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Good morning and welcome to this lecture number 13 of the course stochastic 

hydrology. If you recall in the last lecture, we dealt with data generation techniques 

especially, the stream flow generation using the first order Markov processes; and we 

introduced the and for annual flow generation the first order Markov model. Recall that 

this will express X t using the lag 1 correlation and its which indicates its dependence on 

X t minus 1. And the model that we introduce will preserve the mean, the standard 

deviation and the correlations of the historical data. So, if you have annual series of 

stream flows, you can compute these moments, and then use the model Markov model 

first order Markov model and generate series of annual flows. 
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Then we relax the requirement that the series be stationary and we consider the non 

stationary first order Markov model, where for each of the month or season, you have 



different means, the standard deviations and the lag on correlations. We incorporated that 

into the Markov model, and then introduced the non-stationarity first order Markov 

model. This in the hydrologic literature is famously known as the Thoma Fiering model, 

and typically it is used for flow generation for monthly and seasonal time periods; and in 

some cases it has also been used for flow generation during smaller time intervals like 10 

day time intervals and fortnightly time intervals etcetera. Recall that the requirements for 

the Markov models as we introduced in the last lecture are that the flow time series can 

be approximated to be a Markov chain, and also that the flow series can be approximated 

to follow normal distribution. 

The Thoma Fiering model that we introduced in the last lecture requires the flows to 

follow normal distribution. And it also generates negative values because we are flowing 

the normal distribution and in the applications the negative values are set to 0 if you are 

using the sequence that you. So, generated using the Thoma Fiering model into let say 

simulation of reservoir operation at the time of applications you set the negative values 

to 0, but while using the generating model itself you keep the negative values to generate 

the next values. 

Because it generates negative values often using the log transformation is advantageous. 

So, we also have the log transform Thoma Fiering model where simply you transform 

the X t into log X t and use the Thoma Fiering model on the log X t series that is also 

quite popularly applied in hydrologic literature. Now, we move to the next topic which i 

introduce just towards the end of the last lecture this is called as the frequency domain 

analysis. So, far whatever we have been doing on the time series analysis is on the time 

domain for example, we calculate the correlations and then plot the coreelaogram all of 

these are done with respect to time. We talk about correlation at a particular lag and these 

lag that we considered are with respect to time. 

We can also transform the observed series X t into a frequency domain and then do the 

analysis in the frequency domain and often this is very advantageous especially in 

determining the periodicities inherent in the data. So, the frequency domain analysis we 

carry out mainly to identify the periodicities in the data, if you recall we expressed X t 

the time series as consisting of d t, a deterministic component plus epsilon t which is a 

stochastic component. 
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In the beginning we mention that the d t that is a deterministic component can consist of 

let say a long term mean around which the values are fluctuating or you may have a trend 

increasing or a decreasing trend around which the values are fluctuating or you may have 

a periodicity like this around which the values are fluctuating randomly apart from 

having a jump jump in the series and so on. Identification of these periodicities is an 

important problem in hydrology, the correlogram as as you can see here if you have a 

periodic process the correlogram will typically look like this in the in the time domain if 

you plot the correlogram r k versus k or rho k versus k the periodic process will look like 

this. 

So, where the correlogram is oscillating periodically and typically it dies down slowly in 

most of the hydrologic process. The correlogram indicates that yes there are periodicities 

inherent in the data, but identification of the exact periodicities and the significant 

periodicities inherent in the data is better done with the spectral analysis where we 

transform the time series X t into the frequency domain and then we analyze the time 

series in the frequency domain. 
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This analysis is called as the spectral analysis. So, the periodicities in the data which 

were indicated by the correlogram can best be determined by analyzing the time series in 

the frequency domain and such analysis is called as the spectral analysis or analysis in 

the frequency domain. The basic premise or the basic hypothesis with which we start is 

that the observed time series is a random sample of a process over time and is made up 

of oscillations of all possible frequencies. 
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So, this this is the basic premise on which the frequency domain analysis is based. Then 

we look at the time series as having consisted of several frequencies and then we look at 

which of these frequencies are dominant in the observed time series. The spectral 

analysis as we introduce now is widely used in several other fields also like: electrical 

engineering, physics, metrology, apart from hydrology. In hydrology specifically the 

applications of spectral analysis include dry and wet run analysis let say you have a large 

sequence of rainfall data and you would be interested in frequencies of dry periods or 

wet periods, periodicities of dry and wet periods that is where we use the frequency 

domain analysis.  

We also use it for developing models for synthetic generation in which we would be 

incorporating into the models the periodicities inherent in the data and for that 

identification of periodicities becomes important. Even in the hydrologic forecasting 

models when we are talking about medium term forecast let say or the next season 6 

months, 1 year or 3 years medium term forecast. When we are talking about we need to 

incorporate the periodicities in the process into the models and that is where we use the 

spectral analysis and the recent research area in hydrology which deals with impacts 

studies of that is the climate change impact studies on hydrology, such studies also 

require identification of periodicities oscillations decadal oscillations and so on. In the 

particular process that we are talking about. 

So, frequency domain analysis is an important topic in stochastic hydrology. We will not 

go into the theoretical development of several aspects of the frequency domain analysis 

that we will be dealing with rather what we will do is we will pick up directly the 

expressions that are available and then see how we apply to hydrologic time series, how 

we interpret the results and how we identify the periodicities, how we check the 

significance of the periodicities. So, identified and what do we do with these periodicities 

in subsequently building up the time series models. 
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So, the first level as I said we express the time series X t as consisting of different 

frequencies for example, in this case we take a sinusoidal representation of the time 

series. So, we write X t as a constant alpha naught and then summation over k to N by 2 

or N minus 1 by 2, where N is the number of data points that we have if N is even we 

write the summation up to N by 2, if N is odd you write up to N minus 1 by 2. Alpha k 

cos 2 pi f k t plus beta k sin 2 pi f k t summation ends here plus epsilon t. 

So, this is how we are expressing the time series as consisting of a sinusoidal component, 

a random component and a constant. For a given k this f k here is the k th harmonic of 

the fundamental frequency. The fundamental frequency is simply 1 by N. So, f k is 

written as k by N. So, for a given k we will have expressions for determining alpha k you 

know f k you are writing for the time period t therefore, this t is known beta k we have an 

expression I will just present it, again f k is known t is known and epsilon t is the random 

component. 
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The periodicity when we write X t in this form is simply 1 by f k. So, f k is the 

frequency; obviously, periodicity will be 1 by frequency. So, in this expression we 

determine alpha naught which is a constant here by simply the estimate of the mean 

which is x bar and alpha k we determine by this expression 2 by N t is equal to 1 to N x t 

cos 2 pi f k t. You are summing it over all the time periods t is equal to 1 to N and this is 

the original time series x t f k is the particular frequency that we have determined for that 

particular k that is k by N and t is the particular time period. 

Similarly, beta k we determine by x t sin 2 pi f k t. Now these expressions are in general 

taken up to about a maximum lag of M and this lag typically. We consider up to about 25 

percent of the total amount of data total number of data points that we have. So, about 25 

percent of the data lag these expressions for alpha k and beta k are valid up to k is equal 

to N by 2 as as mentioned here. 
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When N is odd the expressions are true until k is equal to N minus 1 by 2 and the last 

values of alpha N by 2 and beta N by 2 will be given by this beta N by 2 will be equal to 

0. 
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Now let us see what are the interpretations of this the way we have introduced the 

spectrum is the called the variance spectrum. So, it divides the variance that is observed 

variance into number of intervals of frequency or bands of frequency. The spectral 

density as we write here it indicates the amount of variance per interval of frequency. So, 



we write the spectral density I K as N by 2 alpha k square plus beta k square written for k 

is equal to 1 to M, M is a maximum lag. Similarly we write the angular frequency the 

frequency that we introduce namely f k is equal to k by N is now converted into angular 

frequency by writing it as 2 pi k by N. So, omega k here is 2 pi k by N again written for k 

is equal to 1 to maximum lag. 
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A plot of I K versus omega k. Omega k on the x axis I K on the y axis is called as the 

line spectrum or simply spectrum in many cases and it looks typically like this. So, with 

P as given by N by k we have omega k is equal to 2 pi by P, P is the periodicity. Now we 

plot omega k versus I K, omega k is determined by 2 pi k by N and I K is determined by 

this expression, alpha k is determined as earlier alpha k is determined using this beta k is 

determined using this. Therefore, we know all the terms given a time series we can 

determine for various values of k the w k values and you plot w k versus I K this is 

called as spectrum in general. These are the various salient features that we must 

remember the total area under spectrum when we are talking about various spectrum the 

total area under the spectrum is equal to the various of the process. 

A peak like this in the spectrum indicates an important contribution to spectrum that is 

the whole range here this whole range, we are talking about the distribution of the 

spectrum in several bands of frequencies. So, whenever you get a peak here this indicates 

that there is an important contribution to the variance of the process around these 



frequencies. The prominent spikes here indicate that there is a periodicity corresponding 

to the angular frequency that we are talking about. So, when you plot the spectrum you 

capture these peaks look at the omega k values convert that into the periodicity and that 

indicates that a periodicity corresponding to that particular time exist in the data. 

Now, the particular expression that we just introduced are one among several possible 

expressions for spectrum estimates. So, we are using one of them in the text and in the 

literature you may find several different ways of expressing the spectrum, but we will 

add here to that particular type of expression that we have just introduced. So, essentially 

then what we are doing in spectral analysis is to convert the X t which is the observed 

time series into a sort of a 4ier transform where we are using a sinusoidal representation 

of the time series and then estimating the spectral density I K we are plotting I K versus 

omega k versus I K, where omega k is the angular frequency. 

When we plot omega k versus I K or I K on the y axis and omega k on the x axis. We see 

spikes or peaks in the spectral density typically. Now these peaks will indicate the 

periodicities inherent in the data, the omega k corresponding to a particular peak you 

convert that into the periodicity 2 pi by omega k and that periodicity in the time domain 

will indicate the periodicity that is present in the data for example, if you are looking at 

monthly stream flow data and then you plot a spectrum plot the line spectrum. Typically 

you may get an omega k of omega k which corresponds to a periodicity of 12 months or 

may be 6 months, 3months etc. Depending on the type of stream flow data that you have. 

So, when we look at certain examples these points will become clear. We will see one 

example, now where first we introduce how exactly we estimate alpha k, beta k the 

coefficients. For a specific value of k remember for a given k f k is equal to simply k by 

N. N is the number of the observations that you have.  
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So, let us get an example here this is the time series we have 10 values here this is just 

for demonstration you have 10 values of X t. We are determining omega k and I K for k 

is equal to 1. Because k is equal to 1 you know f k is equal to k by N. N is 10 in this case 

therefore, f k is equal to 0.1. 
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So, here we write t is equal to 1 X t is known 1, 0, 5 these are the observed values of the 

time series 2 pi into 1 by 10 into t in this case it is 1 in radiance. So, cos of 2 pi f k t is 

0.809. Similarly sin of 2 pi f k t is 0.5878 and so on. Then we write X t cos 2 pi f k t and 



X t sin 2 pi f k t what are we doing here? We are looking at this expression I K is equal 

to N by 2 alpha k square plus beta k square. So, for a given value of k we determine 

alpha k and beta k and for that given value of k we are determining I K. 

So, the example is for k is equal to 1. So, for a given k first to determine f k by k by N 

and then apply this these expressions. So, X t cos 2 pi f k t, X t sin 2 pi f k t and you get 

summations here alpha k. We will look at alpha the expression for alpha k here is 2 by N 

X t cos 2 pi f k t t is equal to 1 to N. So, this is the expression we are using to estimate 

alpha k similarly for beta k we are using this expression. So, we sum over sum this over 

all the N time periods and get this value similarly sum this term you get this value. You 

get alpha k as 2 by N, which is 2 by N into the summation of X t cos 2 pi f k t and you 

get alpha k as 3.1046. 

Similarly, beta k as 3.1046 similarly beta k you sum all the sin terms here X t sin 2 pi f k 

t terms over t is equal to 1 to n and you get beta k as minus 8.1398. So, for a specified k 

how to get alpha k and beta k. Once alpha k and beta k for all k you determine I K, once 

you have determine alpha k and beta k for let say k is equal to 1 to M. M is the maximum 

lag, you can determine I K for all these k because alpha k and beta k are know. 

Similarly, you know omega k 2 pi k by N. So, for a given k you know omega k and I K 

plot omega k on the x axis and I K on the y axis you will get the spectrum. So, this is 

how we estimate the spectrum. Now what we are doing while calculating alpha k beta k 

and then omega k etc is essentially to capture the inherent periodicities in the data. So, if 

you have plotted a correlogram in the time domain. Correlogram would have already 

given you some idea about existence of periodicities, now this will be verified in the 

spectral analysis and also the information contained the information on the frequencies 

or the periodicities inherent in the data comes out more prominently in the frequency 

domain and you can also examine the significance of the periodicity. 
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So, you identify the periodicities and then examine the significance of the periodicities. 

The way we estimated the spectrum and plot of I K versus omega that we just did is 

called as the line spectrum. Now the line spectrum transforms the information from the 

time domain to the frequency domain. As I said while the correlogram indicates the 

frequency presence of periodicities in the data. The spectral analysis helps identify the 

significant periodicities themselves. We will do some examples by which we can 

demonstrate this fact. 
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The line spectrum as we had defined is a statistically inconsistent estimate and the plot 

that we get typically is a is not a really a smooth function you get spikes like this and 

then these need not be actually zero, but the there would be some lines like this and then 

there another peak another peak and so on. So, this is not a really a smooth function that 

we have defined. We smoothened the function and redefine the line spectrum this is 

generally called in hydrology literature at least as the power spectrum. So, the 

smoothened spectrum is called as the power spectrum for the same graph it may appear 

something like this. So, you may have smoothen values this is the power spectrum as you 

define present just now we will be is called as the it is a consistent estimate of the 

spectral density. 
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So, we define the power spectrum is a this is actually a Fourier cosine transform of the 

auto covariance function. So, we know how to determine the auto covariance functions c 

k if you recall and we transform the auto covariance function as a Fourier cosine function 

and then define the power spectrum function. So, the power spectrum I (k) is given by 2 

c naught plus 2 into summation j is equal to 1 to n minus 1 by 2 lamda j, c j, c j are the 

auto covariance functions cos 2 pi f k into j. So, in this summation you are talking about j 

here these are called as lamda j’s are called as a lag windows and there are ways of 

estimating the lag windows for example, we talk about tukey window window and so on.  



We will introduce one of the methods of estimating lamda j’s and all other terms are 

defines c naught is your auto covariance function at zero which is just the covariance. In 

fact, it becomes the variance.  
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The lamda j’s are estimated by what are called as as a there are various expressions for 

expressing lamda j for determining estimating the lamda j’s. So, lamda is equal to 1 by 2 

this is given by tukey window and this is most commonly used tukey window and 

window these are typically used for estimating lamda j’s. We introduce the tukey 

window here. So, lamda j is equal to 1 by 2, 1 plus cos 2 pi by M dash. Now, this M dash 

is slightly different from the M that we talked about the maximum lag. Now M dash can 

also be about point 25 N, a general guide line for M dash or the maximum lag is that it 

should not be too small nor should it be too large. 

So, that you are not missing the information contained in the frequency distributions. So, 

typically we use about 25 percent of the data and some author also recommend 2 root N 

you go up to 2 root N. If you have 100 data 2 into root of 100. So, about 20 whereas, if 

you have 100 data this may indicate about 25 values. So, typically it should not be too 

large nor should it be too small the smoothened spectrum which is omega k versus I K 

once you estimate lamda j’s you can estimate I K here the covariance functions are 

known. So, you estimate the covariance functions and you can estimate I K and omega k 

is the same as what we did earlier 2 pi k by N and you plot w k versus I K this is called 



as the power spectrum. So, this will be a much smoother diagram and it is also a 

consistent estimate. 
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Now, in the frequency domain analysis the information is extracted from the frequency 

domain that is from the spectrum. Let say you have a completely random sequence for 

example, you generate using calculator a series of uniformly distributed random number 

in the interval 0 and 1 and you plot the spectral density for a completely random 

sequence you will see that the spectrum oscillates like this; that means, you are unable to 

get any particular peaks in the spectrum. What does this mean? This means that the 

variance is rather uniformly spread there is no particularly frequency band, which has 

more variance contained than any other band such processes are called as white noise in 

the spectral. 

So, the white noise indicates that no frequency interval here contains any more variance 

than any other frequency interval and you recall that if you have a purely random 

sequence your rho k is equal to 0 for k not equal to 0 and this is the theoretical rho k and 

if you have sample estimate r K the r K will be all significant for all k not equal to 0. So, 

r K will be insignificant for all k not equal to 0 what do I mean by significance if you 

recall we draw a band of 2 by root N. Actually 1.96 by 2 root N on either side plus 1.96 

by root N and minus 1.96 by root N this is the 95 percent significance level. So, if all 

your r K or the lag k correlations for within this band they are all insignificant. So, for a 



purely random process you will have all r K’s being insignificant and for a purely 

random sequence if you draw a line spectrum or a power spectrum the spectrum looks 

like this. Which indicates that no frequency band contains anymore variance than any 

other frequency interval that you consider. 
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Typically what we do is in the in the run up to building time series model first we plot 

the time series, then we plot the correlogram. We may suspect that the correlogram 

indicates some frequencies or some periodicities inherent in the data then we would like 

to be sure that we remove the periodicities form the time series. Because when we are 

building time series models X t is equal to d t plus e t you want to first identify the d t 

once you identify the d t you remove the deterministic component. So, that you can 

model only the stochastic component. 
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To identify the periodicities we then plot the spectrum either the line spectrum or the 

power spectrum, smoothen spectrum and indentify these periodicities. We also check for 

which of these periodicities that we have identified are. In fact, significant. So, that you 

can use them in your models the spectrum as we showed just now, it shows several 

spikes like this. Prominent spikes which indicate that there are periodicities inherent in 

the data. The period corresponding to any particular value of omega k may be computed 

by 2 pi by omega k. So, let say you have a spectrum like this you identified that this is 

the peak and this corresponds to a particular omega the period corresponding to that 

omega k will be simply 2 pi by omega k. Then let say that we identify that this is a 

period and this is significant, but we are not sure that this is significant whether this is 

significant and so on. 

How do I test once we know that a particular peak is significant let say this periodicity is 

significant. We remove the periodicity corresponding to this reconstruct the series re-plot 

the power spectrum and then examine the periodicity for the next. So, the way we do is 

we test for the significance of periodicities one by one. Let say you remove the 

periodicity and test for the next highest highest peak remove that and test for the next 

highest peak and so on. So, this is the way we test for significance of periodicities. 
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So, what do we do we reconstruct the time series Z t is equal to X t minus Y t in which Y 

t is the series containing the previous periodicities. So, we reconstruct it as X t minus Y t 

where Y t is defined as let say that you want to remove d number of periodicities: 1, 2, 3 

etc up to d number of periodicities. So, you write Y t as your frequency domain notation 

as Y t is equal to mu plus alpha 1 cos 1 omega 1 t N and. So, on this is corresponding to 

the first periodicity omega 1 this term is corresponding to the second periodicity omega 2 

and so on. So, you deduct terms corresponding to d number of periodicities omega d t. 

So, we are actually removing d periodicities through this series Y t and your constructing 

Z t is equal to X t minus Y t with d number of periodicity is removed typically in 

hydrologic application. We remove one periodicity, two periodicities, three periodicities 

and so on not more than that. So, we construct the series Y t and reconstruct for X t and 

the spectrum of new series Z t is plotted and the spikes are again observed. Now, when 

you reconstruct this typically what we see again we see some prominent spikes, let say 

you removed one periodicity and then reconstruct the time series plotted the spectrum for 

the reconstructed time series you will see again significant peaks visually. You can see 

that there are significant peaks because you have removed the earlier significant 

periodicities the remaining periodicities now appear very prominently in the series in the 

spectral density spectral diagrams. 



Just by visually examining we may tend to conclude wrongly that these periodicities that 

we are seeing are statistically significant because they appear very prominently in the 

time series in the transform time series, but it is necessary for us to have statistical 

methods by which we can test the significance of the the periodicities that we identify 

and that is what is done we introduce a statistics gamma square N minus 2 by 4 rho 1 cap 

this is given by Kashyap and Rao 1976 the reference is here. 

(Refer Slide Time: 38:08) 

 

So, gamma square is alpha square plus beta square and rho 1 cap is estimated by this t is 

equal to 1 to N this is the particular periodicity which we are examining. So, omega k as 

I have identified in your spectral analysis you have identified a particular k and this is the 

periodicity which you want to examine for significance. So, omega k is known and t you 

are summing from t is equal to 1 to N. So, X t minus this particular periodicity removed 

that gives you rho 1 k. 
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This alpha and beta are also for that particular k that you are considering. So, you know 

gamma square and n is known rho 1 cap is estimated and therefore, you know this 

statistic we check against the f distribution with 2 degrees of freedom N is the number of 

data points. So, if the statistic that we computed is greater than the corresponding f value 

then it is significant the periodicity at level alpha is significant. This test examines one 

periodicity at a time and it should be carried out on a series from which all the 

periodicities previously found to be significant are removed. So, this is done one by one 

remove the first periodicity test for the second one remove the second one test for the 

third one and. So, like this you can do. 

Now, when we build stochastic models for example, you are building models arima type 

etcetera which will subsequently introduce you need the series to be devoid of any 

periodicities. So, you would have identified the you should identified the periodicities 

first remove the periodic component form the series reconstruct the series and then on 

the reconstructed model reconstructed series you build the time series model stochastic 

models. 
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So, a necessary condition in stochastic models in most stochastic models is that the series 

being modeled must be free from any significant periodicities now let sat that we have 

identified the series consist of several significant periodicities how do we remove these 

periodicities now one way of doing this that is we want to remove all the periodicities 

inherent in the data one simple way of doing it is simply standardize the series that is 

equal to X t minus mu over sigma that is the long term mean by the standard deviation. 

If we normalize the series and then examine the particular spectral density you may see 

that most of the periodicities are removed in many of the hydrologic applications this 

standardization works is a standardization or normalization works as a as a first step then 

there are also techniques for differentiating and. So, on of the series which will remove 

certain deterministic components. 
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So, in a monthly time series for example, in this expression we may write X t minus x i 

bar over S i let say you are talking about monthly time series where t is equal to 1 to 

twelve and you are talking about the flows. Now X i bar here indicates the mean of the 

particular month of which t belongs for example, mean of the january mean of the 

february and so on. Similarly S i is the standard deviation of the month to which t 

belongs. So, like this we standardize the series the series that we standardized has a 0 

mean and unit variance. So, this series is we can examine we will do some examples 

subsequently we will examine that the Z t that we. So, obtained by transforming X t will 

be in most cases divide of any periodicities we can use Z t in our stochastic models. 
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Let us look at a time series the statistics are available let say the flow are available from 

1979 to 2008 they will be available in this form that is the monthly stream flow will be 

available in this form I have shown only one year data from june to may, but like this it 

is available from 1979 to 2008. 
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So, you have the series of flow observed we plot the time series first. So, you have 

around 3 and 40 some or values here. So, you plot the time series the time series looks 

like this, immediately just the visual examination of the time series indicates that there 



are there must be some periodicities inherent in the data. As you are seeing the time 

series itself shows some oscillations there and therefore, you suspect that there must be 

some periodicities inherent in the data. 
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Then we plot the correlogram how do we plot correlogram you know for different k you 

can estimate rho k and then you plot rho k versus k the correlogram clearly indicates that 

there are periodicities here. You can get the peaks of the correlation on either side and 

then you can suspect that the periodicities are let say corresponding to k is equal to 6, k is 

equal to 12, k is equal to 18 and so on. This indication that the time series and the 

correlogram together have given, namely that there are periodicities inherent in the data 

we now confirm or reconfirm with the spectral analysis.  
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So, we use the time series and draw the line spectrum, while the correlogram showed a 

smooth oscillations like this. In the time domain we convert this the time series into 

frequency domain and then do frequency domain analysis plot the line spectrum 

immediately you will see that there is one significant spikes at a certain omega k 

somewhere around 5. Similarly, another omega k around 1.1 or such thing and so on. So, 

the line spectrum immediately extract the information of the frequencies and then shows 

that there may be a periodicity here etc. If you recall again that what this shows is that 

there is a significant contribution to variance of the process around these frequencies 

much more significant contribution corresponding compare to any other frequencies 

somewhere here. 

Similarly, suddenly you come across another spike where there is a significant 

contribution to variance around these frequencies and so on. So, these indicate that hese 

are periodicities that are present here. This is the line spectrum which is an inconsistent 

estimate and then we also provide the power spectrum.  
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So, power spectrum also as you can see between the line spectrum and the power 

spectrum this is a slightly more smoothen of the version. Where you have a slightly 

broader and smoother band around which the variance the contribution to the variance 

are prominent. 
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So, we identify this particular omega k value where we are seeing the peak in this 

particular case it is 0.5230. So, this peak occurs at 0.256 both for the line spectrum as 

well as for the power spectrum and the corresponding periodicity p is simply 2 pi by 



omega k where the omega k is the value of omega k corresponding to this particular 

peak. So, 0.5236 will be the periodicity corresponding to this will be 2 pi by omega k 

which corresponds to 12 months this is a monthly time series. So, we directly get the 

periodicity as 12 months. 

The next peak here occurs at omega k of 1.0472 this corresponds to 6 months then you 

do 2 pi by 1.0472 it. You come to around 6 the actual value may be just 6 point 

something etc, but you can you can say that the periodicity is 6 months similarly the next 

one corresponds to 1.57 months and that indicates the periodicity of 4 months next 

corresponds to 2. 094 here and that corresponds to a periodicity of 3 months. So, from 

the time series data you now identify buy doing the spectral analysis. You now identify 

that there is a periodicity 12 months and 6 months, 4 months and 3months inherent in the 

data, but whether all of these periodicities need to be included in our time series models 

all of these are significant. Now this needs to be tested by the test that we just indicated. 
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So, let say that we want to examine whether the third periodicity we will assume that 12 

months and 6 months let say they are significant, but we are not. So, sure that whether 

the 4 month periodicity is significant whether the 3 month periodicity is significant and 

so on. So, to test this what we do is first you remove the first two periodicities that we 

have identified; that means, corresponding to omega k of 0.5 something and omega k of 

1.0 something these two periodicities we remove. Reconstruct the data reconstruct the 



time series and then re-plot the power spectrum and then see whether these periodicities 

are significant. 

So, first we reconstruct the time series as the t is equal to X t minus Y t we are removing 

the first two periodicities here. So, the periodicity corresponding to omega 1 is removed 

here, periodicity corresponding to omega 2 is removed here. where omega 1 and omega 

2 are here this is omega 1 and this is omega 2. So, these two periodicities we are 

removing and then reconstructing the time series as Z t is equal to X t minus Y t. So, 

omega 1 is this and the corresponding alpha 1 is 29.28 and beta 1 is 72.93. Now these are 

obtained from your earlier expressions if you recall alpha k and beta k they are written 

here. So, for a given value of alpha, for a given value of k you know how to get alpha k 

you know how to get beta k. So, k is equal to 1 in the first case. So, you determine those 

and retransform the series. 

So, this is how you determine alpha 1 and beta 1 similarly for the second spike that we 

saw in the spectral density. You have omega 2 is equal to 1.0472 you get the 

corresponding alpha 2 and beta 2. So, here all the terms are known construct Y t series 

and then construct Z t series from your original X t from by deducting Y t from your 

original X t. 
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Say for example, for t is equal to 1 by putting all these values, you get Y 1 is equal to 

215.5 and Z 1 is equal to X 1 minus Y 1. So, X 1 was in this data as you can see 54.6. 

So, 54.6 minus 215.5 you get minus 160.9 and so on. 
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So, like this now you have constructed the Z t series. Now on the Z t series now this is 

how the time series plot of Z t looks. So, initially you started with X t time series the 

original observed data, you plotted the time series you suspect that there are periodicities 

present in that you plotted the correlogram which confirm that there are periodicities. 

Then you plotted the spectral density which brought out the periodicities corresponding 

to 12 months, 6 months, 4 months and 3 months. You removed the periodicities 

corresponding to 12 months and 6 months from the data by transforming the data Z t is 

equal to X t minus Y t. Where Y t is a series corresponding to the first two significant 

periodicities suspected significant periodicities and that is the series that have plotted 

here now. 
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So, this series looks something like this. Then we plot the correlogram, now correlogram 

these are the significant bands correlogram looks something like this. There are some 

peaks here it is still oscillating and there are some peaks which are way beyond the 

significance bands. 
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We plot the power spectrum, this is how it looks. Now the original power spectrum was 

somewhere here is shown here. In the original power spectrum, there was a peak at 

somewhere around 0.5 there is no peak here, because we have removed that. There was 



another peak at 1 point some value that is also removed. So, this is corresponding to 12 

months, this is corresponding to six months, both of them are not absence not present 

here. The third peak which was occurring somewhere around 1.56 or some such thing 

that becomes prominent now. So, the effect of transformation that we did was to remove 

the linear periodicities, and bring out to the 4 the other periodicities. So, these two 

become prominent. 

Now, we can remove this from this figure it appears as if this has to be significant, but 

we have the test that we can make for examining this significance. If we know that is 

significant remove that and then again re-plot the power spectrum and then check which 

other periodicities come out. The significance test of periodicities or the identified 

periodicities from the spectral analysis. How significant they are we conduct the 

significance test to answer that question that we will discuss in the next lecture. 

So, in today’s lecture what we did is we introduce the frequency domain analysis; in the 

frequency domain analysis we transform the time series X t into a series consisting of 

typically in the way we have introduced sinusoidal terms. And then we estimate the 

spectral density and we plot the spectral density against the angular frequency omega k 

and this gives the periodicities present an idea of periodicities present in the present in 

the data. 

Then the way we have introduced the first expression that we have introduced is called 

as a line spectrum which is an inconsistent estimate and we converted that into a power 

spectrum is actually we did not convert the line spectrum into power spectrum. We 

introduced another expression for power spectrum which is a Fourier transform of the 

covariance function and we plot the power spectrum again I k versus omega k and then 

see that there are prominent spikes the prominent spikes that we see either in the line 

spectrum or in the power spectrum indicate the particular periodicities. The omega k 

corresponding to a spike can be transform it to the corresponding periodicity by P is 

equal to 2 pi by omega k. 

So, in the monthly time series that we saw as an example, we got periodicities whether 

statistically significant or not needs to be tested, but we got periodicities corresponding 

to 12 months corresponding to 6 months, 4 months and 3 months. We remove the first 

two periodicities for example, reconstruct the time series by removing the first two 



periodicities, redraw the power spectrum of the transform series, and then we see that 

first two periodicities are not are not present in the revised power spectrum, but the third 

one becomes prominent, the fourth one becomes prominently visible. We need to test 

whether the periodicities that we have so identified from the spectral density, spectral 

analysis are in fact, statistically significant. This exercise we will do in the next lecture; 

thank you very much for your attention. 


