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Discrete Fourier Transform-V

Hello friends. So, we have seen the nitty-gritties of the Computation of Discrete Fourier

Transform, and how one period of time domain data and one period of frequency domain

data corresponds or serves as a good approximation of continuous time and continuous

frequency domain Fourier transform pairs, which are derived, which are representative of

these periodic functions that we do with discrete time samples and discrete frequency

samples.

So,  we studied  we looked  at  the  problem for  discrete  Fourier  transform as  a  linear

mapping problem linear transformation.

(Refer Slide Time: 01:14) 

We saw that the Fourier transforms, the discrete Fourier transform and inverse discrete

Fourier transform. They can be represented as a linear transformation between two sets

of numbers. So, N number of data points can be mapped onto another N number of data

points by using the transformation matrix, a square transformation matrix. And those the

square transformation matrix comprises of complex exponentials.



(Refer Slide Time: 01:49) 

So,  now  the  key  to  computation  of  discrete  Fourier  transform  lies  in  efficient

computation of these linear transformation so, how do we do this?

(Refer Slide Time: 02:00) 

So, naive implementation of discrete Fourier transform as a matrix-vector multiplication

as we define it here as FN=WN f N . So, this is W N  is this square matrix of complex

exponentials multiplied by N number of time domain data discreetly sample time domain

data. So, this entire thing complex multiplication it matrix-vector multiplication is an N

square operation. 



So, the computational effort the number of floating point multiplications that we deal

with in this particular implementation is of the order of N2,  N is the number of data

points. So, obviously, the number of it the computational effort increases exponentially

as N increases. And we discuss that normally we would keep N as integer power of 2,

that is that follows in a short while the reason why it has to be integer power of 2.

So, but just matrix-vector multiplication as we see it requires the order computational

effort  is  of the order of N square.  So,  that is  actually  proportional  to the number of

floating  point  multiplications  that  happen  there,  and  it  is  prohibitively  expensive  to

compute even with the powerful computers that are available today. So, it takes very

very long and the effort actually grows exponentially. So, very very quickly so, N2. 

So, you can see that if N = 2, the effort is 4 of proportional to 4. If N = 8, the effort is

proportional to 64, and if N = 122, 128 then effort is approximately may be proportional

to way above 1000. So, it grows very quickly. And very soon, it may hit I mean the

performance limit  and there might  be more efficient  techniques  available  to solve to

handle the problem. And this transform may not be feasible.

And that is that was the state of affairs until late 20th Century, until 1965 to be precise.

So, while these Fourier series and transform analysis was known for a long-long time

and everybody knew the importance and the ease with which the problems could be

transformed and the elegant structure,  that it  afforded in the transform domain which

could be theoretically, it require simple to solve if only we could transform in the first

place.

So, this transformation was a problem for reasonably and for any decent size of data and

computation of transform was a major challenge. So, the while the importance of the

transform analysis was recognized very early, but there was no way to make use of it,

because there was no efficient way to compute the transform. 

So, Fast Fourier Transform FFT as we call, it refers to a family of algorithms to achieve

this transformation in N log N floating point operations multiplications. So, N log N so,

logarithm is to the base 2. So, if you look at it  so, logarithm to base 2 that is just a

constant and it is then proportional to linear power. 



So, the computational effort actually rises very very slowly it is a linear progression. So,

compare  that  with  the simple  naive  implementation  of  DFT as  simple  matrix  vector

multiplication N square and compare it to with N log of N base to the base 2.

So, log of N to the base 2 is a constant so, that will be for any given value of N. So, it

will be linearly proportional to N first power of N. And that results in great saving for

large N. 

So, for example, if N = 10000. So, for fast Fourier transform the computational effort

would be proportional to 10000, but for matrix-vector multiplication that effort would be

proportional to 10^8. So, almost factor of 10000 difference.

So, that is a effect that the kind of scaling that happens the in the computational effort

that we say we tend to save by making use of fast Fourier transform algorithm. And that

is  why it  is  set to be one of the major  technological  advances in 20th Century.  The

discovery of fast Fourier transform algorithms. 

It changed the way data was analyzed, it changed the way these signals were analyzed, it

changed the complete field I mean the radar applications and I mean applications are

immense. The moment it becomes feasible to implement transform very quickly, then the

application areas are immense and several new vistas opened up. 

And it completely revolutionized the way data was analyzed and looked at. So, the key

what is the key to FFT algorithm how can such dramatic savings be achieved. So, key to

FFT algorithm is to reduce the computational effort in matrix-vector multiplication by a

clever reorganization of data that is all we do. So, the power of observation look at the

pattern the how the computations are arranged and identification of pattern and trying to

find a simpler way of arriving at same results in a more efficient manner.

So, complex exponentials or the twiddle factors that we discussed earlier of the matrix

W_N, we need to appreciate that they are not all distinct. And number of computations

can be significantly reduced again because those are complex exponentials, those are of

course, periodic with period 2 pi. 

So,  the  number  of  computations  can  be  significantly  reduced  by  recognizing  that

W N

m+N2 , that is the power that is raised is actually equal to negative of  W N
m . And



then  W N
m+N  is simply =  W N

m , because this is going to be periodic with period N.

And beyond after N by 2, this is going to be negative complex conjugate. So, it is simply

we can just make use of conjugation rule and know that it is just going to be the negative

of that. 

And these identities are essentially used in the design of FFT algorithm. So, how does it

work? So, let us just for simplicity and for ease of application, ease of explanation I take

example  of  just  4  set  4  samples  time  domain  data,  which  is  represented  by  only  4

samples. And that 4 sample will when we process it go through the entire process that

will explain how fast Fourier transform algorithm works. And that will explain how this,

how the  savings  are  achieved.  And of  course,  the  concepts  that  we use  are  general

enough and they can be extended to any length of data. 

(Refer Slide Time: 11:18) 

So, another trick that is used for speeding up the DFT computations is based on the fact

that the 2-term sequence say x_N = x_0 and x_1. If there are only 2 sequences the only

2-terms,  then  the  discrete  Fourier  transform is  given  by,  just  the  sum of  these  two

numbers and the difference of these two numbers, because that will be corresponding to

just 0 and %pi right. 

And the they are going to be real, so no imaginary part there. And those numbers are

given by addition  of  2  numbers  and subtraction  of  2  numbers  we can work out  the



complex exponentials using complex exponentials, and we arrive at the same results here

as given here.

So, if the given sequence of time domain data, if we can find some way to subdivide it

into progressively smaller sequences until the length of each sequence is 2 data samples

right. So, we kind of segregate or divide data repeatedly into smaller and smaller, smaller

and smaller sets until we end up with two samples in each set and then we know that the

Fourier transformers those two those two samples is just the sum of those two samples

and difference of those two samples.  So,  and then using this  result  we build up the

remaining computation subsequently. 

So,  these  elementary  discrete  Fourier  transforms  of  two  sample  set  are  combined

together to get the discrete Fourier transform of original larger sequence. So, how this is

actually done? So, in this particular example that we take we use the most widely used

FFT algorithm known as Radix-2 algorithm and this algorithm, this was also the one of

the very first FFT algorithms that was proposed by Cooley and Tukey known as Cooley-

Tukey algorithm both of them working at Bell Labs.

So,  Radix-2  algorithm and this  algorithm requires  that  number  of  time  domain  data

samples  be an integer  power of 2.  So,  N now that  comes the requirement  that  total

number of data points that has to be  2m , m being a positive integer. And this can

requirement can always be met by zero padding of the data, if required. So, it will be

rarely by happy coincidence that the number of data points that we have the waveform

would be exactly equal to integer power of 2.

So,  before  we apply  Fourier  transfer  algorithm,  before  we use  this  data  for  Fourier

transform it  is necessary that the length of the data should be made equal to integer

power of 2, and that is done by zero padding. So, as an example as I said we consider

four sample sequence. So, that is xN  is given by x0 , x1 , x2, x3 . So, 4 data points in

discrete time samples.

(Refer Slide Time: 15:08) 



And for these 4 discrete time samples the Fourier transform is given by X(0), X (ω0) ,

X (2ω0) ,  X (3ω0) .  And  that  is  given  by  this  twiddle  factors  the  complex

exponential matrix and numbers. Now, if we look at these numbers I am sorry for the

small font because I had to compress the whole thing here. 

So, first thing that we see here that these are of course, complex exponentials and they

appear as a product of k and N. So, in this particular case it becomes a product of m N

and k both 3 3. So, that becomes 9 multiplied by 2π . So, it becomes 18 π
4

. So, 4 is

the number of data points N. So, this becomes 18 π
4

. 

Now, this  18 π
4

 I will just take this last sample here. So, this exponent is e
−i18 π

4 .

Now, 18 π
4

 is of course, greater than 2π  and these complex exponentials they are

periodic with  π .  So, I can all trap these all these complex exponentials  I can just

consider modulo 2π . And that expression now leads to this expression here. 

So, here this  18 π
4

 is exactly I mean numerically equivalent to  e
−i π2  simply. And

similarly  all  these  expressions  they  would  be  wrapped  back  into  the,  range  I  mean

fundamental range of frequencies discrete frequencies; outside the discrete fundamental

frequency, they would all be wrapped back, because of the periodicity making use of

periodicity.



And then we make use of evaluate this complex exponentials and then we see that this

particular thing is e
−i π2 . So, at π

2
 cosine term is 0. So, all that we will be left with

is −isin π
2
=1 .

So, that is what we end up here as - i and next term here is  e−iπ  so, that would be

equal to cos π  and cos π=−1 . So, we have this matrix that is available. And when

we combine these two we end up with very interesting result. 

First term is  x0+ x2+x1+ x3 . Second term here is  x0−x2−i×(x1−x3) . Third term

here is  x0+ x2− x1+x3 . So, that repeats I mean real number again. And followed by

x0−x2+ i x1−x3  so,  the  conjugate  of  the  earlier  complex  number.  And this  is  the

Fourier I mean desired discrete Fourier transform. 

So,  first  simplification  that  happens  is  we  need  to  look  at  what  are  the  complex

exponentials. And we only need to find out what are the unique values of the complex

exponential, the periodic values they can always be wrapped back into the fundamental

range. And the values that we have already computed that can be reused. So, that is one

way first step of saving computation and there will be this will be a massive saving in its

own right. 

Second  interpretation  second  observation  is  the  combination  how  the  terms  get

combined. If you look at these only the even number terms are occurring together and

only  odd  number  terms  are  occurring  together,  in  the  transform  while  computing

transform. So, even number terms for the time domain data and odd number terms in the

time domain data. 

So, even numbered terms in time domain data they combine with even number term.

And odd number term they combine with odd number term, in making up the transform.

So, that gives us very interesting observation and that gives us a hint, that maybe we can

just segregate even data and from odd data. So, we can find out what is the even number

your data then we know how to combine them some of the even number and odd number

and that is all it requires. 



(Refer Slide Time: 20:42) 

So, a closer look at the computed transform it reveals a pattern all even number data

samples are paired together. And so, is the case for all odd numbered data points, odd

numbered  samples.  And  therein  lies  the  key  for  efficient  implementation  of  FFT

algorithm by using what is known as a divide and conquer strategy.

So, we know now that there is something to do with the arrangement and the placement

of numbers in that array. So, even the numbers that are placed in even position they

somehow combine only with the numbers placed on even position other numbers placed

on even position even indices.  And the numbers that  are placed on odd indices they

somehow combined with only the numbers that are placed on odd indices. So, we can

separate them out.

So, we look at the this approach divide the sequence so, if we again go back to Fourier

summation and will this entire summation of N number of data points we split it into 2

parts. Where k is even and another summation, where k the sample number they are odd

numbered samples. 

And then when we look at this arrange these numbers suitably and then it can be found

that we can work out this representation the Fourier transform that we have of N number

of data points, it can be defined as a linear combination or the of the Fourier transform of

even number of data point, so half of the length Fourier transform of half of the length of

data. 



So, while we are computing Fourier transform of N length data that can be represented as

some of  Fourier  transform of  half-length  data  that  is  even  numbered  data.  And the

twiddle  factor  again  W N
N  times  the  odd  numbered  data  Fourier  transform.  So,

essentially we reduce the problem from N number of data points we reduce the problem

to N by 2 number of data points to such cases. 

So, eventually this is what happens in each cycle we reduce the problem size by a factor

of 2. And eventually we will continue this cycle repeatedly until we end up with only 2

data points. And once we have these 2 data points, then we know the Fourier transform

of 2 data points that is just sum of the numbers and difference of the two numbers. And

that is the Fourier transform.

So, once we do that then we can again substitute it back into this relation that even part

Fourier transform +W N
N  times odd part Fourier transform and then we can work our

way  backwards.  And  by  addition  we  can  find  out  the  original  waveform  Fourier

transform. So, that in a sense is the basic algorithm of fast Fourier transform. 

(Refer Slide Time: 24:30) 

So, in this what we have done here is DFT of N-sample sequence is given by a weighted

sum of  two N by 2 sample sequences.  This  process  of  sub-grouping of  data  can be

carried out recursively till  the data length is of 2 samples each for which the DFT is

easily calculated as the sum and difference of the two sample values respectively. 



So subsequently, this computed DFT how smaller sub-groups they are added together

weighted some as we said complex exponential integer power of complex exponential.

And they are added together to obtain the DFT of full and sample sequence. 

And  this  whole  sequence  of  operation  can  be  completed  in  of  the  order  of  the

computational effort is of the order of N log N base 2. And floating point operations as

against total  computational  effort of N2 in implementation of DFT as a simple linear

transformation operation as matrix-vector multiplication.

And while I discussed this with very simple example of four sample points and worked

out  how it  works  out  in  practice  and how it  will  end up in  physical  I  mean  actual

implementation  by dividing  it;  dividing  a  given sample  set  into two-halves  and then

again looking at each of those into two-halves and again those 4 into again having them

again and again until we end up with 2 samples at a time and again work backward.

So, this algorithm although makes it very easy visually it is very difficult to visualize; I

mean  the  how  the  algorithm  proceeds  and  but  there  are  some  very  good  excellent

implementations of FFT algorithm. And there are I mean the happy coincidence does not

end here in discovering the combination of segregation of data into even and odd, which

allows us to divide it into half at every scale, every cycle.

If we go into the implementation detail we will find that the correct position they are

obtained of for the combination of the terms they are obtained by reversing the binary

representation of indices.  So, whatever  is  the index level  index position value of the

index and if we represent that index in binary format, and then reverse the bits just find

out what is the if it is 1 0 we will call it 0 1, if it is 0 1 we use 1 0.

And that bit reversed arrangement that corresponds to the target arrangement that we are

looking for in this Radix-2 algorithm. And this happy coincidence is a very very efficient

way to implement this FFT algorithm. And of course, we can have theoretical analysis of

this FFT algorithm why this works and why this has to be bit reversal is actually the

correct way of positioning of data. 

We can, there are several analysis that you can look at the signal flow analysis and graph

theory, which explain the implementation of fast Fourier transform algorithms. We will

not get into those details because as a practitioner of structural dynamics it is of more



relevance  for  us  to  understand  the  concept  of  Fourier  transform or  discrete  Fourier

transform,  and  under  what  conditions  it  is  analogous  or  it  is  representative  of  the

continuous wave form and continuous frequency transform. 

And what are the warning zones and what are the problem potential problem areas that

we need to take care of. Because implementation of Fourier transform algorithm requires

no doubt it requires considerable skill, but there are several excellent implementations of

Fourier transform fast Fourier transform algorithm, that are available in public domain

and users can readily use it. 

So,  it  is  worthwhile  to  spend  more  time  in  actually  using  the  fast  implementation

available implementation of fast Fourier transform to calculate or the results or to for the

interpretation of the results, that are available from using those algorithms.

A very powerful tool that is available for public domain is FFT W. So, that is available

for  free  download.  And  of  course,  JNU  scientific  library  includes  excellent

implementation of fast Fourier transform and then you can also download several I mean

efficient codes for fast Fourier transfer, Fortran codes from Netlify if required.

So,  with that  we end our  lecture  here  Fast  Fourier  Transform. Next  lecture  we will

discuss about some of the applications how these Fourier transform is actually used in

structural dynamics, how what we what do we do with this Fourier transform and how it

helps in analysis that is not so obvious in other time marching schemes so to say.

Thank you.


