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As I mentioned earlier, the Finite Element operations have to be performed on digital

computers.  Integrations over definite  interval on digital computers are approximations

and are called numerical quadrature schemes.

Analytical evaluation of integrals is very slow and very often may not be possible to

have analytical expression that can be integrated even with symbolic computer system

that might be available. So, it is not always possible to use analytical integration.
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And it is much more convenient and much more efficient to use numerical integration. It

is very quick, very efficient and accurate enough for our purposes. And the way definite

integrals are evaluated on a digital computers or using any quadrature rule are essentially

based on weighted sum of function values. So, we have an integral with f(x) as integrand

and that has to be integrated between the range a to b. 

The integral is evaluated as a weighted sum of function values. Function f is evaluated at

several points xi in the range a to b, and there are some weights assigned based on the



sampling points, and those weights are multiplied with the function values at the points

and then they are added up. And this particular summation, weighted summation is taken

as an approximation of the definite integral.

It  is simple enough as you can see it  is  only accumulation.  Addition is  the simplest

operation on digital computer. So, it is a very simple scheme per se. And the objective is

to compute the weighted sum such that the error is under certain specified threshold. So,

the weighted sum that we have is within certain tolerance level of the exact integral that

might be there for any function.

In the elementary graphical methods of computing that we all studied, the areas under

any curve, are essentially integrals. So, for example, rectangle rule or trapezoid rule, they

are the goods starting points for studying numerical quadrature. 

(Refer Slide Time: 03:58)

So, we take the first on the left hand side is what we call as rectangle rule, on the right

hand side we have what we call as trapezoid rule. In rectangle rule we find out the value

of the function at the midpoint of the interval. So, xc is the centroid, that is the central

point in this interval xi and xi+1. 

We find out the function value at xc  and assume that constant function value holds over

the entire interval (xi to xi+1) and then we compute the area of rectangle. So, there will be

some  areas  where  it  would  be  overestimated  and there  would  be  some areas,  some



regions, where it will be underestimated than the true sample. But, if we take this interval

small enough then it should average out and results should be satisfactory.

In trapezoidal rule, we take the function values at the end points. So, if xi and xi+1 are the

sampling points, we just take the function values at x i and function value at xi+1, and then

just  use  the  area  of  trapezoid  between  these  two  points.  And  that  is  taken  as  an

approximation for the area under the curve between xi to xi+1.

Now,  both  these  methods  rectangle  rule  as  well  as  trapezoidal  rule  are  first  order

accurate, and error decreases linearly as we reduce the interval between adjacent points.

In rectangle rule, the coefficient (weight) is length of the interval h. So, for i th interval

between xi and xi+1, if the interval is hi, then hi becomes the weighting coefficient and the

function is evaluated at the centre of this interval. And then, obviously, it is just weighted

sum  of  these  function  values  at  the  middle  of  the  intervals.  In trapezoid  rule,  the

coefficient is of course, hi/2, and we take the function values at the ends of the interval.

This  is  essentially  taking  average  of  the  function  values  at  the  two  end  points  and

multiplying it by the interval gives the area of this trapezoid.

Now, interestingly if we try to figure out what is the error; then we find that trapezoid

rule incurs slightly higher error than rectangle rule.  The approximation error will be

incurred only when we try to integrate a second degree polynomial by these two rules.

So, let us try to integrate x2 by using both of these - rectangle rule and the trapezoid rule,

over the interval 0 to 1, just to serve as an example.
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So, you can check it out the error in integrating a quadratic by using trapezoid rule is two

times that incurred using rectangle rule. Work it out and you will be surprised at this

result. But interestingly the error is of opposite sign in both the methods. And therein lies

opportunity and this  is  how numerical  algorithms are.  The scope of  improvement  in

numerical  algorithms  are  detected.  How  do  we  make  use  of  fundamental  results,

fundamental observations and use that to our advantage?

So, two basic first order methods have an error of the same order. They are first order

accurate, but the error term is of opposite signs. So, that means, if we can somehow add

them together then the error term will vanish because the error is of opposite sign. Also

we now know that error in trapezoid rule is two times that of the rectangle rule. 

So, if I use the rectangle rule and to double that, and added to the trapezoid rule, then the

error  term will  vanish,  and I  will  get  a  higher  degree of  accuracy.  And that  is  how

Simpson’s  rule  is  derived.  Simpson’s  rule  is  derived  from  this  observation  and

eliminating the error by a suitable combination of rectangle and trapezoid rules. 

If you recall I1 refers to rectangle rule and I2 refers to the trapezoid rule. So, two-third

weightage is given to rectangle rule result and one-third weightage is given to trapezoid

rule result,  and resulting summation is familiar  Simpson’s rule and that has a higher

degree of accuracy, it is second order accurate.



If we go further in this context, then we can develop a series of formula, Newton-Cotes

formula  based  on integration  of  Lagrange  interpolation  polynomials.  So,  if  we have

sampling points and the function values and do not have the analytical expression then

we can actually construct a Lagrangian interpolation.

And once we have the Lagrangian interpolation, the integral of Lagrangian interpolation

is a well  known function and the integral  can be evaluated and the data  sets can be

populated  and  that  is  how  the  Newton-Cotes  formulas  are  derived.  So,  weighting

coefficients  in  the  weighted  sum,  are  essentially  the  terms  related  to  integration  of

Lagrangian interpolation polynomials between the range of integration.

Another  interesting issue is  these are all  based on polynomial  interpolation and very

handy. But if polynomial interpolation is not very good at approximating the function

over the entire range, cubic spline interpolation can provide a very good approximation

to the function over a smaller range. 

Hence we can divide the range into smaller segments, and construct cubic spline over

smaller  segments.  Once we have  the cubic  splines  we have  an analytical  expression

which we can simply integrate and get the results for numerical integration - definite

integral over the certain range. 

So, the process, obviously begins with construction of suitable cubic spline over smaller

intervals  and  then  integrate  those  cubic  polynomials  analytically  and  nothing  can

possibly go wrong here.
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This is particularly attractive for integrating functions which are available only as a set of

discreet samples. So, if the function values are only available as a set of ordered pair of

points then I can very easily construct cubic splines and then integrate the cubic spline

functions analytically over individual segments and that can be taken as approximation

for integrating over the tabulated data points between certain range a to b.

Now, all these numerical quadratures that we have seen so far, have a common theme -

definite integral is replaced or is approximated by a weighted sum of function values. So,

function has to be evaluated at specified points unless it is given as a data pair.

But if  it  is  not available,  it  has to be evaluated at  specific  points,  then there is  cost

involved,  computational  cost  involved  in  computation,  in  evaluating  the  function  at

specified  points.  Function  evaluation  is  the  most  expensive  operation  in  this  whole

process because sometimes very complex functions  need to be evaluated. There are so

many  things  that  go  on  in  evaluating  the  function  particularly  in  finite  element

approximation that we will develop. 

So, it is always worthwhile to explore which method or which integration method will

provide sufficient accuracy with minimum number of function evaluations. And it  so

happens that Gauss-Legendre quadrature as they are called, are the optimal in terms of

sampling required for integrating polynomials.



As long as we are integrating polynomials and over a finite range, there is the minimum

number of function evaluations that we may need for a specified degree of accuracy. The

Gaussian quadrature or Gauss-Legendre quadrature as it is called is the most efficient

computing technique. 

So, what is done? I mean, obviously, the basic forms still  remains the same function

integral. Definite integral is still evaluated as weighted sum of function values. However,

the sampling points are determined based on the optimality criteria. 

We try to find out what is the most accurate approximation that can be constructed. Most

accurate evaluation of the integral for a given number of sampling points and find out

what should be the optimal location of those sampling points and associated with what

should be the optimal weighting coefficient. So, both the combinations are left to the

optimization process, the weighting coefficient as well as the sampling point. 

So, we try to find out what is the weighting coefficient and what is the corresponding

sampling point to achieve the maximum accuracy in the numerical quadrature.
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The derivation is a little bit involved and not really worth spending time on it. What we

really need is the result. It so happens that the optimal sampling locations correspond to

the  roots  of  orthogonal  Legendre  polynomials  of  required  degree.  This  theory  of

polynomials has a very interesting contributions to the numerical computations. 



So, as we saw roots of orthogonal Chebyshev polynomials giving us optimal locations

for  function  polynomial  interpolations.  Now,  we have  roots  of  orthogonal  Legendre

polynomials  which  would  give  the  optimal  locations  for  evaluation  of  numerical

quadrature.

So, a polynomial of (2n - 1) degree can be exactly integrated by using a n point Gauss-

Legendre quadrature defined over interval  of -1 to  +1.  Any arbitrary interval  can be

mapped into  this  range and function  values  by  suitable  change  of  variables  and the

integral is evaluated by weighted sum of function values over the interval.

So,  a  n  point  quadrature  rule  would have these n number of  terms wi multiplied  by

function evaluated at ξ, ξ being the sampling point location which would correspond to

the root of Legendre polynomial over the range -1 to +1. 

And  for  use  with  arbitrary  limits,  a  linear  transformation  between  the  variables  of

integration can be imposed, so that integral between a to b can be mapped to integral

between -1 to  +1, with suitable change of variable, so x can be mapped to normalized

variable ξ by suitable linear transformation.
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So, typically we have these sampling points and associated weights as given in table. If

we have only one function evaluation, single point evaluation, then that corresponds to

the midpoint of the domain [-1, +1] and the weight is 2. And polynomial of order (2n - 1)



can be exactly integrated. So, first degree polynomial can be exactly integrated and as

you can see that corresponds to rectangle rule if you work this out. 

If we go by two number of function evaluations the sampling points are  +1/√3  and

−1/√3  and weighting coefficient is unity. And for 2 number of function evaluation the

highest degree of polynomial that can be integrated exactly is 3. i.e. we can integrate

cubic polynomial exactly by just 2 function evaluations. 

And if I go to 3 number of function evaluations then I can integrate up to fifth degree

polynomial exactly. And the sampling points are 0 with weight of 8/9 and ±√3/5  with

the weight of 5/9. 

In  finite  element  approximation  we  will  rarely  have  need  to  go  beyond  3  point

quadrature rule, so that actually suffices for all our practical purposes. But many books

on  numerical  analysis  will  give  you  appropriate  sampling  points  and  weights  for

different orders of Gauss-Legendre quadrature that can be used for analysis and most

efficient evaluation of numerical quadrature.
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Now, that was for one-dimension when there was only one independent variable. What

to  do  in  case  of  two-dimensions  or  three-dimensions?  Our  problems  can  be  multi-

dimensional.  So, the new integration also has to be evaluated with respect to several

dimensions - double integrals and triple integrals.



The  general  form  is  very  easily  extended  to multi-dimensional  integral  where  each

integral is replaced by a weighted sum. So, a triple integral is replaced by a triple sum,

approximated  by  a  triple  sum,  and  weight  and  the  sampling  points  are  chosen

appropriately just in the same way as in the case of one-dimensional evaluation. So, with

this we can compute the numerical integral as we may need during the process of our

operations  of  finite  element  method formulation,  and then that  will  set  the stage for

further calculations.

So, with this we wrap up the basic introduction and basic tools that we may need for

development of finite element approximation.  We will begin with discussion of finite

element formulation from the next lecture.

Thank you.


