
Finite Element Method and Computational Structural Dynamics
Prof. Manish Shrikhande

Department of Earthquake Engineering
Indian Institute of Technology, Roorkee

Lecture - 58
Discrete Fourier Transform-V

Hello friends. So, we have seen the nitty-gritties of the Computation of Discrete Fourier

Transform, and how one period of time domain data and one period of frequency domain

data corresponds or serves as a good approximation of continuous time and continuous

frequency domain Fourier transform pairs, which are derived, which are representative of

these periodic functions that we do with discrete time samples and discrete frequency

samples.

So, we studied we looked at the problem for discrete Fourier transform as a linear

mapping problem linear transformation.

(Refer Slide Time: 01:14)

We saw that the Fourier transforms, the discrete Fourier transform and inverse discrete

Fourier transform. They can be represented as a linear transformation between two sets

of numbers. So, N number of data points can be mapped onto another N number of data

points by using the transformation matrix, a square transformation matrix. And those the

square transformation matrix comprises of complex exponentials.

(Refer Slide Time: 01:49)

So, now the key to computation of discrete Fourier transform lies in efficient

computation of these linear transformation so, how do we do this?

(Refer Slide Time: 02:00)

So, naive implementation of discrete Fourier transform as a matrix-vector multiplication

as we define it here as FN=WN f N . So, this is W N is this square matrix of complex

exponentials multiplied by N number of time domain data discreetly sample time domain

data. So, this entire thing complex multiplication it matrix-vector multiplication is an N

square operation.

So, the computational effort the number of floating point multiplications that we deal

with in this particular implementation is of the order of N2, N is the number of data

points. So, obviously, the number of it the computational effort increases exponentially

as N increases. And we discuss that normally we would keep N as integer power of 2,

that is that follows in a short while the reason why it has to be integer power of 2.

So, but just matrix-vector multiplication as we see it requires the order computational

effort is of the order of N square. So, that is actually proportional to the number of

floating point multiplications that happen there, and it is prohibitively expensive to

compute even with the powerful computers that are available today. So, it takes very

very long and the effort actually grows exponentially. So, very very quickly so, N2.

So, you can see that if N = 2, the effort is 4 of proportional to 4. If N = 8, the effort is

proportional to 64, and if N = 122, 128 then effort is approximately may be proportional

to way above 1000. So, it grows very quickly. And very soon, it may hit I mean the

performance limit and there might be more efficient techniques available to solve to

handle the problem. And this transform may not be feasible.

And that is that was the state of affairs until late 20th Century, until 1965 to be precise.

So, while these Fourier series and transform analysis was known for a long-long time

and everybody knew the importance and the ease with which the problems could be

transformed and the elegant structure, that it afforded in the transform domain which

could be theoretically, it require simple to solve if only we could transform in the first

place.

So, this transformation was a problem for reasonably and for any decent size of data and

computation of transform was a major challenge. So, the while the importance of the

transform analysis was recognized very early, but there was no way to make use of it,

because there was no efficient way to compute the transform.

So, Fast Fourier Transform FFT as we call, it refers to a family of algorithms to achieve

this transformation in N log N floating point operations multiplications. So, N log N so,

logarithm is to the base 2. So, if you look at it so, logarithm to base 2 that is just a

constant and it is then proportional to linear power.

So, the computational effort actually rises very very slowly it is a linear progression. So,

compare that with the simple naive implementation of DFT as simple matrix vector

multiplication N square and compare it to with N log of N base to the base 2.

So, log of N to the base 2 is a constant so, that will be for any given value of N. So, it

will be linearly proportional to N first power of N. And that results in great saving for

large N.

So, for example, if N = 10000. So, for fast Fourier transform the computational effort

would be proportional to 10000, but for matrix-vector multiplication that effort would be

proportional to 10^8. So, almost factor of 10000 difference.

So, that is a effect that the kind of scaling that happens the in the computational effort

that we say we tend to save by making use of fast Fourier transform algorithm. And that

is why it is set to be one of the major technological advances in 20th Century. The

discovery of fast Fourier transform algorithms.

It changed the way data was analyzed, it changed the way these signals were analyzed, it

changed the complete field I mean the radar applications and I mean applications are

immense. The moment it becomes feasible to implement transform very quickly, then the

application areas are immense and several new vistas opened up.

And it completely revolutionized the way data was analyzed and looked at. So, the key

what is the key to FFT algorithm how can such dramatic savings be achieved. So, key to

FFT algorithm is to reduce the computational effort in matrix-vector multiplication by a

clever reorganization of data that is all we do. So, the power of observation look at the

pattern the how the computations are arranged and identification of pattern and trying to

find a simpler way of arriving at same results in a more efficient manner.

So, complex exponentials or the twiddle factors that we discussed earlier of the matrix

W_N, we need to appreciate that they are not all distinct. And number of computations

can be significantly reduced again because those are complex exponentials, those are of

course, periodic with period 2 pi.

So, the number of computations can be significantly reduced by recognizing that

W N

m+N2 , that is the power that is raised is actually equal to negative of W N
m . And

then W N
m+N is simply = W N

m , because this is going to be periodic with period N.

And beyond after N by 2, this is going to be negative complex conjugate. So, it is simply

we can just make use of conjugation rule and know that it is just going to be the negative

of that.

And these identities are essentially used in the design of FFT algorithm. So, how does it

work? So, let us just for simplicity and for ease of application, ease of explanation I take

example of just 4 set 4 samples time domain data, which is represented by only 4

samples. And that 4 sample will when we process it go through the entire process that

will explain how fast Fourier transform algorithm works. And that will explain how this,

how the savings are achieved. And of course, the concepts that we use are general

enough and they can be extended to any length of data.

(Refer Slide Time: 11:18)

So, another trick that is used for speeding up the DFT computations is based on the fact

that the 2-term sequence say x_N = x_0 and x_1. If there are only 2 sequences the only

2-terms, then the discrete Fourier transform is given by, just the sum of these two

numbers and the difference of these two numbers, because that will be corresponding to

just 0 and %pi right.

And the they are going to be real, so no imaginary part there. And those numbers are

given by addition of 2 numbers and subtraction of 2 numbers we can work out the

complex exponentials using complex exponentials, and we arrive at the same results here

as given here.

So, if the given sequence of time domain data, if we can find some way to subdivide it

into progressively smaller sequences until the length of each sequence is 2 data samples

right. So, we kind of segregate or divide data repeatedly into smaller and smaller, smaller

and smaller sets until we end up with two samples in each set and then we know that the

Fourier transformers those two those two samples is just the sum of those two samples

and difference of those two samples. So, and then using this result we build up the

remaining computation subsequently.

So, these elementary discrete Fourier transforms of two sample set are combined

together to get the discrete Fourier transform of original larger sequence. So, how this is

actually done? So, in this particular example that we take we use the most widely used

FFT algorithm known as Radix-2 algorithm and this algorithm, this was also the one of

the very first FFT algorithms that was proposed by Cooley and Tukey known as Cooley-

Tukey algorithm both of them working at Bell Labs.

So, Radix-2 algorithm and this algorithm requires that number of time domain data

samples be an integer power of 2. So, N now that comes the requirement that total

number of data points that has to be 2m , m being a positive integer. And this can

requirement can always be met by zero padding of the data, if required. So, it will be

rarely by happy coincidence that the number of data points that we have the waveform

would be exactly equal to integer power of 2.

So, before we apply Fourier transfer algorithm, before we use this data for Fourier

transform it is necessary that the length of the data should be made equal to integer

power of 2, and that is done by zero padding. So, as an example as I said we consider

four sample sequence. So, that is xN is given by x0 , x1 , x2, x3 . So, 4 data points in

discrete time samples.

(Refer Slide Time: 15:08)

And for these 4 discrete time samples the Fourier transform is given by X(0), X (ω0) ,

X (2ω0) , X (3ω0) . And that is given by this twiddle factors the complex

exponential matrix and numbers. Now, if we look at these numbers I am sorry for the

small font because I had to compress the whole thing here.

So, first thing that we see here that these are of course, complex exponentials and they

appear as a product of k and N. So, in this particular case it becomes a product of m N

and k both 3 3. So, that becomes 9 multiplied by 2π . So, it becomes 18 π
4

. So, 4 is

the number of data points N. So, this becomes 18 π
4

.

Now, this 18 π
4

 I will just take this last sample here. So, this exponent is e
−i18 π

4 .

Now, 18 π
4

 is of course, greater than 2π and these complex exponentials they are

periodic with π . So, I can all trap these all these complex exponentials I can just

consider modulo 2π . And that expression now leads to this expression here.

So, here this 18 π
4

 is exactly I mean numerically equivalent to e
−i π2 simply. And

similarly all these expressions they would be wrapped back into the, range I mean

fundamental range of frequencies discrete frequencies; outside the discrete fundamental

frequency, they would all be wrapped back, because of the periodicity making use of

periodicity.

And then we make use of evaluate this complex exponentials and then we see that this

particular thing is e
−i π2 . So, at π

2
 cosine term is 0. So, all that we will be left with

is −isin π
2
=1 .

So, that is what we end up here as - i and next term here is e−iπ so, that would be

equal to cos π and cos π=−1 . So, we have this matrix that is available. And when

we combine these two we end up with very interesting result.

First term is x0+ x2+x1+ x3 . Second term here is x0−x2−i×(x1−x3) . Third term

here is x0+ x2− x1+x3 . So, that repeats I mean real number again. And followed by

x0−x2+ i x1−x3 so, the conjugate of the earlier complex number. And this is the

Fourier I mean desired discrete Fourier transform.

So, first simplification that happens is we need to look at what are the complex

exponentials. And we only need to find out what are the unique values of the complex

exponential, the periodic values they can always be wrapped back into the fundamental

range. And the values that we have already computed that can be reused. So, that is one

way first step of saving computation and there will be this will be a massive saving in its

own right.

Second interpretation second observation is the combination how the terms get

combined. If you look at these only the even number terms are occurring together and

only odd number terms are occurring together, in the transform while computing

transform. So, even number terms for the time domain data and odd number terms in the

time domain data.

So, even numbered terms in time domain data they combine with even number term.

And odd number term they combine with odd number term, in making up the transform.

So, that gives us very interesting observation and that gives us a hint, that maybe we can

just segregate even data and from odd data. So, we can find out what is the even number

your data then we know how to combine them some of the even number and odd number

and that is all it requires.

(Refer Slide Time: 20:42)

So, a closer look at the computed transform it reveals a pattern all even number data

samples are paired together. And so, is the case for all odd numbered data points, odd

numbered samples. And therein lies the key for efficient implementation of FFT

algorithm by using what is known as a divide and conquer strategy.

So, we know now that there is something to do with the arrangement and the placement

of numbers in that array. So, even the numbers that are placed in even position they

somehow combine only with the numbers placed on even position other numbers placed

on even position even indices. And the numbers that are placed on odd indices they

somehow combined with only the numbers that are placed on odd indices. So, we can

separate them out.

So, we look at the this approach divide the sequence so, if we again go back to Fourier

summation and will this entire summation of N number of data points we split it into 2

parts. Where k is even and another summation, where k the sample number they are odd

numbered samples.

And then when we look at this arrange these numbers suitably and then it can be found

that we can work out this representation the Fourier transform that we have of N number

of data points, it can be defined as a linear combination or the of the Fourier transform of

even number of data point, so half of the length Fourier transform of half of the length of

data.

So, while we are computing Fourier transform of N length data that can be represented as

some of Fourier transform of half-length data that is even numbered data. And the

twiddle factor again W N
N times the odd numbered data Fourier transform. So,

essentially we reduce the problem from N number of data points we reduce the problem

to N by 2 number of data points to such cases.

So, eventually this is what happens in each cycle we reduce the problem size by a factor

of 2. And eventually we will continue this cycle repeatedly until we end up with only 2

data points. And once we have these 2 data points, then we know the Fourier transform

of 2 data points that is just sum of the numbers and difference of the two numbers. And

that is the Fourier transform.

So, once we do that then we can again substitute it back into this relation that even part

Fourier transform +W N
N times odd part Fourier transform and then we can work our

way backwards. And by addition we can find out the original waveform Fourier

transform. So, that in a sense is the basic algorithm of fast Fourier transform.

(Refer Slide Time: 24:30)

So, in this what we have done here is DFT of N-sample sequence is given by a weighted

sum of two N by 2 sample sequences. This process of sub-grouping of data can be

carried out recursively till the data length is of 2 samples each for which the DFT is

easily calculated as the sum and difference of the two sample values respectively.

So subsequently, this computed DFT how smaller sub-groups they are added together

weighted some as we said complex exponential integer power of complex exponential.

And they are added together to obtain the DFT of full and sample sequence.

And this whole sequence of operation can be completed in of the order of the

computational effort is of the order of N log N base 2. And floating point operations as

against total computational effort of N2 in implementation of DFT as a simple linear

transformation operation as matrix-vector multiplication.

And while I discussed this with very simple example of four sample points and worked

out how it works out in practice and how it will end up in physical I mean actual

implementation by dividing it; dividing a given sample set into two-halves and then

again looking at each of those into two-halves and again those 4 into again having them

again and again until we end up with 2 samples at a time and again work backward.

So, this algorithm although makes it very easy visually it is very difficult to visualize; I

mean the how the algorithm proceeds and but there are some very good excellent

implementations of FFT algorithm. And there are I mean the happy coincidence does not

end here in discovering the combination of segregation of data into even and odd, which

allows us to divide it into half at every scale, every cycle.

If we go into the implementation detail we will find that the correct position they are

obtained of for the combination of the terms they are obtained by reversing the binary

representation of indices. So, whatever is the index level index position value of the

index and if we represent that index in binary format, and then reverse the bits just find

out what is the if it is 1 0 we will call it 0 1, if it is 0 1 we use 1 0.

And that bit reversed arrangement that corresponds to the target arrangement that we are

looking for in this Radix-2 algorithm. And this happy coincidence is a very very efficient

way to implement this FFT algorithm. And of course, we can have theoretical analysis of

this FFT algorithm why this works and why this has to be bit reversal is actually the

correct way of positioning of data.

We can, there are several analysis that you can look at the signal flow analysis and graph

theory, which explain the implementation of fast Fourier transform algorithms. We will

not get into those details because as a practitioner of structural dynamics it is of more

relevance for us to understand the concept of Fourier transform or discrete Fourier

transform, and under what conditions it is analogous or it is representative of the

continuous wave form and continuous frequency transform.

And what are the warning zones and what are the problem potential problem areas that

we need to take care of. Because implementation of Fourier transform algorithm requires

no doubt it requires considerable skill, but there are several excellent implementations of

Fourier transform fast Fourier transform algorithm, that are available in public domain

and users can readily use it.

So, it is worthwhile to spend more time in actually using the fast implementation

available implementation of fast Fourier transform to calculate or the results or to for the

interpretation of the results, that are available from using those algorithms.

A very powerful tool that is available for public domain is FFT W. So, that is available

for free download. And of course, JNU scientific library includes excellent

implementation of fast Fourier transform and then you can also download several I mean

efficient codes for fast Fourier transfer, Fortran codes from Netlify if required.

So, with that we end our lecture here Fast Fourier Transform. Next lecture we will

discuss about some of the applications how these Fourier transform is actually used in

structural dynamics, how what we what do we do with this Fourier transform and how it

helps in analysis that is not so obvious in other time marching schemes so to say.

Thank you.

