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Lecture - 55 

Discrete Fourier Transform - II 

 

Hello friends, we have seen the discussion I mean we have been discussing about Fourier 

series and how periodic functions can be represented as a summation infinite series, 

involving terms from cosine and sine series, harmonic functions. Now, we extend that 

explanation I mean we extend that formulation the expansion of any function any 

periodic function in terms of sine and cosine functions by using Euler’s formula.  

I mean as we know all know that complex exponentials can be represented as sum of 

cosine and sine functions. So, if we use substitute these Euler formula then can we I 

mean the Fourier series of course involves a sine and cosine term. So, we can combine 

sine and cosine terms and try to develop complex exponential form of the Fourier series. 

(Refer Slide Time: 01:41) 

 

So, in this case we have been looking at this square waveform the Fourier series 

expansion of square wave form and we found that it is an odd function and it involves 

only cosine terms and the coefficients of the cosine term b j they can be given as 4 times 

A 0 / j pi for odd number of harmonics odd or odd harmonics j is equal to 1, 3, 5 and they 

are 0 for even harmonics j is equal to 2, 4, 6 etcetera. And at the point of discontinuity 



the Fourier series approximation converges to the average value of the left and right 

limit. 
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Now, let us look at that expansion into the transformation into the complex form by 

using Euler identity that is eiϴ = cos ϴ + i sin ϴ, then we can actually combine the terms 

of the Fourier series. 
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If you look at it the Fourier series expansion. 
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So, these cos terms and sin terms they can be combined together by using Euler formula, 

I mean cos j ω0 t can be represented as average of 2 complex harmonics complex 

exponentials that is ei j cos j ω t and plus e-i times j ω0t and average of that would be cos j 

ω0t. And similarly we can have the representation for complex I means difference of 

complex these complex exponentials complex conjugate exponentials that results in 

expansion for representation for sin ω t term. So, we can combine these so representation 

for cosϴ  and sin ϴ 
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So, I use these two expressions in the Fourier series expansion replacing ϴ by j ω0t and I 

have this complex representation and that I use substitute in the Fourier series and that 

gives me that brings us to this for particular formulation. So, that will be from j is equal 

to 1 to infinity, so this is of course the constant term. So, all terms involving cosine and 

sine they can be represented as positive exponential and negative exponential and terms a 

and b can be combined. 

Now little bit of arithmetic and we can actually now look at it that this can be represented 

as e-j w0 can be thought of as eij ω0 t with j range extending to minus range with the j 

index going into the negative range. And once we accept that then this brings us to the 

next formulation. So, we can substitute this Euler identity and coefficients for a cosine 

and sine terms in terms of sum of complex exponentials and difference of complex 

exponentials and that Fourier series can be represented in this form. 

Now, if we look at it these are two terms of complex exponentials one involving positive 

power and other involving negative power and j is an index. So, this e-ij ωo t that can be 

considered as belonging to negative values for index j. And with that interaction with 

that interpretation this entire thing can be combined together and this summation can 

now extend from minus infinity to plus infinity with j = 0 accounting for this constant 

term as well. 

So, with that so these are the coefficients for negative range of index variable they can be 

evaluated. And therefore, this can be represented as negative powers of negative values 

for index j for these terms and with this substitution this entire expansion these 2 one half 

summation for j is equal to 1 to infinity and j is equal to 1 to infinity they can be merged 

with the with these with the help of these results. 
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And we arrive at a very simple expression, so in this case j extends from minus infinity 

to plus infinity and j is still not equal to 0, because j is equal to 0 term is taken care of by 

this constant term. So, if we combine that and introduce bring that in this fold then we 

define this a j – I bj as a complex number alpha j. So, that would be given as a 

representative of Fourier I mean function approximation. 

So, this entire series can be represented as summation over j of alpha j multiplied by e i j 

ω0 t. And now j index varies from 0 and then it takes on value plus or minus 1. So, entire 

range of integers from minus infinity to plus infinity and that is again the same I mean it 

is exactly same as our standard Fourier series expansion in terms of sine and cosine.  

Except that we now write it in terms of complex exponentials and obviously, since the 

multiplier this basis is complex exponential the coefficient is also going to be complex 

such that the result of this summation is a real function f t. If f t is real to begin with, then 

now alpha j can be computed using again from the original function.  

So, instead of computing different coefficients a j and b j separately and then combining 

them together the complex exponential coefficient α j can be directly computed by using 

by not taking this e raised to the power I mean the multiplying this α j term multiplied by 

e i j ω0 t. So, that will cancel out this term particular one particular harmonic and we will 

get the jth coefficient of the series and that will fetch the desired coefficient averaged over 

the period T naught of the periodic wave. 



So, integration be over one period f t multiplied by e - i j ω0 t and this changes this holds 

for all values of j, j ranging from minus infinity to plus infinity and we will have 

appropriate value of coefficient alpha j. So, the bottom line the key take away from this 

discussion and preceding discussion is that a periodic function in time domain.  

If a function is periodic in time domain, so far we have always we have been discussing 

only periodic functions and a periodic function in time domain is characterized by a 

discrete set of coefficients or a discrete sum of different frequencies and higher of 

fundamental harmonic and higher harmonic. 

So, these are all for j is equal to the Fourier transform this alpha j is defined for j is equal 

to some integer multiple of ω0, that is the basic harmonic that depends on the period of 

oscillation period of the function. So, 2 pi over T0 that is the fundamental harmonic ω0 

and these are the discrete of harmonics ω0, 2 ω0, 3 ω0 and so on, positive negative all. 

So, these are the discrete frequencies and these only these frequencies will have 

composition and that are an important take away. That any periodic function in time is 

going to have a discrete representation discrete frequency in frequency domain or 

Fourier domain. 

So, that is one key aspect and that we will come back to we will come back to this 

particular result again after some time. Now, let us look at the extension of this particular 

definition, Fourier series as we have seen is it is defined for periodic function which is 

finite and it is it has a finite energy signal and such that it has only a countable finite 

number of discontinuities. And the series converges to the average value of the 

discontinuity within the period. 

Now, let us take the extension I mean little limiting process that if the periodic function 

is defined by a period p after which it recurs after which it recurs repeats itself. Then we 

can define an a periodic function or a transient as a periodic function with infinite period. 

So, the period I mean the function actually never repeats or it is period is infinite. So, 

then this entire formulation of Fourier series can be extended to cover the a periodic 

functions as well in the limit as the period tends to infinity. So, let us now look at how it 

pans out. 
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So, a periodic functions may be modeled as periodic functions with an infinite period. 

So, it is essentially saying that this function never repeats, so whatever we have seen that 

is it there is no way it is going to repeat again. So, as period T0 approaches infinity the 

finite frequency increment that is ω0 the frequency of fundamental frequency that was 

given as we computed it as defined it as 2 pi over T 0 that approaches an infinite decimal 

let us say d ω, because as T naught tends to infinity. 

So, as ω0 is defined as 2 pi over T 0. So, as limit T0 tends to infinity. So, 2 pi / T0 

approaches infinite decimal d ω. So, this is an infinite decimal number and this is what 

we refer to so, these multiples of ω0, so j ω0 for j ranging from minus infinity to plus 

infinity. So, and multiples of infinite decimal; so d ω adding on to itself repeatedly.  

So this transforms into a continuous variable. So, instead of having discrete frequencies 

here we now have ω ranging from minus infinity to plus infinity. So, it is a continuous 

variable over the entire range. So, instead of discrete frequencies we now have it defined 

over the complete range. 

And we also have Fourier transforms that are f at j ω0 is equal to α j times T0. So, αj is 

again given as 1 / 2 pi f j 0 and that is the definition that we have from the previous 

derivation of our α j complex interval. And considering the limit T naught I mean the 

period extending to approaching infinity, then this omega naught the fundamental 



harmonic it approaches d omega and j ω0 approaches continuous variable ω and then the 

summation Fourier series converges to or approaches the integral form.  

The summation approaches the integral form and that is what we call as Fourier 

transform. So, f of t function of time t, so f t is an a periodic function is related to its 

Fourier transform f ω as shown in slide. And the inverse Fourier transform is given by 

F(ω) is defined as integral from - infinity to infinity f t e iωt d t and these 2 are 

collectively referred to as Fourier transform pair. 

So, essentially we approached the Fourier transform definition I was starting from the 

Fourier series representation and then defining casting Fourier series for periodic 

function in terms of the complex exponentials. And then relating that complex 

exponential and through this limiting operation that as the period tends to infinity then 

the discrete frequencies they merge into a continuum and the summation approaches at 

an integral term. 

And that is how I mean this is the most appealing way of deriving Fourier transforms. Of 

course, there are more rigorous ways of doing that, but coming from Fourier series has 

its specific appeal that starting from something that we know, we can extend that concept 

to through process of standard process of mathematical limits. 

So now, in this particular result we now have another key takeaway and a periodic 

function in time domain is characterized by continuous function in frequency domain. 

So, f t is an a periodic function and it is represented in frequency domain as a continuous 

function of frequency f ω, f ω is a continuum and these two this as well as the previous 

one that for discrete frequencies we need a periodic function and any a periodic function 

has to have a continuous Fourier transform. 

So now, how does Fourier domain representation of an a periodic function compare with 

that of an analogous periodic function. So for example, if we take this same example as 

that of square wave, but except that we now consider only one period of the wave and 

outside one period the waveform is essentially 0. 
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So, g1 (t) so initial while we were discussing earlier the periodic function we had this 

pattern A 0 and - A 0 this pattern repeats itself after the period of T 0. So, it is an infinite 

periodic wave form square wave form, but now we only look at one period and outside 

this period the function is identically 0 everywhere for all times t. 

So, it is Fourier transform we can compute by this standard definition, we can straight 

away take g1 t multiplied by e - i ω t dt integrate it from minus infinity to plus infinity. So, 

outside this domain of course this integral is 0 and that brings us to this particular 

integral interval. So, - T 0 to 2 T 0 / 2 to 0 and 0 to T 0 by 2 and we can evaluate this 

integral. 
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And we can find this these are the Fourier amplitudes that we have. So, we have this we 

know that this amplitude Fourier transform. So, we are plotting here only the modulus of 

the Fourier transform complex number with respect to frequencies. Now, as we know 

from the previous result that for a periodic function it is going to be continuous function 

and this is what that continuous function is so the Fourier amplitudes.  

But what is interesting is I also have plotted these constant discrete values of frequencies 

different frequencies of the corresponding periodic function. So, Fourier amplitudes the 

complex exponential the modulus of complex exponentials multiplied by the period. So, 

it is scaled by the period of the wave form. So, alpha j multiplied by t0. So, that is the 

period so complex exponential multiplied by modulus of complex exponential multiplied 

by the period. So, that I plot and interestingly the most that is a very revealing result the 

Fourier transform of this a periodic wave form. So, this is the a periodic wave form, so 

this is 0 all over it goes to minus 1 stays minus 1 in this range, then goes to plus 1 and 

again goes to 0 at t is equal to 1. So, from minus 1 second to plus t 1 second it has this 

one period of the waveform and we consider the amplitude as unity here. 

So, for this waveform we compute the Fourier transform and also we superimpose this 

Fourier series expansion the complex exponential form the amplitudes of that. And we 

find that the amplitudes of the complex exponential form of the periodic wave form they 

agree exactly with the Fourier transform of this a periodic waveform. 



Of course this complex exponential has to be scaled with scaled by the period of the 

waveform. So, α j times T0 the period of the waveform agrees with the Fourier transform 

of the a periodic wave form same wave form. But, whose period I mean which is a 

periodic and that agrees exactly at discrete frequencies now that is a very important 

result. 

So, complex coefficients of the Fourier series expansion of periodic function scaled by 

the time period are exactly identical to the Fourier amplitudes of the corresponding a 

periodic function at discrete set of frequencies j ω0. And this leads us to a very 

interesting result that for the I can possibly characterize this continuous frequency 

Fourier transform by these scaled complex exponentials of the periodic waveform 

corresponding periodic waveform. 

And that is the key to development of what we call as discrete Fourier transform, under 

what conditions that holds and what are the specific issues that we will be dealing with 

that we will soon see. But nevertheless suffices it suffices to say that this equality is 

really remarkable and we can go ahead, we can develop a suitable algorithm and 

procedure to represent these continuous frequency waveform by this discrete wave 

frequency equivalence. 

And it is exactly similar to what we do in case of normal digital discrete normal 

processing data processing using digital computers. For example, all waveforms are 

continuous time waveforms most of the almost always, most of the physical waveforms, 

physical signals that we pick up or that we observe they are continuous time signals. 

But, by virtue of the design of digital computers the values that we need they need to be 

in discrete time samples, we need to have quantization and we need to have sampling at 

different instance of time. So, we cannot have I mean we cannot a digital computer 

cannot deal with a continuous function, it can only deal with a set of data or the vector of 

vector or matrices of discrete data set. 

So, we need to approximate the continuous waveform by using discrete time samples and 

that particular aspect discrete time samples that brings us another dimension completely 

different dimension to this whole discussion of Fourier series. As it is we know we have 

converged to a great extent find out what is I mean for periodic function, it is in for 

Fourier domain it is going to be discrete frequencies.  



And for a periodic function in time domain in frequency domain it is going to be 

continuous function. But those continuous function values can be approximated or they 

agree very well exactly with the values corresponding values obtained from the periodic 

function, complex exponentials for periodic function scaled with respect by the factor of 

time period. 

So, this is pretty much settled and this is fine, but the problem is this waveform that we 

have continuous time waveform. This is not available, so for computation what we have 

instead is discrete values at some delta t some interval apart. So, what do we do with that 

and what are the implications of that and how do we first generate the those discrete 

samples. 

So, these are some of the aspects which have their roots I mean lot of time and effort has 

gone into study of these phenomena apparently very innocuous operation of instead of 

having this continuous time waveform by replacing them by closely spaced samples. Just 

the data points we do that normally during I mean of practical I mean any kind of 

observation while we were preparing graphs and plots that is what we do. We observe 

for certain x value we observe corresponding y value and then mark the point and then 

join the curve and that curve is a continuous curve. 

So, this is something that we routinely do. But on a digital for processing on a digital 

computer this kind of sampling at discrete time instance has it is own what should I say 

vagaries or peculiarities and that in turn has implication on this Fourier transform 

calculation that we have actually arrived at. 

For example, this Fourier transform that we had defined here again we need to go back to 

the summation, because there is no way this g1 t is not defined as a continuous function 

of time. It is only defined as discrete samples, so these integrals will again have to be 

computed as a accumulation, so kind of like quadrature.  So, this is essentially same as 

quadrature definite integral. So, we need to again go back to our numerical integration 

and discrete summation, accumulation of function values summation and that will have 

its own consequences as we will discuss in our next lecture. 

Thank you. 


