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Good morning and welcome to this the lecture number eleven of stochastic hydrology. In 

the last class, we introduced the time series analysis, especially we talked about what is a 

realization, and what is an ensemble, and what are time properties, and ensemble 

properties, and so on. Then we introduced the important concept of stationarity of time 

series. If you recall the time series is suppose to be stationary, if the properties across the 

time remain the same. For example, the pdf of  X t is same as the pdf of X t plus tau for 

all t, then we say that time series is stationary. We also introduced the concept of weak 

stationarity, we recon a time series to be weakly stationary of order f, if all the moments 

up to order f are the same across X across time t and t plus tau for all t.  

For example weak stationarity of order one indicates that the mean, which is the first 

moment is the same at time t and t plus tau for all t. Similarity weak stationarity of order 

two indicates that both the mean and the covariance are the same at time t and t plus tau 



for all t. Then we introduced the auto covariance function and the auto correlation and 

correlogram. Correlogram is also called as auto correlation function. We plot rho k 

which is of auto correlation at lag k with k on the X axis that plot is called as 

correlogram, and correlogram if you recall indicates the memory of the process, that is 

how far into the past does the process remember rho k indicates the dependence of X t on 

X t minus k or X t on X t plus k depending on how we compute it. 
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We today discuss an important an important aspect of stochastic hydrology, and we will 

introduce the concepts of data extension and forecasting. As I mentioned in the last class 

towards the end in any hydrologic planning and design exercise, we rely on the observed 

data. So, the observations are made over a period of time say for example you have 30 to 

40 years of stream flow data at a particular location. 

Using these observed data we want to make decisions on the designs that are going to 

serve us for the next so many years next 50 years, 100 years and so on. So the basis on 

which we make the hydrologic designs is the observed data sequence that we have. So, 

we have levels of two different types of problems here, where in the first case we will be 

talking about decisions that have long term implications; for example, you want to build 

a reservoir build a dam and you want to fix the capacity of the reservoir or how high 

should be the dam this decision. You will make base on the historical data, let say 50 

years of past data monthly stream flow data and evaporation data or rainfall data etcetera, 



you have observed data for last so many years and based on that you would fix the height 

of the dam this decision that you make based on the historical data has long term 

implication, because the dam will serve for next 100 years also. So, this is a decision that 

you are making now which has a long term implication on the other hand the problem of 

forecasting will have relatively short term implication, for example, you may have the 

data for last 5 years and you are standing at the beginning of June of this year and then 

you would like to forecast what you have likely have to be the monsoon flows in the 

reservoir or what is likely to be the rainfall in catchment area during this particular 

season and so on. 

So in the forecasting essentially we are talking about short time duration relatively short 

time durations whereas, in the extension and generation. We will be talking about long 

time duration now both of these rely on the observed data and as said the main basis for 

both data extension as well as data forecasting is that a history provides a valuable clue 

to the future. So, we use the historical data extract the information from the historical 

data and then make an assessment of how the future is likely to be. So in today lecture, 

we will introduce both procedures for both data extensions as well as data forecasting, 

and then in the subsequent lectures, we will take this discussion forward when data 

extensions as I have just mentioned. 
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We would be looking at the available data. Let say from 1970 to 2010 as an example we 

have available stream flows for the last so many years about 40 years and we want to 

extend this record to let sat 2040, because we would like to make the decisions based on 

data from 1970 to 2040. So, this is the problem of extension of data the data generation 

will include extension of data procedures for extension of data, but additionally the data 

generation will provide us with several sequence is of the data, which has the same 

properties same statistical properties of the observed data by available data here mean 

that these are the data that are observed actually observed on the field data forecasting 

will be dealing. 

Essentially with shot time spans, let say you are interested in forecast for the next 10 

days or forecast for the next one month and so on. So, we will be using the data up to the 

time period p, let say we are here this may be June of a particular year. So we have the 

observed data with us until that particular time then we would like to forecast standing at 

the end of June of a particular month particular year. We would like to forecast what is 

like it to happen to the happen during the next time period, which is next month July. So 

this is the problem of data forecasting. 

So data forecasting we provide as a function of the flows in the particular case we are 

talking about the inflow to a reservoir inflow which has been observed during the month 

t the previous month t minus 1 t minus 2 and so on. So the entire history of this process 

up to this process is available with us using this entire history we would like to forecast 

what is likely to happen to flow during time period t plus 1 what is the expected flow 

during the next time t plus 1 that is a forecast. So we will today introduce methods of 

data forecasting as well as data extension. 



(Refer Slide Time: 08:50) 
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Now, in the absence of any method, let say that we do not have any mathematical or 

statistical method available with us we all we have is the observed data and we would 

like to say this is the forecast for next time period. What are the procedures that we may 

use in to tell you we may simply say that just take the average of this and put it fore 

forecast for the next time period or simply look at the what has happened during the last 

period and say that the same thing you likely to continue for the next time period. So, 

like this intuitively we may do some forecast based on the observed data we all start with 

those kind of methods, but more formally what we generally do is that any particular 

method that we want to use or any particular model that we would like to build for 

forecasting we build it on first part of the data we call that as calibration data.  

So, we build the model using the first part of this data this can be the 50 percent 70 

percent or 80 percent of the available data and then we calibrate the model and test the 

model. So, calibrated on the remaining part of the data, let say you build a forecasting 

model using this data you calibrated that model and use that model for the next part of 

the data, because you already have this data you can then calculate the errors that you get 

from you get by using the model, what  mean by that is that let say you have used up to 

time t you have used the data for calibrating the model use the model. So calibrated, first 

to forecast the flow during time period t plus 1, if you are talking about flow foresting 

model; so we get the forecast we denote it as F t plus 1, but we also have the observed 



data for time period t plus 1.  So, the error will be X T plus 1minus F T plus 1, it should 

have be actually X T plus 1, but we have forecasted F T plus 1. 

Similarly, at the end of time period t plus 1, we use actual value of X t plus 1 not the 

forecasted value use the actual value of X t plus 1 and then forecast it for X t plus 2. So, 

X t plus 2 is actual value that has been realized, but F t plus 2 could have been your 

forecast. So, this gives you the errors in the forecast. So, we compute the errors as x t 

plus 1 minus F t plus 1 etc. So, you can now form a series of the errors same type now 

these are some of the basics of what we do in the forecasting problem as just I 

mentioned. If we do not have any way of forecasting any formal algorithm by which we 

can forecast what we would have intuitively done is to simply take the averages. So, the 

first method of forecasting is simply based on the averages. 
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So, let us look at what we do this case let say we have the data up to time period t, if we 

are talking about monthly flows and we have the data for last about 50 years which 

means 600 values we have and we want to forecast what is likely what is the  likely flow 

for the next time period that is 600 and first time period then the easiest way of doing it 

is take the long term mean that is mean of all the values that you have observed  and put 

that mean to be the flow mean flow the flow that is likely to be happen during the next 

time period t plus 1. 



We proceed to next time period. So, t plus 1, you would have got the actual value that 

have occurred take the values up to t plus 1 and forecast for t plus 2. So, use all the 

values that you have at your disposal take the average of all those value and put that 

average as the forecast for the next time period this is the first level of forecasting. So, 

this is the method based on simple averages that is what is written more formally here 

whenever  use a cap here it means that it is a forecast. So, X t plus 1 cap, which is the 

forecast for the time period t plus 1 alto denoted as F t plus one this is simply equal to the 

sum of all the observed values dived by the  number of time periods. So, t also indicates 

the number of time period in this case apart from indicating the specific time period here  

so, you take all the values up to that particular time period. Take the average of that and 

call that as a forecasted of so as you progress in time you will have more and more 

values to compute the average and that average you are putting it for as you are forecast. 

As you can see this method will not be useful where you have a strong periodicity or a 

trend etc, on the data if you have a smooth process. Let us say that you draw a smooth 

process let say your time series is something like this then your forecasting let say at this 

point based on the values we have got may be your forecast will be somewhere here  and 

next time forecast will be somewhere here like this it may keep on going. So, if you have 

a smooth process this kind of average based procedure this kind of average based 

procedure will work reasonably all right whereas, if you have a time series let me show it 

here if you have a time series, which has performed like this and then suddenly there is 

either a jump or drop then your methods will fail for example, you may keep on getting 

forecast something like this then the forecast will be slowly rising like this. 

So, you may not get a good forecast when you have either a jump or a periodicity or even 

a trend. So, if you have a trend in the time series something like this then your forecast 

using the average method will not work well  a improvement of the forecast using the 

average method is not to take all the values, but to take the last few values which have 

occurred and then use that average is computed using the last few values and compute 

your forecast this we call as the moving average method; that means, we do not take all 

the values, but we keep a window of time fixed and take always the values within that 

window and then compute our averages. 
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 So, first I demonstrate what mean by taking all the values and then computing the 

average and putting that as the forecast, let us look at these values this example we have 

the data these are the observed data 105, 115, 103 etcetera, like this observe here that 

here is a sudden drop in the data 120 that it was operating around certain level and 

suddenly there is a big drop here and there is a big jump again. So, this is the data how 

do we use this data for forecasting we have the observed data 105 and we want to 

forecast for the next time period, so from these 2 data 105 and 115. You forecast 110 

then 105 , 110 and 103 you forecast 107.67 ; that means, you take the average of all of 

these and then forecast 107. 67 and. So, this forecast is actually for the next time period. 

Then you take the all these averages and forecast 107.75. So, this has been got  by taking 

the average of 105, 115, 103, 108 all of this values are used to forecast this forecast is for 

the next time period and so on. So, like this you get and keep getting the forecast for the 

next time period. So, the forecast that are shown here are for actually the time period 

subsequent to that for example, this is the forecast for this time period 103 and this is this 

forecast for this time period and so on. 
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Now, as said instead of using all the values before we used the values during a fixed time 

period and call that as the moving average method. So, we keep shifting the time 

windows by one time step and then take the average. So, on the same time steps and call 

that as your forecast what  mean by that is that, let say you have time period up to time 

period T  use the time up to values up to time period t take the average and call it as 

forecast T plus 1. 

In the next time period you would have got one more value added to that. So, discard the 

previous value and then take the average over the same time period T, let say t was 5 

months and you are taking 5 months averages to forecast the next time period. So, when 

you move to the next time period you discard the oldest value and keep the latest 5 

values to forecast the next value then you go to the next time step there are two time step 

that you will discard take the latest 5 months value average and then forecast for the next 

time period and so on. So, essentially what we are doing is the window of the time over 

which the average is taken is  kept constant and this window is shifted every time by one 

time step and the average is taken over the previous T time periods and the average is 

taken as the forecast for the next time period. So, essentially we use the latest t time 

periods of known data and this T remains constant this window remains constant 

essentially, that means that the number of points data points that we use to compute the 

average remains the same across time as we progress on in the time.  
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So, let us see what we mean by that. So, we are talking about moving average of the 

order 3 which means essentially we are taking the average for using 3 values 3 previous 

values. So, first 3 time period 105, 115 and 103, we use this take the average of that and 

then call that as forecast for the next time period 106.7. Similarly when we go to the next 

time period we discards this value and take the average of these 3 values 115, 103, and 

108 and call it as the forecast for the next time period 108.67, next time period we 

discard these two values and take the next 3 values 103, 108, 120 and call that as forecast 

for this time period and so on. So, like this we get the forecast for all time period. So, 

essentially every time we are using 3 values 3 previous values 105, 115 and 103, which 

are the previous values to this and call it as for forecast for this time period. So, this time 

window remains the same every time we are taking previous three values and computing 

the average and calling it as the forecast  

Now, we go one times one step ahead; that means, instead of reckoning the average only 

from the previous actual observed values we recon the average from the moving 

averages themselves; that means, now we will go one more order we take the averages of 

the moving averages themselves and then compute the forecast what mean by that we 

have the moving averages of order three. Now will use three of these moving averages 

and compute the average of the moving averages and call that as the forecast. So, this a 

smoothening process we are smoothening. So, like this we use these three moving 

averages and get the forecast for this why do write the forecast here. Because these 3 



moving averages have used values up to this point up to 120 and this will be the forecast 

for what was has been recorded as 97. So, we would have forecasted 108.89 using these 

3 moving averages like this next time we use these 3 moving averages to compute a 

forecast for this and so on. So, we calculate like this and get the forecast. So, this is 

moving average of 3 by 3 second order moving average. 

So, these are some of the methods based on averages one is simply take all the historical 

data take the average and average as computed thus would be taken as the forecast for 

the next time period next level we take the moving average of the first order where we 

fix the window always take the data for those time for those number of time periods take 

the average and then put it as the forecast for the next time period then we as a 

demonstrate. It here we go to two orders of moving averages we take the averages of the 

moving average themselves for example, we take 3 moving averages take the average 

and call it as a forecast and so on. So, these are methods based on averages of data 

forecasting as said these methods will work well when the process is fairly smooth we do 

not have a very prominent periodicity, prominent trends increasing trends or prominent 

germs in the data so on. So, when we have a reasonably smooth process that methods 

based on averages work reasonably well. 

If you have data on monthly stream flows for example, these kind of methods may not 

work well, because monthly stream flows exhibits a significant periodicity there 

especially monsoon climates like ours where  June month flow is serially correlated with 

may month flow or the June month of the previous year and soon. So, there may be 

significant periodicities in the data when you have significant periodicities or any 

significant deterministic component other than the mean then these methods will not 

work well. 
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So, we will now look at data generation first we will consider uncorrelated data that is 

what? we discussed earlier as purely random stochastic process or purely stochastic 

processes if you see the correlogram for a purely stochastic processes the correlogram 

should indicate that data are uncorrelated if you have data which are uncorrelated where 

which will let say plot the correlogram rho k verses k and all the correlations that you 

have seen for k naught equal to 0 they are all insignificant they are all statistically 

insignificant, then the data is uncorrelated then what do we do. 
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If the correlated the correlogram indicates that rho k is equal to 0 for all k not equal to 0 

what  have shown here is the sample correlations sample auto correlations. So, there will 

not be exactly equal to 0, but there will be statistically insignificant. So, if you notice 

from the correlogram that for all k not equal to 0 the rho k are all insignificant 

statistically insignificant then you can say that the data is uncorrelated in which case if 

you are distribution for X t is known, let say X t follows a normal distribution or a long 

normal distribution or gamma distribution etcetera; so, if your distribution for X t is 

known or can be estimated from the observed data of X t along with this parameter then 

what? We do we have seen the methods data generation earlier using the specified 

distribution. If you recall what we do there, we set r u which is the uniformly distributed 

random number in the interval 0 and 1 to be equal to F of X where F of X the if can write 

it here the F of x or let say if you recall we set F of Y is equal to R u and then solve for 

Y.  

So, this is what? we do there solve for Y. F of Y as indicated here is the distribution of 

the particular is the c d f of that particular distribution for example, exponential 

distribution if you have ten you compute F of Y and set it equal R u where R u is the 

random number uniformly distributed random number in the interval 0 and 1 and then 

solve for Y and in cases where you cannot explicitly solve for Y there are methods 

available for example, in the normal distribution we take the standard normal distribution 

and then you go to the tables, which provide you standard normal deviants and using that 

you estimate the Y you generate the values of Y. 

So, this is what we do  when you are sure that the data you have observed are all 

correlated that mean all uncorrelated; that means, X t and X t minus 1 or X t minus k. X t 

and X t minus k  can be assumed to be independent. Then you use the distribution for X t 

generate x t distribution for X t plus k generate X t plus k and so on. So, each time period 

you generate different sets of values knowing the distributions of those particulars time 

of the variable of that particular time period, but in general in hydrology most of the data 

are serially correlated as just mentioned if you are looking at the stream flow during a 

particular month let say stream flow during August. 
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This is serially correlated with what has happened during the month of July not only 

what has happened during the month of July, but also what has happened in June month  

also what has happened during August month of the previous year what has happened 

during August month and July month of the previous year and so on. So, the data will be 

serially correlated the value that have you have realized during particular month will be 

dependent on what has been the value of previous month what has been the value of the 

same month during the previous year during the two years before that and so on. So, 

these are called as serially correlated. 

So, we will see first a method based on lag one correlation when we have significant 

dependence on what has happened during the previous month and we introduce a 

concept of first order Markov process. Where, if you have a rho k which is exponentially 

decaying like this; that means, rho k can be approximated as rho 1 to the power k rho 1 is 

the lag 1 correlation to the power k and rho k tends to 0 as k tends to infinity. So, for 

theoretical first order Markov process you will get a correlogram, which has a 

exponentially decaying shape like this. So, because of most hydrologic time series are 

serially correlated that is X t is correlated with X t minus tau we use several methods 

which are based on a data generation which are based on serially correlated data and the 

first one that which we are introducing very commonly used in hydrology is that based 

on first order Markov processer. 



When you have this, what does it means? This mean that the first lag 1 correlation; lag 1 

correlation is much more significant compare to any other lag correlations. So, as you 

can see rho 2 will be much smaller than rho 1 rho 3 will be much smaller than rho 1 and 

so on. So in fact, any correlation at any lag can be obtained from the correlation of lag 1, 

itself following this notation this also indicates that the memory of the process is short. 

So, you may have one tome step memory two time step memory and so on. 

That means if you have X t, X t plus 1 X t plus 2 and so on, X t plus k depends on X t 

plus k minus 1 or X t depends on X t minus 1. If you if you have the process, where 

memory is only to the limited extent of the previous time period, then you can use the 

first order Markov process more formally it is defined as will anyway introduce the 

formal definition of Markov chain later on, but more formally wee denote a first order 

Markov chain as if you have a probability of X t given X t minus 1 X t minus 2 and so on 

up to X naught, which is the complete history of the  process if we can approximate as 

probability of X t given X t minus 1 then we use the first order Markov chain or Markov 

process in this particular process. What does this means? This means that the entire 

information of the history of the process given by X t minus1 X t minus 2 etc, up to X 

naught is all contained in the previous example X t minus naught itself. 

So, the conditional probability of X t given X t minus1 X t minus 2 etc, X naught can be 

approximated by probability of X t given X t minus1 then this we call as the first order 

Markov chain. In general in hydrology we can approximate especially the large time 

processes for example, monthly stream flow seasonal stream flow etcetera, by the first 

order Markov process, and we introduce the data generation models for the first order 

Markov processes as indicated here. So, essentially what we are looking at let say we are 

looking at the annual stream flow as said. 
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If you look at large time steps monthly time steps annual time steps and. So, on and you 

are able to disregard or negate periodicities inherent in the data; that means, if the 

periodicities are not very strong and you are you can afford the periodicity then we 

introduce the stationary Markov process as follows X t plus1 is equal to mu which is the 

mean of the process plus rho1, which is the correlation of X t and X t plus1 which 

indicates the dependence of X t plus 1 on X t into X t minus mu X mu X is the stationary 

mean plus a random component that is all very simple generating process. So, this  X t 

plus1 the value you are generating using the data that is available with you will depend 

on X t through rho1 . So, the dependence of X t plus1 on X t is measured by rho1 and mu 

X is the long terms mean of the process, which remains constant. So, we are taking the 

process to be stationary in mean. So, when we use this and we introduce the random 

component with the mean zero and its own variance sigma e square.  

So, this random component has a mean of zero and its own variance sigma e square and 

we would like to generate using this model generate those values. Which will have the 

same mean as mu X and the same variance as sigma X square, because we would like to 

have the same mean the epsilon must have the mean of zero as we after representing 

demonstrate, but to maintain the variance the same the sigma e square must have a 

particular variance we will just see what happens to that. So, this model essentially 

generate X t plus1 that is the sequence X t is to generates using the previous value of X t 

and the dependence of the current value on the previous value given by row1. Now as 



said the properties of epsilon t plus1 in this case are important epsilon t plus1 must have 

a mean of 0  the variance of sigma e square.  
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So, for this X t plus 1 given by this to have the same mean as mu X what does it has to 

satisfy we will take the model expected value. So, expected value of X t plus1 and this is 

the model mu X plus rho1 X t minus mu X plus epsilon t plus.  So, that is expected value 

of mu X rho1 into expected value of X t minus expected value of mu X plus expected 

value of epsilon t plus1 and as have mentioned expected value of epsilon t plus 1 is 0. 

This is what we have used epsilon has a mean of 0. So, this value becomes 0 and this 

becomes 0, because this is mu X minus mu X and this is mu X itself. So, expected value 

of X t plus1 becomes mu X. So, the model as defined by this will have the same 

expected value as the long term mean mu X which is stationary. 

Now, we want to see what happens to the variance of X t plus 1. So, X t plus 1 as defined 

by this, let us look at the variance. So, the variance is simply expected value of X square 

minus expected value of X whole square. So, will take expected value of X t plus1 the 

whole square here minus expected value X t plus 1 the square minus expected value X t 

plus 1 the whole square if we simplify this is the simplification then and we have used 

the fact that expected value X t plus 1 is equal to mu X itself. 
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So, when we simplify this you get  sigma X square is equal to rho 1 square sigma X 

square plus sigma e square all of this simplification is given here; that means, sigma e 

square can be written as sigma e square is equal to rho 1 square into 1 minus sigma X 

square what does this indicates this indicates that if you want to have the same sigma X 

square the idea here is you would like to generate the data using this model and this 

model will have the same mean mu X as the historical data and for this model or the 

generated values to have the same variance as the historical sigma X square; you mean or 

your standard deviation or the variance of the epsilon t plus 1 must be given by rho 1 

square 1 minus sigma X square that is the idea there. So, you must use your random 

components with 0 mean and variance given by this as you know as you can see rho 1 is 

given from the historical data for you can estimate the data rho 1 and sigma X square is 

the stationary variance of the time series, which is also known. 
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Now, a specific case where if X follows normal distribution that is you are observed 

stream flow data for example, stream flow data follows normal distribution with mean 

mu X and sigma X square then epsilon should be epsilon should be also normally 

distributed with zero mean and sigma e square as the variance. So, we now introduce if u 

t has a normal distribution of 0 1 then u t into sigma e that is u t into sigma e sigma is 

given by sigma X into root over 1 minus C square is normally distributed with 0 mean 

and sigma e square. So, this is what we want we will introduce u t into sigma e or u t into 

sigma X root over 1 minus rho 1 square into the model. So, that we are ensuring that the 

random component will have a 0 mean and a variance of sigma e square. 

So, we write the model now as X t plus 1 is equal to mu X rho 1 into X t minus mu X mu 

X is stationary plus the epsilon t we write it as u t plus 1 into sigma X root of 1 minus 

rho 1 square why do we write this we are writing to ensure that the sequence we generate 

will have a normal distribution with 0 mean that is this random term will have a 0 mean 

and a variance of sigma e square that is why we are introducing this thing what is this u t 

plus 1 it is the standard normal deviant or the standard normal number random number 

with it is a random number which follows the standard normal distribution which means 

0 means an unit variance. The model we thus write is called as the first order stationary 

Markov model first order because we are generating X t plus 1 using the previous value 

X t only and not X t minus 1 X t minus 2 and so on. So, have just choosing one previous 

value. So, it is one order Markov model it is stationary, because we are using the same 



value of mu X and sigma X for all the values. So, it is stationary both in mean as well as 

standard deviation. 

The first order Markov model is very popular in the hydrologic data generation 

especially when we are talking about annual stream flows the Markov model is straight 

away use and annual stream flows as I have mentioned are very useful in making designs 

hydrologic designs, for examples fix the capacity of the reservoir you would require 

annual stream flows and you generate the data using this particular model and use those 

generated sequence. Generated sequence to make decisions on reservoir capacity and. 

So, on. Now how do e generated values using this from the historical observed data you 

would have estimated mu X by your X bar or X bar then you can also calculate the rho 

one which is the lag 1 correlation coefficient. So, mu X is known similarly sigma X is 

known and row is known.  

We start the process by assuming a value of X t, let say you want to generate X 2 to start 

kick start the process you want to generate X 2. So, first you assume X 1 remember. 

Once you calculate this parameter this moments mu X rho 1 and sigma X you forget 

about the data you have to only deal with this moment mu X and sigma X and rho 1. So, 

first you assume X 1 and typically it is assumed to be equal to mu X, itself the mean 

which is known. So, that this term becomes 0 and calculate take the standard normal 

deviant from your tables or any spreadsheets that give this normal deviants straight away 

or you can user your calculators to get uniformly distributed random numbers and then 

convert them into normally distributed random numbers or you simply write a math lab 

very simple math lab codes math lab functions you use to generate standard normal 

deviants. 

So, every time for example, X 2 you are starting X 1 you have assumed to be equal to mu 

X. So, this term becomes 0 mu X is a long term mean and sigma X is known rho 1 is 

known and this standard normal deviant you pick it up from the table or any of functions 

that are available. So, you get X 2, from X 2 you generate X 3. So, here becomes X 2 the 

value. So, that is just now generated and every time you change X t as well as the 

standard normal deviant all other terms remain the same you generate the next value and 

so on, because you started the process by assuming a certain value for X t. When you 

generate this numbers for a long fairly long sequence for fairly long sequence of 

numbers are generated. Discard the first few values to do away with the effect of the 



initial value that you assume and use the remaining number of values. Remember there 

are two major assumptions here one is that the process X t follows normal distribution 

with mean mu X sigma X square and that the process is stationary in mean as well as 

standard deviation; that means, as you change from X t to X t minus 1, it will have the 

same mean mu X and same standard deviation sigma X. 

(Refer Slide Time: 47:45) 

 

Let us see as  just mentioned we generate a large set of values, let say if you have the 

observed data of 30 to 40 years you generate sequences of 100 years  one sequence of 

100 years another sequence of 100 years and. So, on how do we generate different 

sequence is always by changing the random deviates here. So, by changing the random 

deviates you generate those many sequences. So, generate large number of sequences 

and every sequence you discard the first 50 to 100 values.  

So, let say 50 years of sequence is monthly 50 years of sequence you generated you can 

discard the first 5 values first 10 values and so on or you have generated large sequence 

of 150 years, 1000 years, which have they are typically used for large scale simulations 

or water resource systems then you discard the first 50 years, 50 values standard values 

and so on; so that the effect of first initial value that you have used to start the process 

that effect dies down, because you are using the normal distribution it is likely and often 

it happens that you generate negative values, because your standard normal deviants you 

are picking up will typically go from minus 3 to plus 3 and therefore, your value that you 



generate thus can be negative and if you are looking at hydrologic variables physical 

variables for example, stream flow rain fall and so on. These values cannot take negative 

values. So, essentially what we do is when we come across to a negative value generated 

by this model retain the negative value as such for generating the next value. So, when 

you are generating the sequence you retain the negative values as generated by this 

model, but when you are using them in the application let say the sequence have several 

negative values and this sequence you want to use it in the application for fixing the 

reservoir capacity and so on.  

So, when you are using the sequence with negative values in the application just replace 

the negative values by 0. We will have ample opportunities to demonstrate the 

applications of this kind of models in actual decision making. Subsequently, but write 

now let us understand how to use this model to generate values. So, let us take jus about 

three to four values and see how we can generate. 
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So, look at this example 29 years of annual flow is available and that data is shown here. 

So, this is annual stream flow data at a river for 29 years is available, this is the year 

number. So, like this 29 years and this is the stream flow data. So, we want to generate 

values from this stream flow data, if these were uncorrelated what we would have done 

we would have simply  fit a distribution, and then use the methods for uncorrelated data 

as we have discussed in the earlier classes and generated values from this. But because 



this is correlated that is that is the serial correlation associated with this particular data. 

We use the data that we have just described we will use the first order stationary Markov 

process and then generate the data to do that what are the first steps first is to estimate 

the mean standard deviation and lag 1 correlation for this. So, we will estimate that. 
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So, mean is estimated as 1269 sigma X 289 and the lag 1 correlation is got by the 

covariance of X t with X t plus 1 and the variance itself. So, lag 1 correlation is estimated 

by r 1 is equal to C 1 by C naught, because that rho k is gamma k by gamma naught 

where gamma k is a covariance between X t and X t plus k and gamma naught is the 

variance itself. So, using this we estimate row 1 actually the sample estimates are 

indicated by r 1. So, rho 1 in this case is a sample estimates, which here come out to be 

.255. So, to use the Markov model all you need these three parameters that is mu 

standard deviation and the lag 1 correlation. Once you estimate this you completely 

forget about the data all the information contained that is necessary for you to use the 

first order stationary Markov process is all available here. 

So, start the generation process we first assume X 1 the first value equal to be mean 

which is actually 1269.33 here. It is written as 1269,   but actual value is 1269.33 or we 

will use this as 1260 itself. So, we will use this as 1260 and. So, X 2 is generated as mu 

X plus rho 1 into X 1 minus mu X plus u t plus 1, which is standard normal deviant 

sigma X root of 1 minus rho 1 square. So, u t plus 1 is we can write it as u 2 here. So, mu 



X 1269 rho 1 is .255  and X 1 minus mu X is 1269 minus 1269, because we assume this 

plus this is the standard normal deviant got from the tables minus .464 and this is sigma 

X which is 281 root of 1 minus row 1 square rho 1 is .255. So, this comes out to be 1143. 

So, once you get X 2 you use X 2 to generate X 3. So, where does X 2 come X 2 comes 

in this place. So, this place you use X 2 this is X 2 again. So, X 2 minus mu X and every 

time you change this number. So, every time you changing this number as well as this 

number all other things remain the same all other term remains the same. So, you get X 3 

is equal to 1328 then using X 3 you generate X 4. Now X 4 this number has changed and 

this number has changed all other number remains the same. So, you will get X 4.  
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So, similarly X 5 X 5 you use X 4 to generate that. So, X 4 was here. So, you use this 

number changes this number changes and you get X 5 and so on. So, like this you can 

generate 1000 of values using the first order Markov process. So, essentially what we did 

in this lecture is will complete that. So, you generate such number of large values let say 

you wanted to generate 1000 years value 1000 year flows why do we require such large 

sequence is we need such larger sequence to simulate the performance of the system it 

does not mean that the system itself full exist for the 1000 years. We want to see how the 

system behaves if you have a sequence of 1000 years of flows how the system behaves. 

So, system performance we would like to estimate. So, we typically require large 

sequences of data and the first method that we have introduced to generate large 

sequences of data when the data are serially correlated is a first order Markov process 



and  it is famously called in hydrologic literature as the Thomas fiering model after the 

people who have proposed this model. 

Thomas and fiering famous hydrologist this was proposed in the cities 19 cities. So, 

typically in hydrologic data generation Thomas fiering model or the first order stationary 

model is the most commonly used data generation method the limitations of this model is 

that it assumes normal distribution that is the first one and it also assumes stationarity in 

mean and standard deviation. The values that you, so generate using the first order 

Markov process should preserve the mean of the data standard deviation of the data and 

also the clag one correlation of the data. We will see through certain applications large 

case studies etcetera how this is done. So, essentially in this lecture we have introduced 

the data forecasting methods and the data and one of the data generation methods. 

In the data forecasting methods we have introduced the methods based on the averages. 

So, take the average of all the data available up to this point of time and then call it as 

forecast that is the first simple method and then the moving average method where you 

keep the window over which you take the average that window you fix and then keep 

moving the window itself. So, that is called as moving average number and in the 

moving average method you have higher order of moving averages; that means, you take 

first moving averages and then take the averages of the moving averages themselves to 

take to get the second moving averages and so on. Now, this methods as you as 

mentioned in the class will work well for fairly smooth processes that those processes 

which do not have a sudden jump in the data or do not have a significant periodicities 

significant trend increasing trend or decreasing trend etcetera when you have processes 

like that these methods will work well. 

Then we introduce the method for data generation or the first order Markov process and 

in the specifically we have talked about stationary Markov process in the next lecture we 

will continue this discussion by first introducing non stationarity in the first order 

Markov model. 


