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Lecture - 06
Polynomial Interpolation and Numerical Quadrature - III

Hello. So, in our last lecture we discussed about a different interpolation families starting

with Lagrange interpolation, simple polynomial interpolation based on function values at

nodes of interpolation, and then alternate form of polynomial interpolation and that is in

the Newton form. 

And then also we followed it and discussed the optimal way of computing polynomial

that is Horner’s algorithm that is based on minimizing the floating-point operations while

evaluating the polynomial at any value of the independent variable.

Then we discussed  what  is  the importance  of  sampling  points;  that  is  if  we are not

careful in choosing sampling points or nodes of interpolation, then even if the function

values of the interpolation function may exactly agree with the specified function values

at the nodes, but in between nodes there can be very wild fluctuations. 

And with suitable roots of Chebyshev polynomials we saw that they provide a suitable or

very nearly optimal location of nodes and the error, or the oscillation between the nodes

of interpolating polynomial is very much under control



(Refer Slide Time: 02:02)

And we can consider constructing a very good quality of approximation by using roots of

Chebyshev polynomials as the nodes of interpolation. Then another way to constrain the

errors  or  constrain  the  behaviour  of  interpolating  polynomial  is  by  adding  more

information during interpolation and that is by considering not only function values, but

also the derivative. 

And that leads to what we call as Hermite polynomial interpolation. And with just two

nodes we can actually pass a cubic interpolation polynomial based on two conditions at

each nodes.
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So, total four conditions are available for evaluating unknown coefficients. So, a cubic

polynomial  can be interpolated,  and that is what we call  as piecewise cubic Hermite

interpolation polynomial. 

And this is a very useful tool; piecewise cubic Hermite interpolating polynomial PCHIP

that is used for interpolating data between two points, and with the guarantee that the

trend - whatever may be the trend of data - ascending or descending, will be preserved.

So, we are not disturbing the trend of data when we interpolate using PCHIP.
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Now, another kind of interpolation that is often used is spline interpolations. And as we

saw during  the  approximation  of  Runge’s  function  by polynomial  interpolation.  The

primary source of problem was that we were trying to develop the approximation over

the complete range at one go.

So, the kind of global approximation that we were trying to control  and develop was a

very ambitious goal and we are not in control of all the points in the domain of the range

with the same degree of control,  and it  might be better  to divide the range and then

construct approximation over smaller ranges

So, that is what we call as divide and conquer. So, PCHIP – Piecewise Cubic Hermite

Interpolating Polynomial -, just two nodes at a time and that will allow us to fit a cubic

interpolating polynomial. 

That can also be considered as part of this strategy - divide and conquer, but cubic spline

interpolation  splines  have higher  degree  of  smoothness  than  PCHIP interpolation.  In

PCHIP we only considered the first order derivatives to be included in the interpolation

information.

In spline, we use higher order derivatives also. So, the function that we generate is much

smoother  than the  PCHIP interpolation.  So,  as  we were saying,  this  is  based on the

primary source of errors in approximation; which is the attempt to construct a single

approximation over the whole range of the variables. If we can divide the data range into

smaller parts and construct approximation over individual parts, we can actually get a

much better approximation.

And that also needs to adhere to the continuity between adjacent data ranges. So, when

we divide the entire domain into separate smaller ranges, we also need to take care how

the variation happens or how the information exchange happens between the boundaries

across  these  smaller  ranges.  So,  continuity  has  to  be  ensured  to  make  sure  that  the

function  looks  continuous  and  there  is  no  jump  in  the  approximation  across  the

boundaries.

So, as I said PCHIP approximation is one such approach which preserves the trend of

data and cubic spline we can actually generate higher degree of smoothness than PCHIP,

but  at  the  cost  of  losing  control  over  the  trend.  So,  while  the  function  that  we



approximate using cube splines would be much smoother much more pleasing to visual

appeal, but there is no guarantee that trend of the data will be preserved.
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So, theoretically a spline is a function that consists of polynomial pieces joined together

with  a  certain  smoothness  conditions.  The  points  at  which  the  function  changes  its

character are termed knots in the theory of splines. So, instead of nodes we call those

points between which we are defining one particular segment as a pair of knots.

So, for (n + 1) knots there are n number of polynomial segments. So, between two points

we will have one polynomial. So, if there are (n + 1) knots then there are going to be n

number of segments and these we call as spline segments. So, denoting them by S i as a

function of Xi ranging from 1 to n. So, these are n number of spline segments for which

we need to satisfy the continuity conditions on the interior knots.

There are total  (n + 1) knots - two extreme knots denoting the boundaries and (n – 1)

number of knots which have to satisfy the continuity conditions. So, we can have splines

of various degrees, but cubic splines are most often used. They are the most popular

spline functions that are used. So, cubic splines which satisfy continuity requirements for

up to second degree derivative are aesthetically very pleasing.

So, that explains why cubic splines are most popular spline functions that are used in

function  approximation  or  even  graphs.  I  mean  if  we  just  rely  on  some  plotting



software’s and give the data and leave it at the mercy of the software to plot a best fit

curve, then the chances are it will be a cubic spline fit. 

For splines of degree higher than 3, in addition to having more computation we do not

generally find any significant advantage in it as far as the interpolation or information

regeneration goal is concerned.

So, for cubic splines we impose three continuity conditions on the spline segments - the

function value itself, the first derivative and the second derivative. These are imposed at

the interior knots and that gives us sufficient constraints  and continuity to ensure the

smoothness requirement.
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Total 4n conditions are required to uniquely define n segments of cubic polynomials. So,

where do we get these 4n conditions?  Let us count our conditions that we have - 2n

conditions are provided by the interpolation requirements at the two ends of n segments.

Additional two constraints are available at each of the interior node derivatives that is at

the interior knots.

So,  2(n  -  1) conditions  are  provided  by ensuring  the  continuity  of  first  and second

derivatives at the (n - 1) interior knots. So, the first derivative of the spline functions

across the boundary has to agree, the second derivative of these spline function segments

have to agree across the boundaries.



So, adjacent spline segments have to be consistent. Not just with respect to the function

values, they also have to ensure that the continuity of first and second derivatives are

maintained across the knots. That provides us (4n – 2) conditions. We are still left with

two  conditions  to  be  provided  and  the  remaining  two  conditions  are  made  up  by

assumptions.

We assume second derivative to vanish at the first and last knot. So, once we make this

assumption then the  spline  approximation  that  we get  is  referred  to as  natural  cubic

spline. But if we have additional information about the second derivative at the first and

last knot, we can specify those values and that would be specific to the particular case.

So, it will still be cubic spline, but it will not be a natural cubic spline.
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So, determination of appropriate natural cubic spline for a given set of data or knots it

begins with Lagrange interpolation of the second derivative. So, second derivative we

want  second  derivative  to  be  continuous.  So,  obviously,  then  we  define  Lagrange

interpolation that will ensure that continuity is maintained.

So, Lagrange interpolation of the second derivative of the spline function is defined. If

we call these second derivatives whatever the values may be as some variable unknown

Z. Then there are (n + 1) number of Z. So, the those are the second derivatives with the

condition constrained that first and last second derivatives are 0, so that is the condition

for natural cubic spline. 



Or if we do not want if we have additional information of second derivative about at the

starting  and  end  points,  then  those  values  can  be  substituted  at  these  boundary

conditions.  So,  for  each  segment  we can  construct  the  interpolation  between second

derivative as a Lagrange interpolation and this is what I mean by “any segment will be

bounded  by  two  values  of  the  second  derivative  and  we  can  construct  piece  wise

Lagrange interpolation over each segment”.

So, once we have this second derivative as a linear function then we can integrate it and

derive  the  spline  functions  with  some  unknown  coefficient  C  and  D  those  are  the

unknown coefficient. So, we have this cubic function. So, if we integrate it then we will

get  a  cubic  function  and  that  is  what  we  arrive  at  by  integrating  that  Lagrange

interpolation.
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 Now this coefficient Ci and Di for each segment each of these i segments can be derived

by  imposing  the  constraints.  So,  that  is  just  a  rearrangement  of  terms  for  ease  of

computation. So, these Ci and Di are evaluated in terms of second derivatives and then

we impose the condition on interpolation condition on this spline approximation at the

end points of this spline and that gives us a set of simultaneous equations to solve.

And then once we solve the simultaneous equation that yields a set of values which are Z

- the second derivatives. And once we have the second derivatives available with us then

we can substitute it back in this approximation and all splines can be derived over each



segment.

So, you can have a look at this spline interpolation, but the whole idea of this spline

interpolation that I wanted to discuss is, you can get the derivation and you can look at

the numbers and work out the numbers and plot the spline, the Runge’s function is a

good example, to try out spline interpolation and see what difference it makes to the

approximation. And its almost indistinguishable at least graphically.

And for that matter even PCHIP will do a fairly decent job of approximating Runge’s

function,  and the  entire  process  brings  out  the  emphasis  on the  basic  philosophy of

approximating  a  function  which  is  to divide  and  conquer.  So,  instead  of  trying  to

approximate over the whole range at one go it is always better to divide the domain into

smaller sub domains and then construct approximation over each of these smaller sub

domains with certain constraints that will ensure certain degree of continuity across the

adjacent sub domains, and as a whole we can develop a very good approximation that

would suffice for all practical purposes, for engineering analysis.

And while we are at the topic of interpolation, we will also try to wrap it up by using by

discussing one of the interesting applications of interpolation theory in a very different

context.
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So, we can actually find a very good approximation for function derivative by using



polynomial interpolation. And many times we need differentiation. For example, if we

are using any optimization process then gradient is a very often requirement. We need to

find out gradient of the optimization function and that is a very often required process. 

And  the  convergence  of  many  processes  depends  on  the  quality  of  derivative

computation  or  how  accurately  we  can  compute  the  gradient,  because  that  is  what

defines the search path for optimal solution and several other instances where gradient

information may be required.

So,  typically  a  gradient  of  any  function  is  often  approximated  by  finite  difference

approximation.  The theoretical  definition  of  the  gradient  is  based  on  the  limiting

operation. And in finite difference, throughout the limiting operation we just take the

finite difference. So, the function values at two different points divided by the difference

between those two points.

The separation between two points is “h” as seen here. The points that we are sampling

the function are separated by some distance “h” and we are taking the limiting operation

as “h” tends to 0. So, in practice it has to be a small value and then we can consider this

finite difference approximation to be a good approximation of the derivative.

Now, while  we were discussing about  floating point  operation,  we also saw that  the

difference between two numbers which are nearly equal, always leads to a catastrophic

cancellation and severe loss of precision and this is what happens in finite difference

approximation for computation of derivatives.

So, f(x+h) is not going to be very different from f(x). So, these two numbers are likely to

be very close to each other, if “h” is not very large (which should be small). And “h”

should be small  if  we have  to  approximate  the  limiting  operation  to  any reasonable

degree.

So, now we have devil's alternative. If I use too large value of “h” just to ensure that

function values are different then I am not probably getting a good idea about the local

derivative. And if I reduce “h” to a small enough number then the chances are that I

might  incur  very  heavy  error  in  computation  of  derivative  because  of  catastrophic

cancellation and loss of precision.



So, what to do? This entire process is a first order accurate process and that is based on

the Taylor series approximation.  If you can look at  this  finite difference and expand

function in the neighborhood of (x+h), then from the Taylor series expansion we can get

the order of error. So, the error term is second order.  This h2 error term is first order,

because this h2 term gets divided by “h” and that is how it is proportional to first degree

of “h”.

So, that is a first order accurate, the error term is proportional to the first power of the

separation “h”, and we can actually work it out by backward difference; one is forward

difference  and  another  expression  –  the  second  expression  -  is  using  backward

difference. No change at all but this allows us is to use this to cancel this error term. And

if we add these two approximations of finite difference then we can get the difference

between double twice the interval and interestingly the error now becomes second order.

So, if I change the finite difference approximation to twice the interval, then the error in

the  approximation  of  finite  derivative  is  of  second  order.  So,  from  the  first  order

accuracy  I  go  to  second  order  accuracy.  So,  I  can  define  a  function  which  is  an

approximation. So, this particular difference operator I use  is the basic function that is

approximating the finite gradient and then there are error terms.

So, quadratic error and then there is fourth degree error. All odd terms will get canceled

out during the process of these additions. Odd powers of error term will get canceled out.

So, since “h” is an arbitrary interval I can choose anything. So, if I choose “h”, to be half

the interval then this error term is also going to reduce. The second term becomes h2/4,

third term becomes h4/16.

I  can  again  eliminate  the  h2 term,  adding  the  two  terms  and  looking  at  this

approximation.
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So, I can eliminate the terms from these two expressions and find out what is the error

term.  So,  the  function  value  that  I  have,  one for  the  sampling  of  “h”  and  another

approximation for the sampling of h/2, and then the function derivative has an accuracy

of fourth order.

So, considering that initially we were having first order accuracy finite difference. Now

we are looking at fourth order accuracy of the gradient function and without incurring

catastrophic cancellation. And this function φ(h) converges to the desired gradient as

“h” tends to 0.

However, we cannot really compute f(h) at h=0.  What we can do is, we can construct

interpolation function, as an approximation for φ(h) and that can be evaluated for h=0.

So, a sequence of φ(h) for different intervals can be generated and their interpolation

polynomial in terms of “h” can be constructed through this data set. 

Once we have this interpolation polynomial then we can find the appropriate function

derivative at h=0 as an approximation and that would be a very good approximation for

the function derivative for further use which will hopefully not suffer from catastrophic

cancellation and loss of precision and the computations would be more stable and more

robust.

This ends our discussion on polynomial interpolation and provides the basic background



for construction of finite element approximation. I will come back to this basic thing that

we  discussed  today  -  divide  and  conquer  -  that  forms  the  basis  of  finite  element

approximation.

We will  keep going back on this  thing  again and again,  divide the domain  into  sub

domains and construct approximation over sub domains while ensuring continuity across

the boundaries of sub domains. Another issue that we need to discuss that will be useful

and extensively used in finite element approximation or construction or implementation

of finite element method is numerical integration.

Finite element method would not have been as successful as it is today, had it not been

for digital computers.  All computer computations have to be cast on appropriately for

application on a digital computer. And integration is an integral part of that and that is

what we will discuss in our next lecture, numerical integration

Thank you.


