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Good morning and welcome to this the tenth lecture of the course stochastic hydrology. 

If you recall in the last lecture, we covered the methods of data generation, where we 

dealt with generation of data, when the distributions are known. For example, we 

discussed how to generate data from a normal distribution, exponential distribution, 

gamma distribution, and so on. So, essentially what we do there is that given the cdf, we 

assign a uniformly distributed random number, and equated to the analytical expression 

of cdf, and solve for Y. For example, capital F of Y is equal to R u random number 

generate uniformly distributed random number in the interval 0 and 1, and then solve for 

Y. 

In cases where explicit solution for Y is not possible, then we have other methods for 

example, in the normal distribution case, we have standard normal deviates tabulated 

values of those we use those tabulated values, and then solve for Y, and these are the 



generated values. Then we went on to discuss the time series concepts, we have just 

introduced the concepts of time series, if you recall a series of observations on a random 

variable across time constitutes a time series. For example you have stream flow data 

over the last about 50 years or stream flow observations made every month for the last 

about 50 years, and this series of observations contributes a time series. So, we will 

continue the discussion today on time series analysis, and then introduce also some data 

forecasting techniques using of the methods of time series analysis.  
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 So, if you recall in the last class we first define, what is the time series as as I just 

mentioned sequence of values of random variable collected over time. Although I must 

mention that although we keep on emphasizing collection over time it can also be a space 

for example, we may have rainfall sequences across a space now the techniques that we 

are discussing are also applicable in some cases, when we have large observations across 

space. Now the time elements over which we are making the time intervals over which 

we are making the observations, can be discrete or continuous, and they deal they lead us 

to discrete time time series and continuous time time series. 

We also introduce the concepts of the realization and an ensemble realization is a single 

time series that is if we have one time series one set of observations across the time that 

is called as a realization. So, this is a realization of the time series for example, we may 

have sequence of stream flows observed between 1970 and 2000 that constitutes one 



realization like that we may have several such realizations for example, stream flows 

between 1940 to 1970 ,1970 to 1990 , 1990 to 2005, etcetera.  

Like this you have several such realizations possible the collection of all such available 

realizations is called as an ensemble. Generally in the case of hydrology we do not have 

large number of realizations. In fact, if we have one realization with a long series of data 

then if necessary where in cases where necessary we split the time series into several 

realizations for example, if we have data from 1970 to 2000 we may take data from 1970 

to 1990 for example, as one realization 1990 to 2000 as another realization and so on. In 

general in hydrology we may be dealing with a single realization the hydrologic time 

series. In fact, in general any time series may consist of a deterministic component and a 

random component for example, you may have a long term mean of hydrologic 

hydrologic variable around which there are random fluctuations. So, we would like to 

model the time series by capturing this deterministic component and by modeling the 

random components. 
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So, in general we write the time series X t as consisting of a deterministic component d t 

and a random component epsilon t. This is what we discuss in the last class and we have 

also seen that a time series may in general consist of a purely stochastic component; that 

means, there is no deterministic component at all the values are all randomly fluctuating 



like this in which at a anytime t if you take the observations between time t and time t 

plus one have no relationship with among themselves. 

On the other hand you may have a deterministic component which is a trend, let say in 

this particulars case an increasing trend. So, around an increasing trend the values are 

randomly fluctuating if you look at the global average temperature. So, the last let say 50 

years or some such thing that will have an increasing trend and the values are randomly 

fluctuating around that. So, you have the stochastic component as well as a deterministic 

component which in this case is the trend. Then you may have a periodic component the 

values are randomly fluctuating. So, you have a stochastic component around a periodic 

component. If you look at let us say monthly stream flows at a particular location in 

monsoon regions. Like ours then you may have such periodic components prominent that 

then you may also have cases where there is a jump as I mentioned in the last lecture, 

these jumps may occur because of sudden large scale changes occurring in the 

catchment.  

 Let us say you are talking about stream flows in a basin and a large scale. Either 

deforestation occurs or large scale fire occurs or a huge or earth quake occurs in that 

which in a short while short period. Disturbs the hydrologic balance then the hydrology 

starts operating at a different level altogether this may be either a jump or it may be a 

drop what are operating at this level on an average starts operating at certain other level 

on an average. So, you have a stochastic component and a jump component in this. So, 

once we capture the deterministic component we write X t is equal to that deterministic 

component at time period t and a random component at time period t. This deterministic 

component itself may be a combination of the long term mean around, which 

fluctuations are occurring a trend a periodicity and a jump. 
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Now, the discrete time scale observations in hydrology arise mainly when we are talking 

about let say monthly stream flows. Although the observations may be done everyday for 

the analysis we may consider the aggregated values of the stream flows over a month and 

therefore, we may be talking about monthly stream flow average monthly stream flow or 

annual peak discharge; that means, every year we have one discharge value, which is 

chosen as the maximum discharge of all the discharges that have occured over that year 

daily rainfall. We measure the rainfall let say 8 am in the morning today and next again 

tomorrow at 8 am we measure the rainfall and that such sequence of observations 

constitute a discrete times scale time series. 

On the other hand, you may also have continuous times scale time series, where data is 

recorded continuously with time for example, in turbulence studies or in experiments 

where we are measuring pressures. So, these measurements are across continuous times 

in most cases, where we are dealing with hydrologic time series, we will be dealing with 

discrete time scales, because we have observations at discrete times that is a first thing 

and also the analysis is required at discrete time steps for example, we may we will be 

interested in forecasting for the next month or next 10 day period next day and so on. So, 

we will be dealing with discrete time, time series. 
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The pdf of X t now remember X t becomes a random variable. So, X t has its own pdf X 

t plus 1 has its own pdf X t plus 2 has its own p d f etcetera.  So, across time you are 

having collection of random variables and the process behaves in a certain probabilistic 

way at time period t. Which may be different from its behavior at time period t plus let 

say tau and therefore, the p d f is now denoted as f of X comma t now f of X t describes 

the probabilistic behavior of X t at specified time t. If we have the p d f of f of x comma t 

that is p d f f of x comma t the same across time period. As time changes the p d f does 

not change then the time series is said to be stationary that is if the p d f at f the p d f f of 

X t is equal to f of X t plus tau for all time t; that means, we are considering a lag of tau 

and then if the pdf remains the same across the time for all time period t then the process 

is said to be strictly stationary. 

So, for stationarity of time series pdf of X t is the same as pdf of X t plus tau for all t 

where tau is the time lag that we are considering between the two random variables. So, 

this picture makes it here you have several realizations this is realization 1 realization 2 

etcetera. So, you have m realizations and this collection of m realizations is the 

ensemble. So, you can talk about properties across time or properties across realizations. 
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So, when you are looking at one time series and then you are looking at properties across 

time then we have time properties of a given realization for example, you may look at the 

time average of a realization, which is you are taking the average across time and 

therefore, you can write this as for the first realization for realization number 1 you can 

write X 1 bar as sum of all the observations across time for the same realization divided 

by the number of observations, so that is what you are writing formally here that is X j t 

for the realization one across all j, j is equal to 1 to n you have n number of observations. 

So, essentially you are taking the average across time for this realization these are called 

as time properties or in this particular case, it is called as the time average for a 

realization. Similarly, you can look across the realizations at a given specified time t1;  

you can take averages across realizations in which case you talk about ensemble average 

at time t. So, that will be given by X bar t is equal to t is equal to 1 to 1 m summation 

that is you are summing X1 t at t is equal to t 1 X 2 t at t is equal to 1 and x m t and so 

on, and divided by number of realizations we are essentially taking the average across 

realization this is called as an ensemble average. 

There is a concept of ergodicity, where the time average properties will be the same as 

the ensemble average properties in such a case, we call the process to be an ergodic 

process. So, for stationarity as said the process is strictly stationary if the pdf across time 

remain the same; that means, if you consider two time steps tau time steps apart that is t 



and t plus tau the pdf at t and pdf at t plus tau remain the same for all t. So, even if you 

shift by tau across time scale. The pdf remains the same then its called as strict stationary 

time series time series, which is strictly stationary. 
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However in most applications we may not need to stick to stationarity. We then define a 

weak stationarity for example, if the pdf is not the same, but if the means across time are 

the same then we call it call the time series stationary in mean. So, in general if we have 

a time series if all the moments up to order f are the same for time t and t plus tau for all 

t, then the time series is weakly stationary of order k for example, k is equal to 1 it means 

that the moment up to order 1 is the same across time the first moment is mean. So, if 

you have X t is equal to X t plus X bar t is equal to X bar t plus tau for all t, then it is 

stationary in mean or it is a first order stationarity. 

Similarly, k is equal to 2 we will be dealing with moments up to the order of 2, which 

means the mean should be the same and the covariance should be the same. So, k is 

equal to 2, the first two stationarity in mean and covariance both together, it can be 

shown that if it is if the process is stationary in covariance, then the variance also remain 

the same. So, it is stationarity in mean and covariance also indicates that the process is 

stationary with respect to variance which means the variance is also constant across time. 

Remember here, when we say k is equal to 2, it must be both the stationary in mean as 

well as in covariance. If the process is stationary in covariance, but not stationary in 



mean, then it is not weakly stationary of second order. Again for a strictly stationary time 

series you must have the pdf to be same pdf f of X 1, X 2, X etcetera,  must be the same 

across time.  
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We come to the concept of auto covariance. So, from now onwards we will be dealing 

with stationary time series; so unless otherways specified we are always assuming 

stationarity with respect to mean and variance, so auto covariance recall that when we 

define covariance we defined it with respect to 2 variables x and y. Covariance between 

x and y now we are dealing with a single random variable which is let us say stream flow 

measured at different time states or the properties of a random variable at different time 

states X is a different random variable and X t plus K is a different random variable. So, 

we define the covariance between X t and X t plus k as expected value of X t minus mu 

X t plus k minus mu recall that covariance between x and y covariance of x comma y 

was expected value of x minus mu x into x y minus mu y. So, simply replacing x by Xt 

and y by X t plus k. So, from this definition then what happens when k is equal to 0. We 

are talking about covariance of X t with X t itself and that turns out to be in this 

particular case gamma naught is equal to sigma X square which is the variance. 

Then we define the auto correlation what did we define the correlation as correlation 

coefficient as covariance between X and Y divided by sigma X sigma Y that is a 

normalized covariance. So, you much the same way we define the auto correlation as 



covariance between Xt and Xr plus k divided by sigma Xt and sigma Xt plus k and for 

series which is stationary in mean and variance this comes out to be because sigma Xt is 

same as sigma Xt plus k and therefore, this we write it as gamma k by gamma naught 

because sigma X square which is a variance which is nothing, but gamma naught as you 

can see here. 
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Also when k is equal to 0 this becomes gamma naught by gamma naught therefore, rho 

naught will be equal to1 . So, the lag 0 auto correlation is 1 the plot of rho k versus k rho 

k is as defined by this. So, we can talk about correlation with respect to various lags k, 

this k is called as the time lag or simply the lag. So, rho k in some sense gives a measure 

of dependence of the variable Xt plus k on the variable Xt which indicates a measure of 

dependence. So, if you plot rho k versus k this indicates this is variously called as 

correlogram or auto correlation function. This actually indicates the memory of the 

process; that means, how far into the time it remembers for example, Xt plus k depends 

on Xt lets say k is equal to 12 in the case of monthly stream flows. Let say you are 

talking about the flow during the June of a particular year depending on the flow during 

the June of the previous year and if the time series consist of monthly stream flows then 

we are talking about a lag of 12 months. K is equal to 12 and then we may have 

associated rho k value here k is equal to 24 . 



The dependence of June month flow on June months flow of 2 years before that is 24 

months before and. So, on. So, as k increases you may have smaller and smaller rho k 

values, on the other hand you may also have a periodic oscillation of rho k value. So, 

essentially rho k or the auto correlation function indicates the memory of the process 

how far into the time is it able to remember what has happened before and therefore, it 

becomes a handy tool for us to model time series. So, the correlogram gives an important 

information about the process. So, whenever we are dealing with time series analysis. 

We first plot the time series as observed and then the next step is to compute the 

correlations rho k for various lags k and plot the correlogram correlogram immediately 

gives us important information about the time series which we will see though some 

examples. 
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Having defined the auto covariance and the auto correlation we defined the auto 

covariance for k that is gamma k and auto correlation rho k. We now formulate the 2 

important matrices the auto covariance matrix and the auto correlation matrix by varying 

k. So, we talk about the auto covariance matrix for various values of k . Similarly auto 

correlation matrix for various values of k we form the auto covariance matrix by writing 

X 1 X 2 etcetera,  Xn these are the n random variables across n time steps and here again 

X 1 X 2, etcetra, X n along the rows. So, we write the elements of this matrix as 

consisting of the covariance between X 1 and X 1, which is gamma naught X 1 and X 2 . 

Which is gamma naught X 1 and X 3 which us gamma 2 and so on, X n and X n which 



will be gamma n minus 1 going by the definition here. So, we are writing X 1 and X 1 

and X 2 which becomes 1 plus 1. So, k becomes 1 there and therefore, this becomes 

gamma 1, X 1 and X 3 k becomes 2 there and this becomes gamma 2 and so on. 

So, this is how we write the first row similarly second row X 2 and X 1 which is same as 

X 1 and X 2 which is a gamma 1 ,X 2 and X 2 which is gamma naught and. So, on 

gamma n minus 2. Like this we write for the n-eth row X 1 and X 1 which is same as X 1 

X n and X 1 which is gamma n minus 1 and so on; we write the last row this is a n by n 

matrix this is the symmetric matrix, it is symmetric about the diagonal, and it is also a 

positive definite matrix it can be shown that the auto covariance matrix is also a positive 

definite matrix. What is a positive definite matrix; one definition of the definition of 

positive definite matrix is that all the eigenvalues of the matrix are positive, then it called 

as a strictly positive definite matrix.  

Now we will divide this by gamma naught what is gamma naught gamma naught is 

simply the variance. So, we will divide all the elements by gamma naught, then we will 

get the auto correlation matrix remember here auto correlation is simply gamma k by 

gamma naught. So, all the elements of gamma k we simply divide it by gamma naught 

we get the auto correlation matrix. So, the auto covariance matrix is denoted by tau n or 

gamma n, this is gamma n. 
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The auto correlation matrix is denoted by P n. So, P n is simply gamma n by gamma 

naught. So, the first element gamma naught by gamma naught that becomes 1 gamma 1 

by gamma naught becomes rho 1 gamma 2 by gamma 1 gamma naught becomes rho 2 

and. So, on. So, this is how we get the correlation matrix auto correlation matrix 1 rho 1 

rho 2 etcetera, rho n minus 1. So, like this we write all the elements and formulate the 

auto correlation matrix. The auto correlation matrix p n is also symmetrical and it is also 

a positive definite matrix , now the fact that the auto correlation matrix is a positive 

definite matrix comes in handy a positive definite matrix has the property that the fact 

that all the eigenvalues are positive it also implies that the minors of the matrix are all 

positive. 

So, 1 by 1 the minor of 1 by 1 is 1 minor of size 2 by 2 is 1 rho 1 rho 1 1 the determinant 

of that should be positive the minor of size 3 by 3 that should be positive determinant of 

that should be positive and. So, on. So, if you look at the minor 2 by 2 that is 1 rho 1 rho 

1 1 the determinant of that should be positive because p n is a positive definite matrix 

and that turns out to be 1 minus rho 1 square must be greater than or equal to 0 and this 

indicates that rho 1 has to lie between minus 1 and plus 1 . 

(Refer Slide Time: 28:25) 

 

We use the fact that p n is a positive definite matrix subsequently when we do time series 

analysis and then generate several conditions. From the fact that it is a positive definite 

matrix, we have the definition for gamma k, which is the covariance auto covariance 



function auto covariance which is given by expected value of X t minus mu into X t plus 

k minus mu. Remember we are talking about series which is stationary in mean as well 

as variance and therefore, we take the same mean mu here. 
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The same estimate for this is given by C k is equal to summation t is equal to 1 to n 

minus k. X t minus X bar X t plus k minus X bar and r k is given by C k by c naught r k 

is the sample estimate for the auto correlation at log lag k. So, rho k would have been 

defined as rho k which is a auto correlation we would have defined rho k as gamma k by 

gamma naught and r k which is the sample estimate of rho k is simply C k by C naught C 

k is a sample estimate of the auto covariance and c naught is simply our sample estimate 

of the variance. So, when you have sample estimates and you take discrete values of k 

for example, k is equal to 1 k is equal to 2 and so on, and plot the sample estimates of r k 

were such k the sample estimates r k and versus k, which is actually the auto correlogram 

or the correlaogram you get spikes like this for example, k is equal to one may have a r k 

value like this or k is equal to 2 may have like this etcetera. 
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So, like this you get spikes and this is the correlogram. So, the auto correlation function 

or the correlogram may indicate some such fluctuations like this. So, for processes it may 

simply be decaying like this with time, it may be decaying if it is a purely random series 

or purely a stochastic series, then theoretically rho k must be equal to 0, because Xt and 

X t plus k are not related at all and we have seen that for a purely stochastic process your 

covariance auto covariance must be 0 and therefore, if you have a purely stochastic 

process then rho k must be equal to 0 for all k. 

But r k we have estimated from a sample r k may not be 0. Although we may determine 

it from a purely stochastic series the estimated values of r k may not be 0. The r k for a 

random series follows a normal distribution, it can be shown that it follows a normal 

distribution with a 0 mean and a standard deviation of 1 over root N, where n is the 

number of observation we use this fact to determine whether the sample comes from a 

purely random series or in fact, we use this fact to examine whether a given value of r k 

which is a sample estimate of the auto correlation at lag k whether it is a significant auto 

correlation or not. 
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So, the r k for a random series follows a normal distribution with 0 mean and you  

standard deviation of 1 over root N . So, about 95 percent of the values lie between 1, 0.9 

6 over root N and minus 1.9 6 over root N, and plus 1.9 6 over root N . So, if you have a 

r k value higher than this above these limits then that r k value can be considered to be 

statistically significant at 95 percent level. So, once you compute your r k values for the 

sequence that is you have the observed values of the random variable, let say stream flow 

at a particular location over last about 40 years or some such things. So, 40 years of 

stream flow observed monthly which means you will have 480 values 12 into 44 ,80 

values from the 480 values. You may compute the auto correlations at several lags may 

be let say up to about 50 lags above. So, up to 50 lags you have computed the r k values. 

Then you plot the r k values which gives r k versus k which gives the correlogram and 

then you draw the lines corresponding to significant levels of the r k . Which is the this is 

the 95 percent significant r k level minus 1.9 6 by root n plus 1.9 6 by root N where N is 

the number of observation in the case that I have just mention you had 480 values. So, n 

becomes 480. Any auto correlation which is beyond the significant bands that we have 

just drawn that becomes a significant auto correlation value all other values which lie 

within this band are insignificant at level of 95 percent. So, let us take an example now. 

So, you will have a series of observed values. So, this is the X t which is observed let us 

take ten values and compute the auto correlation for k is equal to1 . 
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The sample estimate for r k the sample estimate for gamma k, which is r k is given 

simply by C k which is estimated like this divided by c naught, which is the sample 

estimate for variance there are various other expressions for sample estimate of rho k that 

is there are various other expressions available for r k, but we will use this particular 

expression simply C k by C naught. So, we compute X bar first from summing off this. 

So, X bar is known and then X t minus X bar, because we are talking about k is equal to 

1, which means you are getting the sample estimate for row 1 . So, we lag the series by 1 

one time unit. So, we write corresponding to X t you write X t plus1. So, X 1 associated 

with that X t plus 1 will be X 2 associated with X 2 we have X 3 which is 121, X 4 

corresponds to X 3 plus q1, so, 1 naught 1 1 7 . 
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Like this we lag the series that is we shift the series by one time unit, and then write the 

series X t plus 1; then we take X t plus 1 minus X bar; X bar is computed based on the 

values of X t given here; X t plus 1 minus X bar; then the multiplication of this X t minus 

X bar and X t plus 1 minus X bar that is this summation. And from this summation, we 

get the variance first as 459.2 and similarly we get auto covariance at lag 1, which is C k 

as 329.75 what do we here we summed up these values, and then use this sum to get the 

auto covariance at lag 1. 
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Form the auto covariance, we get the auto correlation, which is C 1 by C naught there is r 

k will be C k by C naught and C naught is the variance. So, r 1 will be C 1 by C naught 

that comes to be 0.72. I would like to indicate a small correction here; this value is 

negative and therefore, the C 1 that you get here will be negative. So, this is negative and 

the correlation r 1 will be negative. So, r 1 is minus 0.72, So, this is a negative 

correlation. Let say now if you have if you are looking naught k is equal to1 , but k is 

equal to 2 what you would have done for this example here we are putting X t plus 1 for 

k is equal to1 . So, if you are interested in k is equal to 2 you will put X t plus 2 which is 

corresponding to t is equal to 1 you will put the value of 121 here and then 117 here 79 

here etcetera.   

So, essentially you will lag the time series by 2 units instead of 1 unit as you did here for 

k is equal to 1 and k is equal to 3. Similarly you will have lagged it by 3 units; so, how 

many values you would have to compute this in the case of k is equal to 1 for this 

particular case you had 9 values for k is equal to 2 you had 8 values for k is equal to 3 

you will have 7 values and. So, on. Therefore, as your lag increases you are estimating 

based on smaller and smaller number of values your values will be your estimate will be 

based on smaller and smaller number of values, because as you can see here the 

summation is from k is t is equal to 1 2 and N minus k for k is equal to 1 you will have N 

minus 1 values k is equal to 2 you will have N is equal to you will have N minus 2 values 

and. So, on. 

And therefore, we generally estimate the rho k or the auto correlations up to about 0.25 

N, where is the number of observation; that means, up to about 25 percent of the number 

of observations compute rho k . Now we know how to compute for various values of k in 

in this particular case, we computed for k is equal to1 . So, we also know how to do it for 

k is equal to 2 k is equal to 3 etcetera is simply lag the time series by those many times 

units, and then use the same procedure and compute associated with various values of k. 

We said that for a purely random series the rho k should all be insignificant for k not 

equal to 0 of course, rho 0 will be always equal to 1 irrespective of which series you are 

talking about because you are talking about the auto correlation of a variable with itself 

and that has to be equal to1, but for other values of k that is k other than 0 k not equal to 



0 you rho k should all be insignificant statistically insignificant if it is a purely random 

series. 

Let examine this now let us generate 40 uniformly distributed random numbers that is 2 

digit random numbers, and see what happens to the auto correlations. We will compute 

auto correlations up to let say lag 10 or something. So, this is the data, these are the 

number serial number, and this is the data on uniformly distributed random numbers 98, 

69 etcetera.  So, then 11 ,12, 13 , 20. So, this is the data; so, you have 40 values of 

uniformly distributed random numbers between 0 and 100, 0 and 99 in this particular 

case. 
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We will compute the auto correlations up to lag 10 . When we do that you get values like 

this k is equal to 0 as 1 k is equal to 1 is 0. 0235 k is equal to 2 is minus 0.183 etcetera,    

and when you plot this the plot will be something like this it appears to be this; now your 

n is 40 because you had 40 data n is 40. So, 1.96 root 40 is 0.3 1 . 
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So, you draw a line minus 0.31 and plus 0.3 and see that ensure that all the values that 

you have got for rho k are. In fact, lying within this band minus 1.96 to plus 1.96 . Now 

this happen in this particular case because they are all random numbers uniformly 

distributed random numbers and therefore, there is no dependence of one number on any 

number any other number in the series and therefore, your auto correlations at all lags 

that we consider are all zeros are all insignificant, which means the hypothesis is that the 

r k that you thus obtain have a mean of 0. This 1.96 by root N normally you know for 

convenience you take it as 2 by root N. So, simply remember 2 by root N. So, whenever 

you compute the r k, you compare those r k with 2 by root N and if it is more than plus or 

minus two by root N on either side, then it can be considered significant. 

Now, the significance of r k is important, because we are looking at the dependence 

whether a particular value at time t depends on another time the value at another time t 

minus k that is given by rho k or r k in this case in the case of samples we denoted by r k 

and given a value of r k, we should be able to say whether it is significant or not, often 

we make a mistake that let say we compute a correlation of 0.7 and say that 0.7 is a very 

high value and therefore, there is a significant dependence. Remember that the 

significance of the auto correlation or any correlation depends on the sample size. So, if 

your sample size is high let say instead of 40 we had 400 value, then what would have 

happened this value would have been much smaller. So, as sample size becomes larger 

and larger the significance level of the correlation becomes smaller and smaller for 



example, we may have a correlation as small as 0.2 being significant if the sample size is 

large and a correlation as high as 0.6 may be insignificant if the sample size is very 

small. 
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So, remember always that the significance of the correlation depends on the sample size 

as we just saw if we have a purely stochastic process then all the correlations apart from 

at like 0 5 equal to 0 all the correlations must be statistically insignificant. So, if you 

have a sequence of observed flows and you compute the rho k or you estimate the r k and 

then observed that all the r k are statistically are lying within this band then they are all 

statistically insignificant and therefore, it indicates a purely stochastic process. Now, this 

has an important connotation when we start looking at data generation and. So, on. If you 

have a periodic process let say you are looking at monthly stream flow in a monsoon 

climate like ours and you have 480 values as i just mention 40 years of monthly stream 

flow data. So, 480 values you compute the lags you compute the r k and then plot the 

correlogram then you may get the rho k something similar to this. So, it is periodic in 

nature. 

So, the periodicity of a process comes up when we plot the correlogram and this gives an 

have a data on monthly time series and compute r k and then plot the correlogram if the 

correlogram indicates that there is a periodicity if the correlogram is periodic in nature it 

indicates that the time series has a periodicity in her indinate. 



(Refer Slide Time: 46:18) 

 

So, what do we do with all these information now we have plotted the time series let say 

we have observations for last. So, many years on observed stream flows at a particular 

location or observed rainfall at a particular station. We have collected all these values 

and plotted the time series then we also know how to compute the correlation auto 

correlations and auto covariance we know how to formulate the auto covariance matrix 

and. So, on. The whole purpose of the time series analysis is to extract information about 

the observations that we have made and then use this extracted information for decision 

making purposes. Let say that we want to build a reservoir build a at a particular location 

and you have made the observations on the last 50 years of stream flows you have the 

information on the last 50 years available with you we must extract the information 

contained in the observation and use that information contained to make decisions about 

the future.  

Now, these decisions may be long term decisions for example, any hydrologic design 

that want to make on a physical structure let say you want to make a bridge pier or the 

height of the bridge etcetera, you want to decide based on the flood levels. Now, this is 

actually a long term decision that you are making based on the historical data that is 

available; that means, you are making a decision which has implications for a long 

period of time in future . Similarly you want to design a damp the height of the damp or 

the capacity of the damp etcetera, you your basing these decisions on the historical 

available data and this decision has a long term implication in terms of its serviceability 



let say it has 100 years of serviceability. So, we are making the decision based on the 

last. So, many years of data let say 30 years of data or 50 years of data and then the 

decision that you are making has a implication over a long period in future. 

That is we are talking about long term decisions it may be either data generation data 

extension etcetera. So, you use these techniques to make long term decisions on the other 

hand you may have interested not so much in the long term, but in the immediate short 

term lets say you are standing at June of 2010, and then you would like to examine what 

is likely to happen to the flow in July of 2010 that is a immediate next month. 

So, you would be interested in forecasting what is likely to happen in the near future or 

in the immediate next time period of next 2 time period, next 3 time period, next one 

season and so on; so you will be interested essentially in the short term implications. So, 

these techniques that we are now introducing we will have applications on both long 

term as well as short term, when we are talking about long term. We call it as, either data 

generation and data extensions or when we are talking about short term, we will be 

interested in data forecasting. 

Now, the data forecasting applications are many in hydrology we may be interested in 

flood forecasting. There is a rainfall that is occurring in the catchment and you would 

like to forecast the flood at a particular location, or a flood peak is known to have started 

along the river and then you would like to focus the flood moment across time in the 

same river. So, that is called as forecasting problem; whereas, extension and data 

generation problems are essentially planning problems, where you look at long term 

implications of the analysis of the observation that we have said we have with us to make 

the decisions. 

So, in both these whether it is a long term decision making or for short term applications 

to forecasting. We use the historical data and the premise there is that the history 

provides a valuable clue to the future, because we do not have any other means of 

making judgments about how the future is likely to be, we use the historical data 

historical time series and then make judgments about how the future is likely to be that is 

a whole concept of time series analysis, and specially the stationary time series analysis 

that we have been dealing with. 



In the stationary time series analysis what are we saying that the properties remain the 

same across time. So, X t and X t plus 1 has a same probabilistic properties, and we asses 

these probabilistic properties based on the historical data that we have, and then use the 

same probabilistic properties for the future and make our judgments and make our 

decisions. 

So, we will summarize today class today lecture essentially what we did today was to 

introduce the concepts of time series, we went through the definition of time series. 

Again and saw what we mean by a realization and an ensemble we saw what we mean by 

time properties time average properties and ensemble average properties, where we are 

talking about the properties across realizations at a given time. We also briefly define 

what we mean by an argodic process, if your time average properties across time for 

realization are the same as ensemble average properties, then the process is called as an 

argodic process. 

Then we introduce auto covariance the definition of auto covariance, and then auto 

correlation and the sample estimates how we estimate the auto covariance and auto 

correlation from the sample estimates from the samples. The auto correlation at lag k 

denoted by rho k it is estimated by r k, which is a sample estimate the plot between rho k 

and k or when you are dealing with sample r k, and k is called as the correalogram are 

the auto correlation function. 

Now, the correalogram gives an important information gives an important information 

about the time series for example, if it is a purely stochastic time series then all your rho 

k for k not equal to 0 will all be insignificant, what do we mean by insignificance that 

they lie in the band 2 by root N approximately or 1.96 by root N precisely at 95 percent 

significance level. So, if all your r k lie within that band then they are all statistically 

insignificant. If you have sample value if you have observed value and then compute the 

rho k and they they are all statistically insignificant it indicates that the sample is drawn 

from a purely random process which we will use this fact we will use in data generation. 

Then we also saw if we have a periodic process then the rho k or the correlogram will be 

oscillating periodically. So, if you have a sample and then you compute the rho k plot the 

correlogram, and if you see the correlogram is oscillating periodically, then it gives you 

an indication that your sequence is periodic, and we use this fact in our further modeling. 



So, we will continue this discussion in the next lecture, where we will be dealing with 

data generation as well as data forecasting technique; thank you for your attention. 

 


