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Hello, so, after having discussed the basics of floating point arithmetic, the nuances of

doing  scientific  computation  on  digital  computers  we  have  covered a  little  bit  of

elementary background on linear algebra for vector spaces.

So,  those  are  the  basic  building  blocks  on  which  we  will  now  begin  to  build  our

development of finite element method, which is a very powerful technique for solution

of differential equations. A very popular book by Robert D. Cook about finite element

method mentions in its introductory chapter that finite element method is a very powerful

tool which can make a good engineer better, but a bad engineer dangerous.

The second part of the sentence is very important to note. And, that is why it is important

to  understand how things  can go wrong. After  all  it  is  a numerical  method,  it  is  an

approximate solution.

So,  it  is  important  for  us  to  figure  out  the  quality  of  approximation  when  we  are

developing the solution and also try to find out ways to judge which constitutes a better

approximation or how to build a better approximation. So that our purpose - coming up

with good engineering designs and products - are adequately met.
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To start with the problem of the process of Mathematical Modelling is the first step of

any engineering analysis. And for any engineering analysis we require a very careful

study of the influencing environment. The system per se that we are looking to design

and what are the operating conditions of the system, what are the operating parameters of

the system and so on.

Usually it is a very complex system with lots of influencing parameters and there are

cause and effect relationships between the system output and the input that it takes from

the environment conditions or the operating conditions. 

So,  obviously,  this  complex physical  model  is  a  very  large  system and needs  to  be

transformed  into  a  mathematical  model  with  suitable  assumptions  within  a  suitable

assumed framework of certain idealizations such that we retain what are the significant

influencing parameters and what are the significant variables of the problem that will

adequately capture the basic essence of the problem.

We never try to model everything in absolute detail. A very common quote that is often

attributed to Einstein  (not very sure about the authenticity)  - “a model should be as

simple as possible, but no simpler”. So, we need to have all the influencing parameters

all  the  significant  parameters  that  have  considerable  influence  on  the  operating

conditions and the output of the system and construct as simple model as possible using

all these influencing parameters.



So, the first step towards engineering analysis is to convert a large complex and causal

system in the physical world to a set of tractable mathematical models for a rational

analysis. Mathematical models are amenable to our basic tools of mathematics and of

course, amenable to treatment via digital computers. Mathematical model allows itself to

be studied under the influence of various operating conditions which may not be possible

to do in case of physical world.

A  physical  experiment  is  very  difficult  to  perform  and  time  consuming.  It  is  very

expensive  and  sometimes  it  may  not  even  be  possible.  For  example,  it  is  almost

impossible to test a complete aircraft prototype in a laboratory. 

But  if  we  develop  a  mathematical  model  then  it  is  possible  to  see  what  are  the

influencing parameters. How the complete system interacts with the environment that it

has to operate on and draw inferences, learn from the results, study the system behaviour

and then take appropriate call on modification of design if required.

So, the essential ingredient of this development of mathematical model is a differential

equation.  Differential  equations  offer  a  convenient  and  powerful  set  of  tools  for

modeling causal relationship if something is known to be dependent on certain things

certain variables so, we have a system of dependent variable and independent variable

and we study and establish the rate of changes and that effectively gives us the basic

differential equation of the phenomena.

As an example let  us look at the very simple problem in mechanics that is the axial

deformations of a bar as we see in this figure.  This can represent several things. It is a

simple bar element or truss element or member of the truss that you see.

For example, you might have traveled through several rail bridges. Each member of that

bridge is modeled as a truss element and that is a bar under axial deformation. 

Another situation is  in this particular example that refers to end bearing piles; so, the

problem  of  driving  a  pile  through  the  pile  foundation.  All  of  them  are  essentially

problems of single element,  single prismatic member which is under the influence of

axial loads.

On the right hand side you see a differential element and its free body diagram. 



So, if we consider the equilibrium of all these forces, axial thrust is the stress resultant

for axial deformation and as you can see axial thrust is essentially force multiplied by

direct stress that is in the body and across the section there is of course, going to be

change in the axial thrust because of change in surface traction q.

This q is the surface traction,  which in case of a pile driving problem refers to the skin

friction.  That is what gives the resistance for the pile. So, significant part of resistance

offered by pile is coming from skin friction between pile surface and surrounding soil.

Because of this skin friction there will be a difference in the axial thrust and of course, if

the  deformations  are  time  variant,  then  we  need  to  look  at  the  basic  Newtonian

mechanics - Newton laws of motion. The law of momentum which states that “all forces

in the body are equal to rate of change of momentum of the body”. So, this is ρA ü  that

is essentially rate of change of momentum and in this case particularly it is shown as a

dotted line as a fictitious inertia force.

So, inertia force nomenclature is very common parlance in structural dynamics. Here

parlance refer to inertial term as a force term because in the equilibrium equation, on the

left  hand side you have the force terms and on the right hand side you have rate of

change of momentum. 

So, it is dimensionally consistent. Hence it is equal to the total applied forces, but still it

is not a force. It is a separate law; it is a law of momentum. So, all applied forces on the

body are equal to the rate of change of momentum.

Now, why is it not a force? Because this particular rate of change of momentum that we

have, happens to have the units of force and that is why its left hand side is equal to right

hand side in the Newton’s second law, but it violates Newton’s third law as there is no

reaction to this force. 

That is why it is often referred to as a force, but it is always made with a distinction. It is

drawn as a dotted line just to indicate that it is a fictitious force and we are talking about

an  equivalent  representation  of  force  equilibrium,  instantaneous  equilibrium  by

D’Alembert’s  principle  and we can  treat  that  as  a  force  and just  treat  it  as  a  static

equilibrium holding at each instant of time.



So, using this rate of change of momentum as a fictitious inertia force and that works

because in this particular case ρA ü  is time variant for most of the systems except for

aeronautical systems where significant amount of mass comes from the fuel and fuel is

burning at  a  rapid  rate  to  give the  thrust  that  it  needs.  Therefore,  rate  of  change of

momentum is actually dependent on the rate of change of mass as well.

So, for aeronautical systems situation is little more complex than what is presented here

there will be one more term that is dependent on the rate of change of mass. But, let us

remain anchored to the ground and for most of the problems that we deal with in Civil

Engineering and Mechanical Engineering systems the mass is time invariant and the rate

of change of momentum essentially refers to mass times acceleration.

So,  if  we  establish  this  equilibrium  consider  this  equilibrium  and  collect  the  terms

together then we can develop the equilibrium equation.
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You can see the various forces acting on this differential element. So, the axial thrust is

area times the direct stress and that is of course, equal to by making use of Young’s

modulus and Hooke’s law.

Axial thrust (T )=Aσ=AE
∂u
∂ x



Then there is a surface traction q distributed on the periphery of the body and inertia.

And the body force per unit volume is ρ
∂

2u
∂ t2

.

Considering the D’Alembert’s principle the fictitious inertial force acts in the direction

opposite to the direction of motion.

So, considering the instantaneous equilibrium of forces and then dividing through by the

length differential element dx we arrive at this governing differential equation. 

That is the governing differential equation of the axial deformations in the bar and as you

can see this is a second order differential equation. The highest order of derivative that

you see is two with both respect to spatial derivatives as well as with respect to time

derivatives.

Now, there are two independent variables here spatial variable x and time variable t. That

is a complication that we would like to avoid getting into at the moment. We will deal

with  time  dimension  subsequently,  but  to  keep  matters  simple  let  us  consider  the

situation  in  which  the  deformations  vary  slowly  with  respect  to  time.  So,  if  the

deformations do not change very rapidly with respect to time, then the acceleration term

is going to be negligible.

So, ∂
2u

∂ t2
 is going to be a very small quantity and therefore, we can ignore that term and

we are left with an ordinary differential equation.

∂
∂ x
AE

∂u
∂ x
+q=ρA

∂
2u

∂ t2
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So, the governing differential equation now reduces to an ordinary differential equation

because there is only one independent variable now. 

Now, there is an interesting addition to the whole thing.

See the problem is this differential equation that we define, where does this apply in the

infinite space? or what is the extent of the system that is described by this differential

equation? So, that is called a domain of the problem. In this particular case the domain of

the problem is the length of the bar starting from x = 0 to x = l.

So, that is the domain of the problem.  That is the domain over which this  particular

differential equation holds. So, every differential equation that we develop has to have a

particular domain of applicability and that has to be specified along with the differential

equation. A differential equation has no meaning unless we specify what is the domain of

its application.

Now, this is as I said it is a second order differential equation and obviously, it will have

two  constants  of  integration.  The  general  solution  of  the  second  order  differential

equation  will  have  two  constants  of  integration.  And,  obviously,  we  will  need  two

boundary  conditions,  two  additional  conditions  to  determine  specific  solution  to  the

problem.

d
dx
AE
du
dx
+q=0 ; in Ω



What do I  mean by specific  solution? For example,  let  me go back to the equation.

Solution will be different if I removed  the fixed boundary. If this fixed boundary was

removed and made a free boundary that is a different problem than what is presented

here.

Secondly, if I remove the force q and apply a point load at one end, that is a different

problem.  If  I  apply  a  constraint  at  the  other  end  with  some  specified  value  of

displacement  or  make  it  some  other  non-zero  value  will  also  make  it  a  completely

different problem.

So, for a differential equation we can have a general solution, but for each of this specific

problems that  can  arise  because  of  the  peculiarities  of  the  situation,  there  has  to  be

specific  solution  for  each  of  these  peculiarities.  Now,  those  specific  solutions  are

captured by appropriate evaluation of the unknown coefficients of or unknown constants

of integration.

So, two constants of integration and those constants of integration will be evaluated by

suitable  boundary  conditions.  Governing  differential  equation  is  generic.  But  the

boundary conditions define the specific problem that we need to solve.

In our bar problem, we have the boundary conditions as u(x=0) = 0. So, at this particular

point  (x=0)  the  deformation  is  constrained  to  be  0.  So,  that  is  the  one  boundary

condition. u - the axial deformation of the bar, is the basic unknown of the problem.

The  axial  thrust,  (AE dudx )
x=L
=Q  at  the  free  end  should  be  equal  to  Q  to  ensure

equilibrium condition otherwise the system will not be in equilibrium. 

These are the two boundary conditions and that will define the specific solution to this

problem. So, a general solution to the second order differential equation will be made

specific to this particular problem by evaluating the unknown coefficients of the problem

(constants of integration) which will suit these two boundary conditions.
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So, what we discussed was with specific reference to a bar problem. Similarly, we can

develop similar formulation for any problem and in general it will be associated with

some differential operator let us say L. In this particular case our differential operator

was second order differential operator. 

L=
d
dx
AE

d
dx

is the differential  operator and p can be anything. It it  is a function of

independent variable x. So, that is how the problem is defined and that is equal to 0 in

Ω .

So, this differential equation 

Lu+ p=0 in Ω

is the governing equation of any problem. It can come from anywhere. It can come from

mechanics;  it  can come from fluid mechanics,  structural  mechanics,  heat conduction,

electromagnetics, anything.

And, then obviously, as we discussed differential equation will have a general solution,

but  the  solution  specific  to  the  problem  at  hand  will  be  defined  by  the  boundary

conditions. So, associated boundary conditions are M u + r = 0 on Γ . So, we have this

situation where domain is defined by Ω and its boundary by Γ .



In case of bar problem gamma constitutes two points two end points x = 0 and x = L in

between x is  equal  to  0 and L we have the domain  of  the problem. So,  that  is  one

dimensional problem. In case of two dimensions Γ  will be a curve which will enclose

the  area  and  the  domain  becomes  the  area  between  this  bounding  curve.  In  three

dimensions  we  have  a  surface  boundary  and  the  volume  enclosed  by  that  surface

becomes the domain of the problem. So, conceptually it translates and scales very well

from one dimension to three dimensions and the similar construction holds. Only the

tools get little more tedious as the dimensions of the problem increases, but conceptually

it remains exactly identical.

So, we have a governing differential equation defined over  a domain and subjected to

certain boundary conditions on the boundary enclosing that domain. Now, engineering

analysis often involve repeated solution of governing differential equation. We need to

do lots of analysis for different influencing parameters before we come up with a suitable

design or valid design or valid solution to the problem.

And,  analytical  solutions  are  only  possible  for  a  handful  idealized  conditions  of

homogeneous  domains  and  regular  boundaries.  Homogeneous  domains  means  the

properties are uniform over the entire domain, it  does not change. So, approximation

does not really has to account for these point to point changes in the material properties

or the geometrical properties.

For example, in this particular situation the bar problem we discussed, we considered a

uniform bar with constant cross section and same material throughout. If the problem

was little different for example, it was an irregular cross section and the materials were

different over different portions then situation would have been much more difficult.

It  becomes  very  difficult  to  solve  analytically  this  particular  kind  of  problem  with

different or heterogeneous medium.  It is still possible but becomes a little tedious  and

difficult to solve analytically.

So, we can develop analytical solutions only for a handful of idealized conditions of

homogeneous domains and regular very well defined boundaries. The moment any of

these idealized conditions are violated, analytical solutions are no longer possible. 



It  is  not  easy  to  develop  analytical  solutions  and  hence approximate  solutions  are

necessary in dealing  with such cases.  And, that  is  what  we will  discuss in  our  next

lecture.  How do we deal  with general  solution of partial  differential  equations  using

approximate method? The method is called method of weighted residuals which we will

discuss in our next lecture.

Thank you.


