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Elastic Stress Distribution around Circular Tunnels – 02  

Hello everyone, in the previous class, we started our discussion on elastic stress distribution 

around circular tunnels. And I told you that what is the geometry of the problem? What are the 

loading conditions, material properties, and the boundary conditions? And then we started 

deriving using the Airy's stress function approach and we were in the middle of the application 

of the boundary conditions. We already applied the boundary conditions at r tending to infinity. 

So, let us continue from the previous class, we have 2 more boundary conditions which is at r 

= a, that is the radius of the tunnel. So, what happens when we excavate? There is a stress-free 

boundary. So, at the periphery of the tunnel that is at r = a, there will not be any stresses. So, 

therefore, the radial stress as well as the shear stress, is going to be equal to 0. So, let us apply 

that and then try to get the expression for various stress components.  
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So here in the previous class, we applied the boundary conditions at r when it was tending to 

infinity. So, we have now that is at r = a; we have the stress-free boundary that is σr = 0 and τrθ 

is also equal to 0. Let us apply to this that is σr to be equal to 0. We have: 

1

2
(𝑠𝑥 + 𝑠𝑦) + 

1

2
(𝑠𝑥 − 𝑠𝑦)𝑐𝑜𝑠2𝜃 =  𝜎𝑟 = 0 =  

𝐴

𝑎2
+ 2𝐵 + [−2𝐶 − 6𝐸𝑎−4 − 4𝐹𝑎−2]𝑐𝑜𝑠2𝜃 



Now, if you are comparing the terms on both side of the equation, so what we will get is: 

1

2
(𝑠𝑥 + 𝑠𝑦) = [

𝐴

𝑎2
+ 2𝐵]

𝑟=𝑎
= 0 

This is going to be equal to this is going to be equation 10d. So, these equation numbers are in 

continuation with the previous class. So, then the other term is going to be:  

1

2
(𝑠𝑥 − 𝑠𝑦) = [−2𝐶 − 6𝐸𝑎−4 − 4𝐹𝑎−2] = 0 

So individually, both the terms have to be equal to 0 if this equation is to be satisfied. So, I will 

write this as equation 10e. 

So, we have another condition that is τrθ to be equal to 0. So, we do the similar exercise with 

reference to that, so what we are going to get is: 

−
1

2
(𝑠𝑥 − 𝑠𝑦)𝑠𝑖𝑛2𝜃 = [2𝐶 + 6𝐷𝑎2 − 6𝐸𝑎−4 − 2𝐹𝑎−2]𝑠𝑖𝑛2𝜃 = 0 

Now, we have already seen that this D to be equal to 0. In the previous class, so if we just 

substitute it here. what we get is: 

2𝐶 − 6𝐸𝑎−4 − 2𝐹𝑎−2 = 0 

I mark this equation as 10f. So here we have got the equations from 10a to 10f. So, let us try to 

see that how we can determine the different boundary conditions here.  
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So, this equation 10a gave us that 2B = half (sx + sy), then equation 10c gave us 2C equal to - 

half (sx + sy). Then 10d was (A upon a2) + 2B to be equal to 0, and from here, you can determine 

10(d) 

10(e) 

10(f) 



the constant A in terms of the constant B, which you can obtain from here. So, this is going to 

be – 2B into a2, and then 2B here you just substitute this so –a2 upon 2 (sx + sy). 

Then, we have D equal to 0 already. Now, if you add equation 10e and 10f together or if you 

combine these together, see what will happen. So 10e was - 2C– 6Ea-4 -4Fa-2 equal to 0. And 

then you had 2C + 6Ea-4 -2Fa-2 to be equal to 0, just subtract it so this will become minus, this 

is plus, and this will get cancelled. So, this is going to be – 4C – 2Fa-2 to be equal to 0. 

And from here, what we can get is 4C = 2Fa-2, or you can write as – 4C = 2Fa-2. Or in other 

words, we can write it as F = -2C upon a-2, or we can write as 2C is this. So, we can write this 

F to be equal to a2 upon 2 (sx + sy) just substitute 2C to be equal to minus half (sx + sy). Here, 

in this expression and this is what that you are going to get now from equation 10f. 

Now, what we have is minus half (sx + sy) - 6Ea-4 and then -2Fa-2. So, this is going to be – (sx 

+ sy) a
2 into a-2, this is going to be equal to 0. So, this and this will get cancel out, and from 

here, what you are going to get as the expression for E as -1 upon 4 (sx + sy) a
4. So, if you just 

take a look at this slide, you will get to know that we already have got A by this expression, 

then B by this expression, C by this expression, D is already equal to 0.  

Then, we got E by this expression, and F using this expression. So, this is how using the 

boundary conditions, we could find all the arbitrary constant. So now, once I have the 

expression for all of these, substitute it back and then try to get the expression for stresses. So, 

I just what I will do is will mark this complete set as equation number 11. 

2𝐵 =
1

2
(𝑠𝑥 + 𝑠𝑦) 

2𝐶 = −
1

2
(𝑠𝑥 − 𝑠𝑦) 

𝐷 = 0 

−4𝐶 − 2𝐹𝑎−2 = 0 ⇒  −4𝐶 = 2𝐹𝑎−2  ⇒ 𝐹 =  
−2𝐶

𝑎−2
 

𝐹 =
𝑎2

2
(𝑠𝑥 − 𝑠𝑦) 

−
1

2
(𝑠𝑥 − 𝑠𝑦) − 6𝐸𝑎−4 − (𝑠𝑥 − 𝑠𝑦) = 0 

𝐸 = −
1

4
(𝑠𝑥 − 𝑠𝑦)𝑎4 
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So, if I substitute this equation number 11 to earlier equations 9a, 9b, and 9c, this is what that 

we are going to get as σr to be equal to: 

𝜎𝑟 = −
𝑎2

2𝑟2 (𝑠𝑥 + 𝑠𝑦) +
1

2
(𝑠𝑥 + 𝑠𝑦) +

1

2
[(𝑠𝑥 − 𝑠𝑦) +

6

4
(𝑠𝑥 − 𝑠𝑦)𝑎4𝑟−4 − 2(𝑠𝑥 − 𝑠𝑦)𝑎2𝑟−2] 𝑐𝑜𝑠2𝜃 

𝜎𝑟 =
1

2
(𝑠𝑥 + 𝑠𝑦) {1 −

𝑎2

𝑟2} +
1

2
(𝑠𝑥 − 𝑠𝑦) [1 +

3𝑎4

𝑟4
−

4𝑎2

𝑟2
] 𝑐𝑜𝑠2𝜃 

I will mark this equation as equation 12a. Now similarly, we can substitute this equation to the 

respective equation for σθ. So, I am going to get in this particular manner that is: 

𝜎𝜃 =
𝑎2

2𝑟2 (𝑠𝑥 + 𝑠𝑦) +
1

2
(𝑠𝑥 + 𝑠𝑦) + [−

1

2
(𝑠𝑥 − 𝑠𝑦) −

6

4
(𝑠𝑥 − 𝑠𝑦)𝑎4𝑟−4] 𝑐𝑜𝑠2𝜃 

𝜎𝜃 =
1

2
(𝑠𝑥 + 𝑠𝑦) {1 +

𝑎2

𝑟2} −
1

2
(𝑠𝑥 − 𝑠𝑦) [1 +

3𝑎4

𝑟4
] 𝑐𝑜𝑠2𝜃 

This will be equation number 12b. Now, we have another equation which is for τrθ. 
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So, let us do that as well so we have this τrθ will be equal to:  

𝜏𝑟𝜃 = [−
1

2
(𝑠𝑥 − 𝑠𝑦) +

6

4
(𝑠𝑥 − 𝑠𝑦)𝑎4𝑟−4 − (𝑠𝑥 − 𝑠𝑦)𝑎2𝑟−2] 𝑠𝑖𝑛2𝜃 

𝜏𝑟𝜃 = −
1

2
(𝑠𝑥 − 𝑠𝑦) [1 −

3𝑎4

𝑟4
−

2𝑎2

𝑟2
] 𝑠𝑖𝑛2𝜃 

Mark this equation as equation number 12c.  

Now, kindly note here that σr, σθ, and this τrθ; they all are the function of r, θ, a, sx, and sy only. 

What I mean here? That they are not the function of E and μ, that is the elastic modulus and 

Poisson's ratio of the rock. So, what does this mean? That whether these stresses are 

independent of the elastic properties of the medium that is what it shows mathematically, but 

what happens is? 

It is not that these stresses are independent of the material properties. They come in picture, in 

an indirect fashion, so the strength of the material is defined in terms of qc, qt, and τ. So, this 

qc is UCS, qt is the tensile strength, and τ is the shear strength. So, how these really affect if it 

is not showing mathematically in the expression of σr, σθ, and τrθ.  
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Let us see that this strength of the material it degrades as the size of the cavity changes. These 

stresses are equated to the degraded strength and hence the elastic properties. They come into 

picture in an indirect manner, so it is not that the stresses are not related to the elastic properties 

of the rock medium. Now, these equations 12a, 12b, and 12c. They give us the stress 

components for the biaxial stress field where the applied stress field at the infinity was taken 

as σx to be equal to sx and σy to be equal to sy.  

So, we have now the general form of the biaxial stress field. Let us try to understand in more 

detail that what happens in case if you have the uniaxial state of stress or the hydrostatic state 

of stress. So, these 2 states of stresses, they are going to be the particular cases of the general 

biaxial stress field.  
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Take a look here first, for the hydrostatic state of stress, that is, in this case, your sx and sy they 

both will be equal, and when they are compressive. I will just put a negative sign with their 

magnitude. Because if you recall, in the previous class, I mentioned to you that all these are 

generated with tension as positive. So, when it is compressive there is going to be a negative 

sign associated with that. 

So just substitute the values of sx and sy, which is equal to -p in equation number 12, and you 

will get the state of stress for hydrostatic state of stress. So, you will have σr as - p (1 – a2 upon 

r2), and if you just substitute σr, which is at r = a, that means just substitute r to be equal to a. 

So, this is what that you are going to get as 0, then σθ will be –p (1 + a2 upon r2). 

And if we want to find out σθ at r = a, what we have is - 2 times the value of in-situ stress, that 

is, p. Now, τrθ is going to be equal to 0, and τrθ of course at r = a will be equal to 0. So, all these 

three equations, I mark it as equation number 13. 

𝜎𝑟 = −𝑝 (1 −
𝑎2

𝑟2)    ⇒  𝜎𝑟|𝑟=𝑎
= 0 

𝜎𝜃 = −𝑝 (1 +
𝑎2

𝑟2)    ⇒  𝜎𝜃|𝑟=𝑎
= −2𝑝 

𝜏𝑟𝜃 =  0   ⇒  𝜏𝑟𝜃|𝑟=𝑎
= 0 

Now, I define the stress concentration factor, which is σθ upon -p. Now basically, this stress 

concentration factor, in general its definition, is going to be any particular stress and its ratio 

with the in-situ stress that is p. 

Let us say if I want to find out the stress concentration factor with respect to σr, so that is going 

to be σr upon p. So, in this case, this stress concentration factor with respect to σθ this works 

out to be equal to 2. So, for the hydrostatic state of stress, see what happens at the tunnel 

periphery; σr = 0, τrθ = 0, and the stress concentration factor σθ upon p with a negative sign, of 

course, is equal to 2.  
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Now, coming to the uniaxial state of stress, so in this case, I have the applied stress only in y-

direction, and in x-direction, this is equal to 0. That means the stresses are applied only in the 

vertical direction. So, what is going to be the expression for σr, σθ, and τrθ. Just substitute these 

values in the equation 12. So, this is what that we are going to get:  

𝜎𝑟 =
1

2
 𝑠𝑦 (1 −

𝑎2

𝑟2) −
1

2
 𝑠𝑦 [1 +

3𝑎4

𝑟4
−

4𝑎2

𝑟2
] 𝑐𝑜𝑠2𝜃 

𝜎𝜃 =
1

2
 𝑠𝑦 (1 +

𝑎2

𝑟2) +
1

2
 𝑠𝑦 [1 +

3𝑎4

𝑟4
] 𝑐𝑜𝑠2𝜃 

𝜏𝑟𝜃 =
1

2
 𝑠𝑦 [1 −

3𝑎4

𝑟4
+

2𝑎2

𝑟2
] 𝑠𝑖𝑛2𝜃 

So, this equation I call as equation number 14. Now, what will happen at r = a, which is at the 

tunnel periphery, and θ to be equal to 0, that means along the x-axis. So here, just substitute it, 

so this first term will become equal to 0, and this cos0 will be there; that will give me σr to be 

equal to 0, and your σθ will be equal to just substitute. So that is going to be half sy into 2 + half 

sy. This is going to be you substitute r to be equal to a. This is going to be 4, and then cos of 2θ 

= 0. So, we have here as 1, this is going to be equal to this is Sy and 2Sy. 

This will become 3Sy, now that is the first position that where we want to find out σr, σθ. Then 

the second location is at r = a, and θ is equal to π by 2. So, remember, these were the axis x and 

y-axis, and we had the circular tunnel. So, this was any point here, and so this was represented 

by r, θ; r was this distance, and θ was this angle. So, when I say θ to be equal to 0, this means 

it is this location and for θ = 90 degrees is this location. 

14 



So, this is typically the crown of the tunnel, so is just substitute the values what you will get is 

again σr to be equal to 0 and σθ, you will get as half sy into 2 + half sy into 4 into -1 because 

here θ = 90 degrees. So, you will have that as to be -1 so this is going to be - Sy. So, in this 

case, the stress concentration factor which is σθ upon sy that is equal to 3 for the first condition 

and -1 for the second condition.  

𝐴𝑡 𝑟 = 𝑎   &  𝜃 = 0  ⇒  𝜎𝑟 = 0  & 𝜎𝜃 =
1

2
𝑠𝑦 × 2 + 

1

2
𝑠𝑦 × 4 × 1 = 3 𝑠𝑦 

𝐴𝑡 𝑟 = 𝑎   &  𝜃 =
𝜋

2
  ⇒  𝜎𝑟 = 0  & 𝜎𝜃 =

1

2
𝑠𝑦 × 2 +  

1

2
𝑠𝑦 × 4 × (−1) = − 𝑠𝑦 

Now note that here it is minus, and here this is positive only. So, what does this signify?  
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So, for the uniaxial state of stress, which is represented by sx = 0 and sy non-zero, we saw that 

sigma theta upon sy works out to be -1. So, if the applied stress is compressive, the resulting 

tangential stress at the crown portion of the tunnel is going to be tensile in nature because there 

is the change of the sign. So, if it is here positive, this is here negative. We need to be careful 

here that we have the tensile stresses in the crown portion of the tunnel.  

Now, the magnitude of this is equal to the applied stress in the y-direction but then equal and 

opposite magnitude. If sy is greater than σt which is the tensile strength of the material, what 

will happen? This will result into the tensile failure of the rock in the crown portion of the 

tunnel, which is this position this is y-axis, x-axis, and this is the crown position where θ equal 

to π by 2. 

So, this becomes a critical condition. So, you should keep in mind that the uniaxial state of 

stress. In case you have the tunnel subjected to only the vertical stresses, in that case, the crown 



portion of the tunnel, there is going to be the presence of the occurrence of tensile stresses, and 

that makes that portion very critical. If this stress becomes higher than the tensile strength of 

the rock and you know that the tensile strength of the rock is less than the uniaxial compressive 

strength.  

So, we need to be extremely careful that the applied stresses should not become more than the 

tensile strength of the material. And if it is becoming, that means the tensile failure is going to 

occur, and we need to be careful, especially here in the crown portion where such a condition 

can occur.  

(Refer Slide Time: 28:59) 

 

Now, in case if you have the hydrostatic state of stress resulting stresses, both radial as well as 

the tangential stresses, we have seen that they were all compressive in nature. So, for the 

uniaxial state of stress, it is not only the stress concentration factor at the periphery of the tunnel 

is 3 times the applied stress, but due to the tensile stress condition in the crown portion, this 

uniaxial state of stress becomes a most critical state of stress. Please keep this in mind.  

Now, when I say crown portion means essentially, I am referring to theta equal to π by 2, and 

later on, I will also use the term invert. So, invert of the tunnel corresponds to theta equal to - 

π by 2.  

(Refer Slide Time: 29:52) 



 

Now, these expressions for these stresses which are given by equation number 12. They are 

independent of the elastic property, which was E and μ which we saw earlier. So, this does not 

mean that the stresses are going to be independent of the material behavior that happens in 

practice that when you increase the size of the excavation, the strength of the rock is influenced.  

And the mechanical properties, such as its uniaxial compressive strength, tensile strength, and 

the shear strength they degrade. So, from the design point of view, these degraded values in 

these strength characteristics, these govern the design of excavation. So indirectly, that is how 

the properties elastic properties come into the picture.  
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Now, let us take a look at the stress distribution. As of now, we have seen the various expression 

for a uniaxial state of stress as well as a hydrostatic state of stress. So, how does this look like? 

How does its variation look with the increase in the distance from the periphery of the tunnel? 



So, we are going to discuss that so normally, at theta equal to 0, this means it is this axis that 

we are talking about.  

Normally, at r by a when it is very large, that means to the extent of 4 to 5, this sigma r becomes 

equal to 0. That is what that you see when I plot the variation of σr. So, you see, normally at 

this, it is very small negligible for all practical purposes. We can consider this to be equal to 0. 

The tangential stress, which is the σθ, and the variation has been shown by this curve. 

We can consider this to distribution as of now. We have seen the various expression for uniaxial 

state equal to 0, the tangential stress, which is the σθ, and the variation has been shown by this 

curve at the vertical and infinity. It must be equal to the applied stress because that is what is 

the boundary condition is, and you see that this is what that we obtain from this figure that 

when it goes beyond.  

So, you see that here this stress concentration factor becomes equal to 1, so this corresponds to 

stress concentration factor of 1. So, what does that mean that the σθ = sy, which is what should 

happen at the large distance. So exactly the similar situation, the same variation that we are 

getting from this particular figure.  
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Now, here we see the stress distribution concerning the distance in the vertical direction that is 

away from the crown portion. So, you see that σr variation is this, and σθ variation is this. So 

here you can see that the σr at a large distance this sigma by sy becomes equal to 1, and at a 

large distance, your σθ becomes equal to 0. Here this is the zero axis, so when we go to the 

large distance, this value becomes equal to zero.  



So, this is how we can have the elastic stress distribution around the circular tunnel. So right 

now, we took an axis theta to be equal to 0, and this is the θ for π by 2. What about its 

circumference? How this is going to behave?  
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So let us take a look, so here I have tried to plot the variation of these stresses along the 

circumference. Kindly note that we are only considering right now the uniaxial state of stress 

with sx to be equal to 0 and sy non-zero. So that is what has been shown here now. How this 

has been plotted, you see that theta equal to 0. So, this is kind of your x-direction and y-

direction. So, θ equal to 0 will correspond to this. So, this has been mapped in this particular 

manner to this value, and this is θ by sy.  

So, what did we get in case of the uniaxial state of stress at theta equal to zero. It was three, so 

that is what that you are getting here, so these are the values of basic θ. So similarly, when θ is 

equal to 90, you are getting -1. So likewise, let us take this θ, maybe say 30˚, so see if you just 

substitute in the expression. So, you have this: 

𝜎𝜃 =
1

2
 𝑠𝑦 (1 +

𝑎2

𝑟2) +
1

2
 𝑠𝑦 [1 +

3𝑎4

𝑟4
] 𝑐𝑜𝑠2𝜃 

So just substitute θ to be equal to 30˚, and you will see that σθ will work out to be equal to 2 

times sy for θ equal to 30˚. Similarly, maybe you can consider θ to be equal to 60˚. Some typical 

values I am just taking so you see here just substitute θ equal to 60˚. Here so. you will have 

here σθ as, of course, we are considering at the circumference, so r = a. 



So, this first term is going to be half sy into 2, and then the next term is going to be half sy into 

4 into cos of 120˚, which is half with a negative sign. So, what does this give us? So, this is 

going to be sy, and this is also sy, so with the negative sign so this becomes equal to 0. So, this 

is what that we are getting in the variation. So, once we have the various expressions so for the 

typical situation, we can determine its variation along maybe θ equal to zero axis, θ equal to π 

by 2 axis, and all along the circumference of the circular tunnel. So, this is how we can get the 

elastic stress distribution all around the circular tunnel. What about the displacements? Now 

that we will see in the next class. Thank you very much. 

 

 

 


