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Hello.  So,  as  we  discussed  the  need  for  developing  approximate  solutions  to  the

governing differential equation, the method of weighted residuals is the most commonly

used technique. The basic idea behind method of weighted residuals is based on the basic

idea of linear algebra that any finite function over a finite domain can be represented by

a linear combination of linearly independent basis functions as long as that family of

basis  functions  constitute  a  complete  basis.  So  the  basis  should span  the  complete

function space or vector space. 

So, as long as we are assured of spanning the complete space it should be possible to

construct an approximation for any finite function over a finite region by suitable linear

combination of those basis functions.  If the basis functions are polynomials, then that

particular case is covered by Weierstrass approximation theorem that we had discussed

during interpolation theory.

So, the basic idea is, we seek an approximate solution. So, if u ( x )  is the true solution,

we do not  look to  find  u ( x )  exactly.  Instead  we try  to  find  a  function  û ( x ) as  an

approximation  to  the  unknown  function  u ( x )  in  terms  of  a  series  using  a  linear

combination  of  basis  functions  (also  referred  to  as  trial  functions)  with  unknown

coefficients. The chosen set of functions should be linearly independent and they should

represent  a complete  family of basis  functions.  That  is,  all  the basis  functions  taken

together should span the complete space, function space or vector space. 

So, a polynomial for example is an infinite family. We can keep on increasing the degree

of polynomial and they are linearly independent. There is no way a constant term can

represent what is represented by a linear trend. There is no way a constant and linear

term can represent what is contained in a quadratic function and so on.

So,  a  linear  combination  of  increasing  degree  of  polynomials  constitutes  a  complete

family and we can possibly construct any approximation which will in principle should



be able to approximate or should be able to capture the sufficient details of any finite

function over any finite region.

(Refer Slide Time: 04:10)

So,  we consider  the  approximation  û ( x ) as  an approximation  to  u ( x ) ,  and  û ( x )  is

given by 

g j  are  a set of linearly independent basis functions  satisfying homogeneous essential

boundary  conditions.  More  on  this  essential  boundary  condition  business  little  later

kindly bear with me until that point.  In this particular bar problem, let me just say that

the  essential  boundary  condition  constitutes  the  boundary  condition  imposed  on  the

displacement.

So,  if  you  recall  the  bar  problem  that  we  had  discussed;  there  were  two  boundary

conditions; first at x = 0, the boundary condition was imposed on the axial deformation

as 0 and the other condition at  x = L, the force boundary condition i.e. the axial thrust

was equal to the applied force. So that is called the force boundary condition or natural

boundary condition.

In this particular case for the construction of approximation, it is important that the basis

function  we choose,  should  be  of  a  form which  satisfies  the  homogeneous  essential

boundary conditions all over the problem.

û ( x )=uo ( x )+∑ c j g j (x )



And u0 ( x )  is a function, which satisfies non-homogeneous form of essential boundary

conditions. For example, in the bar problem, if I had specified deformation to be non-

zero at x = 0, then that is a non homogeneous boundary condition. So, the deformation at

x = 0 is, let us say, equal to some constant δ .

So, then that is a non homogeneous boundary condition and that has to be specified. So,

if  it  is  a  constant  then  u0 ( x )  is  simply  that  constant  δ  that  is  equal  to  the  non

homogeneous boundary condition of the problem. And, the series solution that you see

c j g j ,  just operate on top of this non-homogeneous boundary condition function and

together complete summation gives us an approximation to the solution.

c j , are the unknown coefficients that are not yet known. So, we have to find a way to

determine these coefficients and that is why the name weighted residual comes. So, that

mystery behind the name will be clear just in a while.
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So  naturally,  if  we  had  true  solution  u ( x ) ,  then  it  will  satisfy  both  the  governing

differential equation and the boundary conditions exactly and there will not be any error.

The very fact that  we are admitting the possibility  that  we are not looking for exact

solution. We will be satisfied with an approximate solution as long as it is approximation

is good enough.



So, the moment I say approximate solution, the inherent implication is there are errors in

satisfying the governing differential equation and possibly the boundary conditions. So,

the governing differential equation Lu+p  need not be equal to 0 all over the domain.
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So, if I substitute approximate solution û ( x )  in place of u ( x ) , then it will not hold all

over the domain. There will be an error because it is an approximate solution. So, this

governing differential equation may not be satisfied exactly. 

Similarly,  for  the  boundary  condition,  the  boundary  conditions  may  not  be  satisfied

exactly on all the boundaries. So, there may be error in satisfying boundary conditions.

So, if I substitute the approximate solution û ( x )  in the governing differential equation

and the boundary conditions then there will be an error of approximation and these errors

are referred to as residuals. 

We will have two types of residuals; one is domain residual coming from the governing

differential equation that is RΩ=L û+ p  in Ω . And the second residual is the boundary

residual RΓ=Mû+r  that comes from the boundary conditions. 

The quality of approximation; depends on how do we minimize these errors (residuals).

So that provides us the required conditions to evaluate the coefficients c j . 



So,  u0 ( x )  is  known here  because  that  comes  from the  boundary  conditions  of  the

problem,  g j  are  the  basis  functions  that  we  have  assumed,  c j  are  the  unknown

coefficients of this summation. The task is to find these coefficients c j  somehow so at

to minimize the error in approximation. 

So, in the method of weighted residuals,  we emphasize that we do not look at  these

errors individually, rather we look to make the errors vanish in a weighted average sense

over  the  entire  domain.  Let  W  and  W̄  be  the  weighting  functions,  the  weighted

residual statement becomes, 

∫
Ω

W (L û+p )+∫
Γ

W̄ (M û+r )=0

Now, let us delve upon this. It is a very straightforward equation, but it has significant

implications  and very  important  results  are  derived from this.  First  of  all,  the  exact

solution is contained in this statement. This is called the statement of weighted residuals.

Now, if I knew the exact solution u ( x )  of the governing differential equation then;  the

domain residual  RΩ  and the boundary residual  RΓ  would vanish and this weighted

residual statement would hold irrespective of what weighting functions I choose. So, for

any arbitrary weighting function, W  and W̄ , if I know the exact solution then RΩ  is

identically equal to 0 all over the domain,  RΓ  is identically equal to 0  all over the

boundary and this weighted sum of a residual would be 0.

So the statement of weighted residual would be identically satisfied for any arbitrary

function W  and W̄ . So, that is a reassuring thought that the exact solution is contained

in this particular weighted residuals statement. 

Now, think over this a little bit more. For any arbitrary choice of  W  and  W̄ ,  this

weighted residual statement should hold if it was a true solution. Now, if I try to satisfy

the statement of weighted residual over a large number of W  and W̄ , then in a way I

am  approaching  the  true  solution.  If  I  consider  arbitrary  function  pairs,  let  us  say

(W 1 ,W̄ 1 ) , (W 2 , W̄ 2 ) , (W 3 , W̄ 3 ) , (W 4 , W̄ 4 ) , .. .  and so on and try to enforce this statement

of weighted residual over these functions as :



∫W 1RΩ dΩ+∫W̄ 1RΓ dΓ=0 for first pair of arbitrary functions

∫W 2RΩdΩ+∫W̄ 2RΓ dΓ=0 for second pair and so on...

As we increase these number of weighted residual statements, we find that we will be

approaching the condition  imposed by true solution.  That,  no matter  what  weighting

function  we choose  the  weighted  residual  statement  holds.  So,  if  I  consider  a  large

number of  these  weighting  functions  and enforce this  condition  then  I  am in a  way

approaching the true solution.

Obviously,  I  cannot  approach  infinity  on  the  digital  computers  or  for  any  finite

operations, so it remains an approximation,  but an approximation that approaches the

true solution as the number of weighting functions for which these weighted residual

statement holds will increase the quality of approximation.
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So, as I said true solution of governing differential equation would satisfy the weighted

residual  statement  for any arbitrary choice of weighting functions since the residuals

vanish all over the domain and the boundaries. Now, for an approximate solution, we

enforce the vanishing condition for a set of weighting functions W j  and W̄ j  where j

can range from 1 to a large number.



So,  the  statement  now  becomes  following integral  where  we  represent  RΩ  by

substituting the approximate solution û  there. 

∫W j [ Lû+p ] dΩ+∫W̄ j [M û+r ] dΓ=0 ∀ j=1,2,3,4 , .. ..

So, how many terms we need? how far do we go? Obviously, we have some unknown

coefficients to evaluate, and those unknown coefficients can be evaluated only when we

have some conditions on those unknown coefficients and that is what we will try to do.

We will use as many functions as there are unknown coefficients.

If there is a three term approximation involving three coefficient c1 ,c2 ,c3 , we will have

a set of these three equations for  j=1,2,3 . We evaluate three statements of weighted

residuals and to give us some relationships in terms of c1 ,c2  and c3 .

We solve those three equations simultaneously to get  c1 ,c2 ,c3  and substitute in our

basic  approximation  to  have  a working  approximation  to  the  governing  differential

equation.  This in  a sense is  the method of weighted residuals.  Now, this  has a very

profound practical significance and that cannot be over emphasized. What it does? What

this method of weighted residuals does is to convert the problem of solving a differential

equation into a  much simpler problem of solution of algebraic simultaneous equations.

Because after these evaluation of integrals we will only have simple algebraic equations.

These simultaneous equations can be solved using any usual linear equation solver. You

can use Cholesky method,  LU decomposition or even Gaussian elimination to evaluate

unknown coefficients  c j . Once we have these coefficients those can be plugged back

into û ( x )  to provide the basic approximation.

The quality of approximation can of course be improved by increasing the number of

terms in the series, which will reduce error. But the exact solution is unknown so the

error of approximation can only be gauged by considering the convergence by successive

addition of the terms in the series.

You might have discussed series convergence earlier in your mathematics course, but we

will discuss it briefly to assess the convergence of this series approximation in solution

of the governing differential equation.



So, this is the basic idea of the approximate methods of solution.  We are essentially

trying to solve governing differential equation by transforming it into a set of algebraic

equations and then solve the set  of algebraic equations for the unknown coefficients.

This is a very straightforward and robust procedure which can handle many complex

problems for which analytical solutions may not exist, and we can still work out a very

decent workable approximate solutions that can be used for our subsequent engineering

analysis. So, we will continue on this with more examples. There are different versions

of method of weighted residuals depending on how we choose these weighting functions.

So we will  see  how these  weighting  functions  are  chosen or  what  are  the  different

variations on method of weighted residuals and then let us get our hands dirty. Let us

work out some problems. I will discuss couple of cases and then see how the solution

varies, so that you get some idea of the working of the method of weighted residual and

gain some confidence.

It  does  give  us  something  meaningful,  something  workable  to  base  our  engineering

judgment upon. We will continue with the Variations on Method of Weighted Residuals

in our next lecture.

Thank you.


