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Hello  friends.  So,  we  have  seen  the  DFT  the  process  of  DFT  and  how  DFT  is

implemented  very efficiently  using a  fast  Fourier  transform algorithm.  We discussed

briefly the basis and genesis of radix 2 algorithm wherein, the data length is considered

to be integer power of 2. And that allows us to repeatedly divide the problem by a factor

of 2 and until we end up with two pairs of data one pair of one set of two data points. 

And Fourier transform of two data points is only given as sum of those two data and

difference of these two data. And subsequently, this is these are again scrambled back

the original full length waveform. So, and efficient as we discussed I mentioned earlier

that efficient implementations of fast Fourier transform are already available. The main

emphasis of our discussion is to understand the structure or the relationship between

discrete Fourier transform and the continuous Fourier transforms. 

Under  what  conditions  discrete  Fourier  transforms  can  be  a  good  approximation  to

continuous Fourier  transform. Because in  our theoretical  developments  we often talk

about  continuous  domain  the  time  domain  is  also  in  as  a  continuous  time  domain

waveform  and  corresponding  transform  frequency  domain  representation  is  also

considered to be continuous function of frequency.

Now, for numerical  computation  those these are  of  course,  represented by discretely

sampled time data points and also discrete frequency components. And these discrete

time samples and discrete frequency components they are they form a set of periodic,

infinite periodic functions. 

And as long as we look at one period of these waveforms in time domain or in frequency

domain  within  that  one  period  they  correspond to  representative  values  at  the  those

discrete points of the continuous waveform and continuous Fourier transform. Provided

that certain care is taken about the parameters of transform.



So, now we come to the application of DFT. So, far we have been discussing about the

theoretical aspects what how DFT and what how to interpret DFT results. But coming to

theoretical applications where do we use Fourier transform in engineering analysis and

why it  is  such an important  development,  such a  major  development  in  engineering

analysis  that  actually  revolutionalize  the complete,  revolutionize  the complete  field  I

mean several new applications and new products came into being just because there was

a  new algorithm fast  Fourier  transform which allowed very  efficient  computation  of

Fourier transform on a digital computer. 

So, let us look at the applications discuss about the applications. And the first one that is

the  most  commonly  most  widely  used  application  as  far  as  vibration  analysis  or

structural dynamics applications are concerned is the evaluation of convolution integral.

Convolution  integral  often  is  also  referred  to  as  the  Duhamel  integral  in  theory  of

vibration  or  structural  dynamics  literature.  And  it  is  the  basic  way  to  compute  the

dynamic response to any arbitrary excitation of a linear time invariant system which is at

rest initially.

(Refer Slide Time: 04:46)

So,  theoretically  it  is  given  as  y(t)  that  is  the  response  of  the  system  is  given  as

convolution between excitation  f (τ)  and multiplied by convolved with the impulse

response function h(t−τ)d τ . Now, this is seemingly very simple expression, but this



appearances can be deceptive and this is a very very expensive operation to do on a

computer, let me show you what are the aspects involved.

First of all this the variable of integration is τ  and h(t−τ)  actually involves three

operations. First it is the we call it  h(−τ) , so that is actually the folding operation.

So, we look at the mirror image. So, whatever is the impulse response function h of as a

function of τ  impulse response function of course, it has to be for a causal system it

can happen only after the application of the impulse. 

So, if we assume that then impulse, unit impulse is applied at time t = τ = 0 then the

response will always happen only for positive values subsequent to the application of the

impulse. So, that impulse response function is defined only for positive values of τ .

So, what we are doing here is we are first we will first fold the impulse response function

about the origin. 

So, that gives us h(τ )  is mapped to the mirror image we look at the mirror image. So,

that gives us  h(−τ)  as a negative function,  negative value of  τ  and then it is

shifted then it is shifted by parameter t. So, whatever time instant we need to compute

the response we shift it by that much amount. 

And then  these  two  products  are  calculated  f (τ)  and  h(t−τ)  this  product  is

calculated  and  then  the  integral  is  evaluated.  So,  all  these  operations  of  course,

continuous time it can be done I mean analytical expression, the analytical integrals can

always be compute evaluated if f (τ)  functional form is known.

But it is often done numerically using by replacing this integral by a summation. So, that

sequence  of  operations  are  done  as  folding,  shifting,  multiplication  and  then

accumulation of the product terms area under the curve. So, that is the total process that

it takes for calculation of response. Now this; obviously, requires lot of lot and lot of

floating point multiplications and that consumes quite a large amount of time and effort. 

Now, this convolution in time domain it can be converted, it can be shown, it can be

proved very easily that if we take the Fourier transform of both sides then it essentially

this convolution in time domain is replaced by simple term by term multiplication of

Fourier transforms of individual components.



So, in frequency domain Y %omega the response of the system is simply given as F

%omega  that  is  the  Fourier  transform  of  f (τ)  and  H (ω) that  is  the  Fourier

transform of impulse response function. So,  H (ω)  is known as frequency response

function that is Fourier transform pair of impulse, unit impulse response function. And

f (t) and F(ω)  they are they form the Fourier transform pairs of excitation and its

corresponding Fourier transform.
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So, desired response in time domain can be obtained by inverse Fourier transform of

Y (ω)  since Y (ω)  can be computed simply by considering the product of F(ω)

and H (ω)  that is very easily computed. And then Fourier inverse Fourier transform

can be done can be computed for Y (ω)  and we have response of y(t) that is desired in

time domain. 

Because time domain response is important because we can extract the maximum value

the  critical  value  for  that  is  that  may  be  important  for  design  calculations.  That  is

available only from time domain representation that maximum value cannot be extracted

from frequency domain representation. So, convolution is characterized by a sequence of

folding,  shifting,  multiplication  and  integration  and  it  is  a  very  very  expensive

computational operation involving a large number of floating point multiplications.

So, simple term by term multiplication in frequency domain is an attractive proposition

particularly with the help of FFT algorithm which allows calculation of discrete Fourier



transform  very  efficiently  and  very  quickly  and  very  accurately  if  we  are  careful.

Convolution  of  the  continuous  time  domain  waveform and  its  continuous  frequency

transform can be approximated reasonably well by one period of discrete time domain

samples and discrete Fourier transforms over fundamental range of - %pi to + pi. 

If the period, the time domain period and the sampling interval and the period of the

frequency domain representation if that is chosen carefully. So, if we are not careful in

this selection then we will see how things can go horribly wrong. 

Fortunately, the need for having data length of as integer power of 2 comes to our rescue

even if somebody or a user is not aware of the pitfalls of these periodicity and associated

complications  of  discrete  Fourier  transform he  may  he  or  she  may  not  realize  that

problem because most of these issues are taken care of by the process of extending the

data length. So, that the data that we handle is suitable for use with radix two algorithm.
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So, in DFT computations the waveforms are considered to be periodic a crucial factor for

selecting  appropriate  parameters  for  computations.  In  particular  the  data  samples  of

forcing function should be padded with enough zeros at the beginning, or at the end, or at

both ends whichever is preferred for individual liking. 

So, that the free vibration response at the end of previous period of force data does not

interfere  with the forced vibration  response for  the segment  of forcing function  data



being considered in the DFT. So, we will see this the implication of this somewhat long

winded statement in a example that we do. 

So,  let  us  consider  the  response  of  a  single  degree  of  freedom system,  very  simple

excitation I mean. So, one degree of freedom only one response and that too excited by a

sine wave, so fraction of a sine wave. So, sin %pi t and we consider T_0 as a some

duration which is intentionally we choose that which is not an integer number of the

period of the wave.

So, T_0 we consider as 2.54 second and damping ratio critical damping ratio is 0.05 and

natural frequency of the oscillator is ωn  is considered to be 6π  radian per second.

So, the excitation is sinπ t  as for 0 to as t ranging from 0 to T0 and outside this range

it is 0. So, let us see how it looks like, the analytical solution for this can be computed

using analytical response I mean using two eras, forced vibration era.
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It is going to be sum of this transient part which is because of the initial conditions and

this is the forced vibration response that comes that is as you can see it is defined by

sinπ t  and cos πt  terms. So, these are the forced vibration response and this is the

transient response which will decay after some time as t increases and this is computed

just, so as to have zero initial conditions. So, displacement and velocity are 0, so the

system starts at rest from at rest condition. 



And after  T 0  once the excitation has been removed the system, the oscillator will

execute  simple  harmonic  motion  because  of  the  initial  whatever  is  the  velocity  and

displacement  at  the instant  of  removal  of  the  excitation  that  is  at  T 0.  So,  at  that

particular instant whatever is the displacement and velocity those will become the initial

conditions for free vibration response.

And this second solution is for that free vibration era and for times greater than T 0 .

So, let us assume I mean this is the analytical solution of course, we can it is a simple

problem and we can have solve this differential equation analytically and now let us try

to compute the solution by using Fourier discrete Fourier transform. 

So, let  us for that  let  us assume the forcing function be given as a set  of discretely

sampled values 0.02 second apart. So, that gives us a total number of samples as 128

which is 2 rise to the power 7. And I mean, because it is integer power of 2, so radix 2

algorithm FFT algorithm can be used theoretically  I mean nothing prevents me from

using it without any zero padding.

And that is the reason I took this sampling rate of 0.02 sampling interval because the

number of sampling total number of samples is integer power of 2. So, that integer power

of 2 is of course, necessary ingredient, but that still does not preclude or does not relieve

us  from the  consideration  of  zero  padding as  we will  see  in  this  example.  So,  zero

padding serves two purposes one is of course, to allow radix 2 algorithm and for that we

need total data length to be equal to integer power of 2. 

But it also requires that zero padding also help us in taking care of the issues arising

because of the periodic nature of waveforms in DFT calculations. The sampled forcing

function is then padded with zeros at both ends with two different padding lengths. 

So, once case we take it as without any zero padding because total length of data points

is integer power of 2, second case we consider as we add some zero at both ends. I mean,

I  use  both  ends  because  its  more  conscious  it  is  visible  physic  that  the  effect  of

periodicity can happen. Response of the equation of motion is obtained by convolution

via DFT.



(Refer Slide Time: 18:06)

So, the same process I mean  Y (ω)  computed as  F(ω)  multiplied by  H (ω) .

And this is the response, this is the excitation as you can see the sine wave and 2.54

second is that is the duration of this excitation. And there is no zero padding as you can

see this is we are using this excitation as it is.

And the on the right  hand side we have corresponding displacement  solution y as a

function of time t. So, y as a function of time t again given for up to that 2.54 second as

simple process compute the Fourier transform of this DFT of this time domain waveform

multiply  it  by the impulse  response function frequency response function in  discrete

frequencies. 

And then compute the inverse Fourier transform, inverse discrete Fourier transform to

give us this waveform. Now, first thing I mean we cannot say anything from this does

not look anything unless we alarming I mean, it looks like a waveform. But one peculiar

thing should be noted that I mentioned we mentioned that the problem this system starts

at rest condition. And the initial conditions here in this case are I mean; obviously, the

problem does not satisfy the initial conditions, the solution does not satisfy the initial

conditions of the problem. 

So, the initial displacement is somewhere around 2.8 mm and the velocity is also very

high negative velocity in the at time t = 0. So; obviously, this is something is wrong

somewhere and, what happens? So, if I pad some zeros let us say add some zeros at in



the front end, some zeros at the back of the excitation.  So, this excitation looks like

sudden start of this sine wave pulse and then sudden withdrawal and after that it is 0.

So, if I use this excitation and again compute DFT and try to find what is the inverse

discrete Fourier transform Y (ω)  that is computed using DFT and we get something

like this. So, this is of course, the response is little different I mean significantly different

from what we had in the earlier case there is some ripple here again this is erroneous I

mean, there cannot be any response before the excitation is applied. So, excitation comes

at about in this case about 1.25 second. 

So, this is this part of the response seems to be fine that it starts from this point, but in

this portion these oscillations they are of course, spurious, because there is no excitation

at this point. So, how can there be any response, the system is supposed to be at rest here.

And after the withdrawal of the excitation then of course, it is the free vibration that we

can see the familiar free vibration curve, so that seems fine. 

So,  little  improvement  that  it  the initial  condition at  the start  of the excitations  does

appear to be close to the at rest condition, but we still have this problem of these ripples

in the beginning portion where there was no excitation.  So,  we extend the zero pad

further, so the time axis in all these cases is different. So, first set of first pair of graph

the time axis ranges from 0 to 3 in the second pair of graphs the time axis ranges from 0

to 6 seconds.

Now, we go back go to another case of zero padding, now the time axis goes from 0 to

12 seconds. So, zero padding is increased the waveform that we have is still 2.54 second

long. So, rest of these is all zero padding and once we do that then again you we see that

the ripples are there, but ripples are reduced almost to negligible extent. 

And particularly at the close of the beginning of the excitation, two excitation it is almost

imperceptible.  And  the  solution  does  start  from  at  rest  condition  and  we  have  this

response and followed by at the time of withdrawal of the excitation the free vibration

response follows as it should correctly.

So,  what  is  happening  here?  The problem here  is  that  the  DFT,  for  DFT when we

compute it is computing the response of a periodic response to a periodic excitation with

this particular whatever excitation we are looking at that repeating itself. So, when this



period once this excitation is ends this is the excitation that we look at 2.54 and then this

pattern repeats. 

Then what happens is the initial conditions or whatever is at the end of the excitation the

free vibration response, at the end of this excitation is added to the vibration response of

this individual length of the excitation. And that is what does not allow this waveform

this response to start from 0 initial condition.

Because the  we already have some kind of  response because of  the previous period

previous  segment  or  data  segment  that  we will  have,  because  the this  free vibration

response will of course, be there after the excitation is removed. So, it will always be

there and on top of that we add this force vibration response again, so this kind of error

will always be there. 

And this  can  be  eliminated  only  when  the  padding  length  is  sufficient  for  this  free

vibration response to die down. So, if this free vibration response dies down considerably

then it has no effect whatsoever on the computed response and the response computation

would be more or less representative of the true response.
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So, without zero padding the computed response is significantly different from that for

zero padded cases. The computed response for no padding case does not even satisfy the

initial at rest conditions. In the absence of zero padding the initial portion of the solution



is  corrupted  by  the  implicit  periodicity  effects  of  DFT computations.  These  can  be

rectified by the provision of adequate zero padding of the excitation samples. 

So, we compare these three cases for the removing after the calculation after we remove

the zero padding, so that we can plot the all of them on the same common time axis. And

you can see that the dark solid line is the analytical response that we computed from the

theoretical solution. And this dashed response is what we have from without any zero

padding. 

So, to begin with it is oscillating about the true solution and gradually it merges with the

true solution towards the end of the excitation. And with the zero padding the solution

actually matches very well with the true solution, analytical solution. For small length of

padding there are some ripples over the peaks, but for a larger zero padding the it is

almost indistinguishable from the analytical solution. 

So, the whole point of this example was to demonstrate the importance of zero padding

the zeros that you see in that time domain signal discrete sample data those are important

and those should not be discarded those should not be discarded as useless data points.

They  do serve  some purpose  and  they  help  us  in  controlling  the  transients  that  are

originating that are that will creep into the solution computed solution because of the

hidden periodicities of DFT computations. 

So, that is the convolution, so computing the response. Now, we come to the other aspect

the deconvolution, deconvolution is the process of reconstructing input signal from the

response by reversing the effect of convolution on input signal.
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So, again if we do the time domain analysis the it is almost impossible to deconvolute

anything,  but  infrequency  domain  because  its  only  term by term multiplication.  So,

deconvolution can be performed very easily infrequency domain and this is often done.

Because most of the time in earthquake engineering we have recordings at the free field

surfaces, ground surface and we do we can have earthquake ground motion recorded at

the free field. 

But  we  know that  the  this  motion  has  been  modified  in  moving  up in  propagating

upwards from the bedrock to the soil surface. And usually the foundations are laid at the

firm strata or at the bedrock level. So, what is the excitation to the foundation to the

building or whatever structure, so that should be the motion that is being experienced by

the foundation at the base of the foundation. So, that foundation input motion can be

computed by using deconvolution process.

So, deconvolution is an important step in dynamic soil structure interaction analysis for

determining foundation input motion. The frequency response function H %omega for

soil  layers is  developed from an analytical  model  and the recorded free field ground

motion is considered as the response of soil deposit. So, this is like the schematic the

response of soil layers underlain by rocky strata. 

So,  this  is  bedrock  and  the  base  motion  the  ground  acceleration  the  because  of

earthquake there is an acceleration and this leads to elastic waves propagating through



the soil layer. So, they are they depending on different types of soil layer there would be

different elastic properties and accordingly the motion will be modified and eventually

we record the surface motion.

So,  this  surface  motion  if  I  apply  the  surface  motion  at  the  bedrock  level  for  the

excitation  that  may  not  be  correct.  Because  it  may  erroneously  be  using  large

amplification of certain frequencies amplified by these soil layers and it may deamplify

certain frequencies which are not transmitted by these soil layers. 

So, the input using free surface record as an input at the foundation input motion is a

error in input is not the correct input to provide. So, what is done is we can compute this

free field response and use the mass characteristics or frequency response function of this

soil strata and find out what is the input motion at the base by deconvolution, how to do

that? 

But before we do that there are certain basic observations, it has been observed it has

been observed that about 75 percent of the power, about 87 percent of the amplitude in a

free  surface  motion  can  be  attributed  to  vertically  propagating  shear  waves  for

frequencies up to 15 hertz. So, before we perform any deconvolution exercise what we

do is it is usual practice to use a filtered free field motion for deconvolution. 

So, typically we use a low pass filter with cut of frequency at 15 hertz to eliminate any

spurious  amplification  of  high  frequencies,  because  this  deconvolution  will  involve

amplification of high frequencies. So, if there are even small traces of high frequency

energy is there that will be amplified considerably during the process of deconvolution.

And that may lead to unreasonably large accelerations at depth, there is no evidence of

having such large acceleration at deeper strata. 
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So, the process that we use adopt in deconvolution is the original unfiltered free surface

motion  ẍ f  is applied at the rigid base. So, the base motion we apply this recorded

motion at the rigid base and we can have finite element module, plane strain model for

the soil strata and we can develop the analytical model. 

And we can compute the response at the free field because of this input motion by using

time merging scheme or even infrequency domain we can do that whatever. So, if time

merging is comfortable then we can do the time merging and compute the response at the

free surface.

Now,  knowing  the  total  absolute,  total  acceleration  response,  so  total  acceleration

response at the free surface. So, knowing total acceleration at the free surface and the

acceleration at the bottom we can now relate these two we can take the Fourier transform

and take the ratio response divided by input and that gives us the input motion. 

So, H (ω)  that is the frequency response function that we are looking for that is given

as Fourier transform or discrete Fourier transform of total acceleration at the top and

divided by discrete Fourier transform of the input motion that we used as the recorded

motion  acceleration  at  the  free  surface.  And this  is  term by term frequency at  each

frequency it is a term by term division and that is always defined.



And once we have this term by term definition for each frequency we have the estimate

of discrete  values  of frequency response function.  And once we have this  frequency

response function this can be used to deconvolve the free field surface motion to find out

what is the response.

(Refer Slide Time: 35:28)

So,  the  base  motion  the  Fourier  transform  of  the  base  motion  can  be  obtained  as

X f (ω)  that is the Fourier transform of the low pass filtered free field acceleration

divided by H (ω)  that we have just computed earlier. And once we obtain this Fourier

transform of the base acceleration that is we convert it to time domain by using inverse

discrete Fourier transform. So, desired base rock acceleration time history  ẍb  may

then be obtained as inverse discrete Fourier transform of Xb(ω) .

It is often necessary because the soil can have strain dependent properties. So, it is often

necessary to iterate this process, this entire process is based on linear theory. So, it may

be important that for each process we may need to evaluate what is the strain level and

for that strain level use the appropriate model appropriate material properties and then

carry out the analysis and find out the motion at the base. So, this kind of iteration with

strain  dependent  constitutive  properties  of  soil  deposit  may  be  required  before  a

reasonable estimate of deconvolved bedrock motion can be obtained.

Having said that it is of course, it needs to be appreciated that this estimation of bedrock

motion is a numerical estimation and it should any numerical estimation should always



be treated with caution, adequate caution and care. So, that completes our discussion on

first major application of DFT, we now discuss another application area of DFT in signal

processing, vibration data processing in our next lecture.

Thank you.


