting models. So, we will just 

over the next half an hour and also over the next lecture we will deal mostly with the 

Arima type of models. 
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Let us look at what we did in our regression let say that you are looking at the flow at a 

particular location. Which is governed by this catchment and we call this variable as y 

and there were several variables. For example, rainfall was one of the variable soil 

moisture may be another variable the catchment slope or vegetation may be another 



variable and so on. Antecedent moisture which I just mentioned as soil moisture that may 

be another variable there may be several other variables. 

For example evapotranspiration may be another variable and so on. So, we were 

essentially looking at the relationship between the runoff at this location with several 

different physical variables. That is what we did in regression actually the regression that 

I introduced was only simple regression in which only one variable was considered, but 

subsequently we will also deal with multiple regression in which the dependent variable 

will be governed by several independent variables like X 1, X 2. 

For example as I said rainfall soil moisture evapotranspiration and vegetation and so on. 

So, you may have several variables all of which determine the variation in Y, this is 

called as whenever we talk about regression. We generally understand that your 

regressing one variable with other variables. In the auto regression what we do is we are 

regressing the variable upon itself, but the values that I have that the variable have taken 

at different time periods. So, for example, we are talking about X t being dependent upon 

X t minus 1, X t minus 2, X t minus 3 etc. So, we are not talking about different variables 

we are talking about the same variable. 

For example, the flow at a particular location at different time periods t minus 1, t minus 

2 etc. For example, this may be June months flow this may be may this may be April, 

March, February and so on. So, you are talking about a single variable, but the values 

taken by that variable at different time periods. So, that is called as auto regression. Let 

say you are talking about auto regression of first order, we may simply write X t is equal 

to some constant Phi 1 into X t minus 1 which is the flow, if X t denotes a flow at time 

period t your regressing X t with X t minus 1 the flow during the previous time period 

plus there is a error term or the random noise term here. So, this is the random 

component or noise or residual. 



(Refer Slide Time: 31:14) 

 

So, write you write X t is equal to Phi 1 into X t minus 1 plus epsilon t which is similar 

to what we did in regression simple linear regression what did we write y is equal to a x 

plus b. So, similar way we are writing X t is equal to Phi 1 X t minus 1 into plus epsilon t 

this is a simple AR 1 model let say you are writing auto regressive model of order 2. So, 

you will write X t; that means, when you are talking about order 2 you are saying X t 

depends on X t minus 1 as well as X t minus 2. So, two terms behind you are taking so, 

you will write AR 2 model X t is equal to Phi 1 X t minus 1 plus Phi 2 X t minus 2 plus 

epsilon t this is similar to writing a multiple regression model multiple linear regression 

model of the type y is equal to a 1 X 1 plus a 2 X 2 plus b plus some other constant b. 

So, in the auto regressive two models you will write the model in terms of the two 

previous values X t minus 1 and X t minus 2 and like this. You write a general AR p 

model auto regressive model of order p by taking into account the previous p previous 

terms. So, X t is equal to Phi 1 X t minus 1 plus Phi 2 X t minus 2 etcetera, Phi p X t 

minus p plus epsilon t. So, if X t denotes the flow at a particular month. Let us say you 

are talking about the stream flow in the month of June and this is a monthly time series 

you may write that as Phi 1 X t minus 1 let say you are talking about Phi 12, X 12 is 

equal to Phi 1 x 11 plus Phi 2 X 10 and so on. 

So, you are taking p previous terms. So, you write this in a more compact form as X t is 

equal to j is equal to 1 to p Phi j X t minus j plus epsilon t, these Phi j are called as AR 



parameters. So, the Phi j is called as the auto regressive parameters. So, given any model 

of this type we should be able to estimate Phi 1, Phi 2 etc from the data. So, you have the 

data on X t you write a model like this. So, there must be a way of estimating these 

parameters which we will see subsequently how we do this? 
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Similar to the correlation that we talked about we have a very important concept called 

as partial autocorrelation it is denoted as PAC. Before we go into a more generalized 

Arima model explanation let us see what we mean by PAC. What did the correlation 

coefficient indicate the correlation coefficient between two variables. The correlation 

between two variables indicates the linear dependence of one variable on the other. For 

example, if we say that rho 1 is equal to 0.6 between X and Y or the correlation between 

x and y is 0.6, it indicates the degree of dependence between of Y on X. Now the partial 

autocorrelation indicates the dependence of one variable X t on X t minus k. We are 

talking about auto correlation and therefore, the same variable. We are talking at various 

time periods X t on X t minus k, when the dependence on all other variables X t minus 1, 

X t minus 2 etc, X t minus k minus 1 are all removed. 

What we mean by this is that when you are talking about dependence of X t on X t minus 

k all these other dependence the correlation. When we are talking about X t on X t minus 

k these dependence are also included in that, but if you have some mechanism by which 

partial out or you remove the dependence of X t on X t minus 1, X t minus 2 etc on all 



other variables except X t minus k. Then the remaining correlation is in fact the partial 

autocorrelation. So, it indicates the dependence on X t on X t minus k alone when the 

dependence of X t on all other variables has been removed. 

To understand this better let us say that y is regressed upon X 1 and X 2 and then we are 

interested in how much explanatory power X 1 has if the effect of X 2 is partial out or 

removed; that means, Y is dependent on X 1 as well as X 2. So, you have regressed upon 

regressed y upon X 1 and X 2 both together, but now you ask the question out of X 1 and 

X 2 how much power X 1 alone has how do we answer these question. Let us say that 

why we regress only on X 2 first and get the residual out of that; that means, X 2 has 

been able to explain part of variables of Y the residuals. We take out and then the 

residuals, we regress with respect to X 1 and then see how much of these errors or these 

residuals can be explain by X 1 and that is in fact the explanatory power of X 1 on Y. 

When the dependence on X 2 has been taken out when the correlation on X 2 has been 

taken out on this. 

So, this generally gives the idea of partial autocorrelation, now the partial 

autocorrelations are important indicators of what type of Arima models that we make use 

for the data that we have. And therefore, we must able to estimate the partial 

autocorrelations and infer from the partial autocorrelations what level of auto regressive 

terms that we may want to use for our model. 
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The partial autocorrelations this is what I just explained. For example, if you have Y is 

equal to F of X 1 comma X 2 first you regress only X 2 then you get the error terms and 

then regress X 1 on the error terms that you get. So, you will be able to tell how much of 

the relationship is being explained by X 1 alone how much of this relationship is being 

explain by X 1 alone and that indicates the partial autocorrelation. 

The AR 1 model that we wrote as X t is equal to Phi 1 X t minus 1 plus epsilon t, 

because you are dealing with only one variable X t and X t minus 1 that is X t on X t 

minus 1. You are regressing X t on X t minus 1 the term Phi 1 here explains completely 

the explanatory power provides completely the explanatory power of X t minus 1 on X t 

and therefore, that itself becomes the partial autocorrelation for order 1 of order 1. So, 

Phi 1 of the AR 1 model is in fact the PAC or the partial autocorrelation of order 1. 

Let us write AR 2. Now AR 2 we write it as X t is equal to Phi 1 X t minus 1 plus Phi 2 

X t minus 2 plus epsilon t for the AR 2 model Phi 2 is the partial autocorrelation of order 

2. Remember the Phi 1 of AR 2 model is different from the Phi 1 of AR 1 model and the 

Phi 1 of AR 2 model does not I repeat does not indicate the partial autocorrelation of 

order 1 if you want the partial autocorrelation of order 1 look at the AR 1 model the Phi 

1 of AR 1 model is a partial autocorrelation of order 1. If you want Phi 2 or the partial 

autocorrelation of order 2 you write the AR 2 model and the Phi 2 that you write here for 

the AR 2 model is in fact the partial correlation of order 2. So, in general the Phi p of the 

AR p model indicates the partial autocorrelation of order p. 
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So, any AR p model you write like this X t is equal to Phi 1 X t minus 1 etc. Phi p X t 

minus p plus epsilon t the Phi p of the p AR p model is a PAC of order p. There is an 

elegant way of estimating the partial autocorrelations, we have introduced earlier in the 

lectures we use the Yule Walker equations to obtain the Phi p or the partial 

autocorrelations. If you recall the partial the Yule Walker equations we wrote as p it is an 

auto correlation function of order p into Phi p, which is a partial autocorrelation is equal 

to rho p, which is the lag 1 lag they are just the autocorrelations. 
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So, if you write this in the long form this is your P p or that we called them as the auto 

correlation function. So, the auto correlation function is 1 rho, 1 rho 2 etc rho n minus 1 

like this it goes and the similar this is this has to be p this has to be p here this is p by p. 

So, similarly Phi 1, Phi 2 etc up to Phi p just half a minute I will just change the pen. So, 

this is rho p minus 1 etc rho p minus 2 and rho 1. Similarly Phi 1, Phi 2 etc, Phi p and 

this will be equal to rho 1 rho etc rho p. So, this is a p th order Yule walker equation. So, 

when you solve this p th order Yule Walker equation you will get the solutions for Phi 1, 

Phi 2 etc. Phi p and the Phi p which is a last term that you get is in fact the partial 

autocorrelation of the order p. 

So, this is how you determine the partial autocorrelations of order p if you want Phi 1 

you write the Yule Walker equation for a of order 1, if you want Phi 2 solve Yule Walker 

equations of order 2 and so on. 
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So, this is a p th order Yule Walker equations. So, for PAC of order 1 you write the Yule 

Walker equation of order 1 which is only 1 term here you will write the first term which 

is 1 here and then Phi 1 is equal to rho 1 therefore, the first partial autocorrelation is 

equal to the lag 1 auto correlation itself. So, Phi 1 is equal to rho 1. Similarly, for the 

second order partial autocorrelation you will write the Yule Walker equations of order 2 

which is 1, rho 1, rho 1, 1 what I am doing now is that I am writing it for the second 



order. So, 1, rho 1 and rho 1, 1 is equal to into Phi 1, Phi 2 is equal to rho 1, rho 2 that is 

that is a second order equation. 

So, I will write this as 1, rho 1, rho 1, 1. Phi 1, Phi 2 is equal to rho 1, rho 2 when we 

simplify this and multiplying this. So, Phi 1 plus rho 1, Phi 2 is equal to rho 1 that is the 

first equation similarly rho 1 Phi 1 plus Phi 2 is equal to rho 2 that is a second equation. 

So, you have two equations rho 1 and rho 2 is known. You can determine Phi 1 and Phi 2 

rho 1 and rho 2 are the lag 1 and lag 2 autocorrelations these are determine from the data. 

So, from data you know rho 1 and rho 2 and therefore, you should be able to solve these 

simultaneously and get Phi 1 and Phi 2. 
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So, we will simplify that you write Phi 1 plus rho 1, rho 2 minus Phi 1 rho 1 Phi 1 is 

equal to rho 1, this is from this equation you get here Phi 1 plus rho 1 Phi 2 is equal to 

rho 1. So, you are putting it for Phi 2 here substituting for Phi 2 and then getting it to 1. 

So, Phi 1 you will get as let me explains this correctly. So, for Phi 2 you have rho 1 Phi 1 

plus Phi 2 and this you put it in rho 1 Phi 2. So, Phi 2 you will substitute as rho 2 minus 

rho 1 Phi 1 and this you write it as equal to rho 1. So, by simplification you will get Phi 1 

is equal to rho into 1 minus rho 2 by 1 minus rho 1 square rho 1 and rho 2 are known 

from the data. So, straight away you get Phi 1. 

So, similarly you will get Phi 2 as rho 2 minus rho 1 square by 1 minus rho 1 square this. 

So, simple algebraic simplification, I repeat again when you solve the second order Yule 



Walker equation which we are doing now. So, you are solving the second order Yule 

Walker equation to get Phi 1 and Phi 2, the Phi 2 that you get is the partial 

autocorrelation of order 2 remember that the Phi 1 that you get here is not the partial 

autocorrelation of order 1. If you want the partial autocorrelation of order 1 you have to 

solve the Yule Walker equation of order 1 which we did earlier and then said that Phi 1 

is equal to simply rho 1. So, the Phi 1 that you get from the Yule Walker equation of 

order 2 will be different from the Phi 1 that you get from the Yule Walker equation of 

order 1. 

So, the Phi 2 here is the PAC of order 2, in general Phi p is the PAC of order p, when 

you formulate and solve the Yule Walker equation of order p. So, we now know how to 

determine the partial autocorrelations at different order. So, p is equal to 1, p is equal to 2 

etc. You know how to determine the partial autocorrelations of different orders from the 

data you will have all the autocorrelations rho 1, rho 2 etc rho p and look at the Yule 

Walker equations. If you have rho 1, rho 2 etc rho p you will be able to form the auto 

correlation function you have the partial autocorrelation function here and these are the 

autocorrelations up to lag p. 
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So, all you need is the autocorrelations up to lag p to get the partial autocorrelations and 

these we get from data, you know how to get the correlogram. Let us see from the data 

let us say that you have the r 1 which is an estimate for the lag 1 correlation as 0.57 and r 



2 which is a estimate for rho 2 which is a lag 2 autocorrelations as 0.07 then Phi 1, which 

is the PAC of order 1 partial autocorrelation of order 1 is simply equal to r 1. So, this is 

you can put a cap here this is Phi 1 cap is equal to r 1 this is estimate. Similarly, Phi 2 

cap I can write it as these are estimates sample estimates because you are estimating rho 

1 from the sample and therefore, the sample estimates for the PAC are also denoted as 

Phi 1 cap and Phi 2 cap and so on. 

So, you get Phi 2 cap is equal to rho 2 minus rho 1 square by 1 minus rho 1 square and 

rho 2 is r 2 here 0.07 minus 0.57 square by 1 minus point 57 square it is minus 0.38. The 

partial autocorrelation being correlations by themselves will have a range of minus 1 to 

plus 1 they are also like correlations they vary between minus 1 to plus 1 for all p. 
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Now, we will see how we use the information on the partial autocorrelation. So, we have 

the information on the correlogram. We also have the information of the spectral density, 

now we have added one more information which is that of partial auto that provided by 

the partial autocorrelation. So, just given the data; that means, that you have observed 

data at a particular location, let us say you are talking about observed stream flow at a 

particular location first we simply plotted the time series we saw that there is a some 

kind of a indication of some regularity in the data, it may be just let say the periodicity or 

it may be an increasing trend or it may be just a long term mean around which the value 

are fluctuating and so on. 



So, you see just by plotting the data as the time series plot you get some indication of 

presence of some kind of a regularity. Now this information we further smoothened or 

we extracted much more information by plotting the correlogram. The correlogram may 

indicate presence of periodicities; that means, there is some periodicity that is indicated 

by the correlogram it may be 12 month periodicity 14, 24 months periodicity or long 

term decadal periodicity and so on. So, the correlogram gives an indication that yes there 

is a periodicity present in the data. We further find this information that is provided by 

the correlogram by plotting the spectral density. The spectral density brought to the 4 the 

presence of periodicities much more strongly than did the correlogram. 

So, in the spectral density we could identify that there is a periodicity corresponding to 

12 months, there is a periodicity corresponding to 6 months, 4 months and so on. In the 

example that we did we solved before coming to Arima models. Then we also examined 

how to test these periodicities and now we have introduced the partial autocorrelations, 

which means that we are going deeper and deeper into the information contained in the 

observed and time series. The basis for all of this is just the observed time series you 

may have one time series you may have several realizations of the time series, but we are 

simply going deeper and deeper into what information can be extract out of the observed 

values that we have. 

So, the partial autocorrelations are another source of information from the data observed 

data. So, much the same way we plot the correlogram we should be able to plot the 

partial autocorrelation also. Now with all these information we should be able to build 

models for the particular process let say you are talking about stream flow, monthly 

stream flow at a particular location. So, we have extracted all the information that is 

contained in the data we must use these data to build models for that particular process. 

The specific models that we will be now discussing as I just mentioned is are called as 

the Arima models autoregressive moving average models. These are the specific type of 

models that I will be discussing are called as the box Jenkins type of time series model 

they are written for stationery time series. So, the models that I will be discussing are all 

only for stationery time series there are also non stationery time series models, they are 

beyond the scope of this course, but keep at the back of your mind that much the same 

way we develop the time stationery time series models. You can also develop non 

stationery time series models adopting different other method. 



If the time series that we are dealing with is non stationery first you must convert the 

time series into a stationery time series and only then develop or apply these models how 

do we identify that the time series is non stationery? first you look at the correlogram for 

a stationery time series the correlogram dies down very rapidly in fact in most 

hydrologic applications you may see that the stationery the correlogram dies down after 

3 or 4 lags or 4 or 5 lags in most of the cases by correlogram dying down what I mean is 

that this correlations become insignificant as lag progresses with progress in lag. They 

become quickly insignificant whereas, if you have a non stationery time series the decay 

in the correlogram is not very fast, it may decay very slowly over a long period of time 

you may see that the correlations become insignificant. 

So, this indicates as you can see here there is significant periodicity that refuses to die 

down even with significant lags and therefore, it indicates that the time series is in fact 

non stationery. So, first you need to identify whether the series is stationery or not and 

then only apply the time series procedure the Arima models that we will be discussing 

and so on. So, let us summarized now what we covered in this lecture, we started with 

the spectral density the problem that I was discussing in the last lecture we saw that in 

the monthly time series the offspring flow that we consider. For the example there were 

significant periodicities which were shown primarily by the correlogram. 

The correlogram indicated a sinusoidal oscillation and therefore there by indicating there 

are periodicities present in the data. The spectral densities the spectral analysis brought 

much more strongly the presence of periodicities, but it also identify where exactly the 

periodicities are present. In the numerical example it identified that the there was a 

periodicities corresponding to 12 months, there is a periodicity corresponding to 6 

months, 4 months and 3 months. Then we examined which of these periodicities are in 

fact statistically significant by doing the statistical test. 

We saw that all the periodicities were statistically significant in that particular example. 

Then we saw the effect of standardization, we standardize the series and saw that all the 

periodicities that we had identified are statistically significant. Where absent in the 

standardized series indicating that standardization is one way of removing the 

periodicities. Then we went on to write the autoregressive moving average models 

autoregressive moving average models. So, the AR p model we write we wrote and then 



explained the auto regression process itself verses the regression model that we are used 

to. 

Then we introduced the concept of partial autocorrelations the partial autocorrelations 

indicate the explanatory power of a particular variable X t minus k on X t. When the 

dependence on X t on all other terms have been removed and we defined a general 

autoregressive integrated moving average model. So, we will continue with this 

discussion in the next lecture, where we will write a more general autoregressive 

integrated model, integrated moving average model and then see the various steps 

involved in fitting an Arima model, general Arima model to a particular hydrologic 

process. So, we will continue the discussion in the next lecture thank you for your 

attention. 

    


