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Hello  friends.  So,  we  were  discussing  about  the  Discrete  Fourier  Transform;  the

discretely sampled values in time domain n number of finite number of values they have

to be related to another finite set of values in frequency domain. And only then this will

be  the  Fourier  transform that  we try  to  compute  on  for  representation  in  frequency

domain only when it is the cast as a map%ping of n set of discrete points on to another n

set of discrete points, can it be implemented on a digital computer.

And there are several issues with the whole process I mean it the continuous wave form

in time domain and corresponding Fourier transform. So, the continuous domain analogs

they do not translate as seamlessly as it may appear to the casual user. There are lots of

issues  and  lots  of  implications  of  the  process  of  moving  from  continuous  domain,

continuous  time  and  continuous  frequency  domain  to  discrete  time  and  discrete

frequency domain transform pairs.
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So, we again to reca%pitulate the steps that are involved for transforming this continuous

time signal which has its Fourier transform pair as this continuous frequency domain



spectrum;  frequency  domain  representation.  So,  this  entire  process  requires  first

sampling with in time domain at frequency finite intervals, regular intervals and then it

has  to  be looked through a finite.  I  mean some kind of finite  data  length has to be

imposed. And that is what is done by this time window, rectangular window in we have

chosen and that converts it into a finite set of data, n number of data points. 

Now, this n number of data points has a continuous spectrum in frequency domain and

this continuous spectrum in frequency domain also needs to be sampled discretely on

discrete frequencies. And that is what is done. And when we convert this continuous

frequency into discrete frequency, the side effect of that is a discrete frequency spectrum

corresponds to a periodic function in time. 

So, this has a side effect of this waveform that we had gets transformed into a periodic

wave form with this segment that we deal with constituting one period of the infinite

waveform. But if we look at it, if we look at only one period of the time domain and one

period of this frequency domain representation then they, are as far as discrete values are

concerned at discrete instance of time or discrete frequencies those values correspond to

the  values  of  the  corresponding  continuous  time  or  continuous  frequency  domain

representations.

 So, essentially the process involves discrete time sampling of continuous time waveform

and then we look through a window of one period. And then discrete sampling of the

continuous transform, which has the side effect  of resulting in periodic discrete  time

wave forms. And this discrete time waveform data is related to this discrete frequency

waveform  data  and  that  is  what  is  actually  implemented  on  digital  computer  this

transform.

So, if a continuous time Fourier transform pair is suitably modified, then the modified

pair is acceptable for computation on a digital computer and that is the end objective. I

mean we need to develop; we need to develop techniques, we need to develop algorithm;

such  that  this  transform or  this  information  transformation  can  happen  on  a  digital

computer or digital computers can be programmed to implement this transformation of

information.



(Refer Slide Time: 05:19)

So, for a band limited time domain function which is represented by n number of discrete

uniformly  sample  data  values  let  us  say  at  interval  delta  t,  the  Fourier  integral  is

approximated by summation over data values for discrete frequencies %omega n, which

is given as a multiple of the fundamental frequency Ω0 ; fundamental harmonic. So, n

ranging from 0 to N - 1 with N = number of data points.

So, this representation is this discrete representation. So, on the left hand side, we have

this  discrete  frequencies  and  Fourier  amplitudes,  Fourier  transform at  these  discrete

frequencies related to discrete time sample values, sampled at k-th instant and multiplied

by of course, this is complex exponential. 

Now, the point is the time is all both the time as well as frequency they are dependent on

the sampling interval. And the total duration one period that is. So, one period is given

by N times delta t and the time sample is given by k times delta t with the time instant.

So, delta t happens to be in the numerator and denominator and it cancels out. 

So, essentially we end up with just having a relationship or map%ping between discrete

pairs discrete set of pairs; one for time domain signal for index k ranging from 0 to N - 1.

And another set the frequency domain representation with index n ranging from 0 to N -

1. 



So, this entire expression transforms N number of discrete time data into N number of

discrete frequency domain data, and this is known as discrete Fourier transform or DFT.

(Refer Slide Time: 07:39)

So, since the complex exponentials, they are periodic with the period of 2π . So, the

discrete Fourier transform is of course, periodic and the spectrum the frequency domain,

in the frequency domain repeats itself for discrete frequencies n times %omega_0 greater

than 2π . 

So, 0 whatever the ordinate is amplitude Fourier spectrum value is at n %omega_0 = 0,

the  same  Fourier  amplitude  is  Fourier  spectrum  is  expected  at  2π  that  is  the

completion of the one period or beginning of the next period.

So, similarly, I mean we talked about going from time domain to frequency domain and

we can implement the inverse Fourier transform also in the same way with representation

d  %omega  the  in  the  integral  being  represented  approximated  as  the  fundamental

harmonic  the  increment  in  frequency  so,  %omega_0.  So f(k),  the  k-th  sample,  time

domain sample can be obtained as linear combination.

So, complex exponential again. So, f (2πn
N

)e
i2πnk
N . Summation over index n and for

each value of k ranging from 0 to N - 1. So, this inverse Fourier transform leads to gives

us the time domain signal back. 



And this  represents  the inverse discrete  Fourier  transform or IDFT to transform one

period of frequency domain data; period in frequency domain. So, 0 to 2π . That one

period of frequency domain data is mapped on to one period of time domain data. So,

perfectly fine. 

So,  we have n number  of  time domain  data  which gets  mapped on to  n number of

frequency domain data. So that, obviously, suggests that I mean it is a simple map%ping.

And obviously, that seems to be a kind of transformation and we do emphasize here that,

this transformation can be represented; I mean this entire process of Fourier transform,

forward Fourier transform or inverse Fourier transform it can be represented as a linear

transformation, simple linear transformation as a matrix vector multiplication. How? We

will let us see.

(Refer Slide Time: 10:33)

So, periodicity of IDFT with periods N can be verified from the fact that this, if we

multiply by increase the period k + N and by considering that complex exponentials they

are periodic with integer power of 2π . Then this can be verified that this rolls back

onto this original expression. 

So, this period N that indicates that the time domain, the signal that we get from inverse

discrete  Fourier  transform  is  periodic  with  period  of  N  samples.  Now,  discrete

frequencies ωn  greater than π  so; that means, n×ω0  if it is greater than π

then, they are taken to correspond to negative frequencies.



So, negative frequencies that will be ωn=ωn−2π ;  so, as to get the complete range of

discrete frequencies. So now, we I mean because, if Fourier transform of course, it is

defined from positive to negative frequencies and it has to be defined for one complete

period of 2π . 

So,  that  range I  mean once we take this  representation  that frequencies  above  π ;

discrete frequencies is greater than π  they are actually negative frequencies. And then

when we map it back into the range  −π  to  π  by subtracting  2π  from these

values and we get the discrete frequencies as between −π to π . 

And the discrete frequencies n times ω0 , where ω0  is 2π
N

. So, the entire period

2π  in frequency domain is divided into equal intervals so, n number of intervals. And

each of these frequencies discrete frequencies, designating or delineating these intervals

they are defined by n times 2π  by N where n ranges from 0 to N
2

−1 . 

So,  that  is  one  half  of  the  spectrum.  And  they,  these  correspond  to  the  circular

frequencies if I need to go back to; I mean what is the physical frequency unit in terms of

radians per second the wave frequency of the wave form that we are also used to.

 Then  that  radiance  per  second  frequency,  the  circular  frequency  is  related  to  these

discrete frequencies as 2πn
N Δ t

 . So, this delta t is the additional factor that comes here

other and that gives you the radians per second units for circular frequency. 

And for points I mean this is only for positive frequencies or defined for 0 to N
2

−1 .

So, this is N
2

 number of data points. For greater than I mean the other half of the data

that  corresponds to  the  negative  frequencies  and the frequency mapping is  given by

ω= 2π
N×Δ t

(n−N ) . Where small lower case n is the sample number and capital N

uppercase N is the total  number of data points, and these correspond to the negative

frequencies.
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And now, defining the complex exponential e raise to the power −i 2π
N

=W N  then the

DFT and IDFT sums can be written as simply powers of this a complex exponential W.

So,  ∑
k=0

N−1

WN
nk f (k)  .  And that  gives us the frequency domain representation  Fourier

transform as a function of discrete frequencies nω0 .

And similarly the inverse Fourier transform, if I substitute this complex exponential as

W N  then  it  the  Fourier  the  summation  can  be  represented  as  F  of  the  Fourier

transform,  the  Fourier  amplitudes  F( nω0 )  the  discrete  frequencies  n-th  discrete

frequency multiplied by W N
nk . And summation extending over index n ranging from 0

to N - 1 and the entire sum is divided by N.

And this gives us the samples at k = 0, 1, 2 and up to N - 1 so, perfectly fine. So, this is a

linear summation and we can always cast this I mean n and k there are two indices here.

So, this W N
nk  can be cast as matrix; I mean, there are rows and columns. So, we can

always represent this as two indices n and k; and this entire representation of forward

transform and  inverse  discrete  Fourier  transform that  can  be  represented  as  a  linear

transformation as this matrix.
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So, if we define vectors  f N  as the sample discrete time samples, represented in one

vector. And similarly, if we define these vectors I mean the samples of the frequency

domain  representation,  Fourier  transform  so,  I  have  complex  numbers  at  discrete

frequencies then that is a another set of vector.

And we define this matrix W N ,  which is actually the powers of W N  that is e
i2π
n

different powers of that. So, we can this matrix leads to this square matrix it leads to the

square matrix. And then using this, this discrete Fourier transform and inverse discrete

Fourier  transform  they  form  a  linear  transformation.  In  the  sense  that  FN  the

frequency domain representation  = simply this  matrix  W N  multiplied  by the time

domain samples.

So, N number of complex numbers that we have here, frequency domain data they are

related to N number of time domain samples through this transformation matrix W N

and this is N by N transformation matrix square matrix. Quite obviously, FN  if this is

all the linear transformation then this time domain signal FN  can be recovered from

the frequency domain signal FN  through this inverse relationship.

So, W N
−1 FN  . And if we take this inverse of this complex exponential, we find that the

inverse is defined by the conjugate of this original matrix. So, the matrix is essentially,

because not a surprise nothing to be surprised here, because the matrix  W N  all the



terms  are  complex  exponentials  and  complex  exponentials  essentially  trigonometric

functions they are orthogonal functions.

So,  if  I  take  the  conjugate  of  them  that  is  going  to  be  an  orthogonal  matrix.  So,

W NWN
*  is going to be identity matrix. So, conjugate matrix is going to be the inverse

of this matrix of complex exponentials. So, that saves our trouble. As I said inverse is

never ever computed and in this particular case, because the matrix is orthogonal. So,

this  is  defined as the simple  conjugation  of the operation.  And this  inverse operator

actually effectively implements as the conjugate of the complex numbers that we are

dealing with.

(Refer Slide Time: 19:57)

So, W N
*  is the complex conjugate of W N . The complex exponentials in the square

matrix  W N  they are also referred to as twiddle factors. And their fast and accurate

computation  is  a  key  to  efficient  implementation  of  DFT  computation.  So,  all  that

depends is now, this evaluation of these powers of complex exponentials and that is what

makes this matrix. 

So, if we can compute this quickly, the problem is solved the transformation is simply

matrix vector multiplication and if we take; I mean if we somehow incur lot of effort and

cost in computation of this complex exponentials then obviously, this is not going to be a

very useful transformation, if it is very expensive to compute.



So, discrete Fourier transform as we have just discussed just to reemphasize that it is

different  from another  similarly,  similar  sounding term that  is  Discrete  Time Fourier

Transform. So, Discrete Fourier Transform DFT is different from Discrete Time Fourier

Transform that is DTFT in that DTFT; discrete time Fourier transforming that is the only

the time domain waveform is sampled discretely.

The Fourier transform of that time domain discretely sample time domain data is going

to be a continuous transform in frequency domain, right. It is not in frequency domain

just  because  the  signal  is  sample  discretely  at  discrete  times  does  not  imply  that  in

frequency domain that will  be defined at  discrete  frequencies,  it  is still  a continuous

frequency signal. 

So, that is what discrete Fourier transform differs from discrete time Fourier transform.

So, DFT is a one to one relationship between one set of discrete data onto another set of

discrete  data.  So,  the  equivalence  between  the  two;  the  continuous  domain  and  the

discrete domain is that for at these discrete values,  discrete frequencies the spectrum

value  that  we  compute  they  correspond  to  the  spectrum  value  of  the  continuous

transform  that  would  have  been  obtained  for  DTFT;  discrete  time  samples  or  the

continuous transform of distribute time samples.

So, that is why it is a useful approximation and it give allows us to compute and make

inference draw inference for physical application, but it is to be understood very clearly

that DTFT and DFT they are two different things and they are not to be confused with

each other. 
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 So, a set of N time N number of discretely sample time domain data function values is

considered as one period of recurring data. So, this is what I try to present here. So, this

is a period of recurring data and what we do in case of DFT analysis is look at one period

of this. So, this is the data segment that we use for analysis. So, N number of data points.

But what is interpreted or what is the procedure, DFT procedure looks at this one period

of data is that this is only a one period of the data window that we are looking at of

infinite  waveform.  And this  entire  segment  which  we are  working with  it  keeps  on

repeating itself at infinitum. 

So, this is an infinite waveform and this one period patch keeps on repeating itself. So,

this is what the original data I mean the data that is interpreted by the DFT procedure

looks like. And effectively we are actually using only one period of the data.

And we the emphasis is that we hope that by just analyzing this one period of data of this

discrete in this discrete Fourier transform pair, the inferences that we draw that can be

applied to the corresponding continuous time and continuous frequency functions and the

useful inferences can be drawn. 

So, here we see that in addition to these non-zero values there are zero padding in the

data. So, that is because I mean we will see the importance of the zero padding that is a

very very crucial,  but  in this  particular  case I  would it  is  this  process is  called  zero



padding. One way one of the reasons is that for the many algorithms to calculate DFT it

is required that the total data length should be integer power of 2. So, N should be an

integer power of 2. So, that is what we deal with in radix two algorithm for computation

of DFT 

So, naturally whatever data we have whatever data length we have. So, we in order to

make it integer power of 2 what we do is we just add more zeros to the data length. So, it

really does not matter whether we, where we take the padding we can either put it at the

beginning of it, we can put it at the end of it, because eventually it is going to be one

period and the entire thing keeps repeating. 

So, but I have my own preferred way. I mean I try to enclose or pad zeros on both sides

of the actual data, but it really does not matter where you put the zeros as long as there

are  enough  number  of  zeros  in  the  data.  So,  one  reason  is  of  course,  from  the

computational point of view the algorithm requires the data length to be integer power of

2, but there is another important reason for this data zero padding.

And that we will see in when we discuss some of the applications the importance of this

zero padding. And fortunately, because of the requirement of computational algorithms

that data length has to be integer power of 2. So, we eventually end up padding enough

number of zeros. And the real reason why these zeros are required they are taken care of

automatically without the user even realizing the importance of the zeros. 

So, these zeros I mean they are very very important and they need to be retained they just

they should not be thrown away lightly. So, zero is really important it is not something

that we can discard and without any effect. We will see that what is the significance of

these zeros when we discuss some of the applications of discrete Fourier transform the

application examples. 

So, a simple example of this time domain data this time domain data that we have here.

So, I take these as six points here and there are ten points here in between; so, 1, 2, 3, 4,

5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 and 16. So, total 16 points, 16 data points.
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And these are the data points that we have. So, three zeros and three zeros at the end. So,

these are the zero padding before and at the end and then the some random data that I

generated.  So, one point  I  mean anything it  is  just  a  random waveform and when I

compute the Fourier transform by using these linear transformation then this is what the

Fourier transform is. 

Now, one thing and I also map the sample number time domain sample numbers I also

map it to discrete frequency samples. So, here the index variable is k and here the index

variable is n on this column last column. And this n represents the essentially the index

for Fourier transform frequencies.

So,  two things  I  mean  several  things  to  observe  here.  The  discrete  frequency  0  the

Fourier  transform is  real.  I  mean of course,  we are dealing  with real  data  here time

domain data is real. So, for 0 frequency the discrete Fourier transform is a real number, it

is not complex number. 

Generally  the  Fourier  transforms  are  complex,  but  only  for  frequencies  discrete

frequency 0 and for discrete frequencies that would be π so this k = 8 or 9th sample.

So, this is  π . So, again for  π , it is a real number the imaginary part is 0. And

beyond this we see that the Fourier transforms they are complex conjugate of the real

number. 



So, from here the negative frequencies start, after the discrete frequency π  the higher

frequency  is  components  they  are  actually  the  negative  frequencies  corresponding

negative frequencies. So, we can just substitute subtract 2π  from this and to get the

corresponding negative discrete frequency. 

And we see that the Fourier transform is a complex conjugate of what we have in case of

positive frequencies. So, as expected the Fourier transform for positive frequency would

be  complex  conjugate  of  the  corresponding  Fourier  transform  for  the  negative

component negative compliment of that frequency.

(Refer Slide Time: 31:49)

So,  couple  of  observations  for  real  time  domain  data  the  DFT  is  real  for  discrete

frequencies 0 and π . Discrete frequencies nω0  greater than or equal to π  they

actually  correspond to the negative frequencies.  ωn=nω0−2π ;  for  π  less than

equal to nω0  and that will be less than 2π  of the Fourier transform. So, from π

onwards it becomes negative frequencies.

The computed DFT for negative frequencies negative discrete frequencies is complex

conjugate  of  the  DFT  for  corresponding  positive  frequencies.  So,  perfectly  fine,

consistent with the definition of Fourier transform. Therefore, now comes the important

observation;  if  half  of  the  component  half  of  the  representation  is  merely  complex

conjugate of the first half then what is the point in storing both halves.



If I know the first half the rest of the information can be deduced and that allows us for a

very interesting and very efficient data representation data structures that we can encode,

we can design an algorithm and store data in such a way that the first half of n number of

data  points  it  stores  the  real  part  of  the  Fourier  transform and other  half  stores  the

imaginary part of the Fourier transform.

There is just enough space available as required to store this data. And it will be perfectly

n number of data points, time domain data and that will be that if it is real then that same

set of n number of real data points that can be overwritten if required by it is Fourier

transform. First half representing the real part, the other remaining part representing the

imaginary part for wherever the Fourier transform components are imaginary except for

discrete frequency 0 and π . So, we have these complete; I mean once we have this

real and imaginary parts defined then complete Fourier transform can be computed. 

(Refer Slide Time: 34:53)

So, the computed DFT, I mean again we reemphasize this point is unique only for the

range of frequencies between  ω0  discrete frequencies between  −π  to  π , and

outside this range this spectrum repeats itself.

And since the Fourier spectrum of a band limited function should vanish after the cut off

frequency the Nyquist frequency, this repetition of Fourier spectrum beyond ωn  in the

range  −π  to  π  is spurious and that should be removed from consideration we



should not look at any spectrum value that happens that occurs beyond outside this range

principle range of −π  to π .

As it corresponds to the frequencies in excess of Nyquist frequency. If we map these

discrete  frequencies  to  circular  frequency then that  those higher  I  mean any discrete

frequency range outside this −π  to π  that will result in a frequency that is greater

than the Nyquist frequency. And obviously, that is in error that should not happen. 

So, computer DFT in the fundamental range that is ω0  in the range of −π  to π

provides an approximation to the Fourier transform of the band limited discrete time

data. And that is the main objective of this. As long as we interpret these results correctly

our purpose is served. 

So, the one period fundamental I mean this fundamental range from −π  to π , if

we look at the data transform data in this range and we look at the one period of the time

domain data that provides us a very good approximation to the Fourier transform of band

limited  time  sample  data.  And  we  can  proceed  with  our  engineering  analysis

subsequently. 

So, this is as far as the definition of discrete Fourier transform and how it is Fourier

transform, how it is implemented on a digital computer is concerned. Computation of

this is entirely different ball game. We will discuss the intricacies of actual computation

of discrete Fourier transform in our next lecture.

Thank you.


