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Hello friends. So, we now start with a new topic today. We have discussed about the 

time dimension in the passing and inertia terms when dynamic effects are present. Then, 

the inertia term will also be there and consistent mass matrix is obtained by assuming 

acceleration variation within the element to be interpolated in the same way as the 

displacement interpolations and the mass matrix or inertia matrix that is so derived is 

known as consistent mass matrix. 

Now, consistency this adjective consistent is only with reference to the interpolation 

nature of interpolation that is being used for interpolating the acceleration field. So,  

interpolation of acceleration field is consistent with that of the displacement field. Now, 

after we solve these I mean assemble the global finite element equations, the partial 

differential equations is eventually converted into an ordinary differential equation in 

time with some initial  conditions. 

If the problem is time dependent and if the problem is not time dependent or the time 

dependence is negligible the time variation is very small or it can be neglected, then the 

problem is essentially static and the static analysis in simple linear simultaneous 

equations they serve the purpose the solution. 

But when the time effects or dynamic effects are important, then the ordinary differential 

equation in time needs to be solved. And although in principle, it is possible to develop if 

we can develop the finite element formulation for spatial coordinates then; obviously, we 

can also develop the finite element formulation for time coordinates in time dimension. 

But it makes it simpler and more efficient to distinguish or to separate the variables 

spatial variables from the time variables and treat the time variable separately. 

So, finite element approximation is constructed in the spatial domain x y z domain and 

the resulting I mean after substituting the finite element approximation, we arrive at the 

system characteristics or global system matrices, stiffness matrix, inertia matrix and also, 

the damping matrix suitably constructed. 



And. So, resulting second order differential or resulting ordinary differential equation in 

time needs to be solved using some suitable technique. So, we will start our discussion 

using the first order differential equation in time which is the basic building block. And 

second order differential equation acceleration term is essentially a second order 

differential term and that results in structural dynamics that results in second order 

differential equation in time. 

So, this second order differential equation can always be converted into an equivalent 

first order differential equation and we will see that how it is done. So, this first order 

differential equation techniques that we discuss can be applied equally well to structural 

dynamics problem developing I mean resulting in second order differential equations in 

time. 

So, these are called initial value problems and what we deal with finite element 

formulation, then if we recall the basic finite element approximation, the boundary terms 

were of crucial importance and those are called boundary value problems. So, that is to 

distinguish. I mean boundary value problems the problem is bounded from all the sides I 

mean the domain is bounded with adequate boundary constraints, but the time dimension 

we have constraints only at the beginning of the time.  

There is no constraint at the other end. So, it is open ended domain. So, that is what 

differentiates boundary value problem from initial value problem. So, now we look at 

initial value problem or time variation problem and try to find out try to develop 

numerical tools for solving these time variation problems.  

So, after the semi-discretization I mean semi-discretization. I am referring to this 

separation of variables spatial coordinates are separated from time coordinates and we 

discretize the space domain spatial domain. Time domain we are not touching. So, that is 

what we are referring to as semi-discretization. So, discretization using finite element 

finite element method is done only in the space domain spatial domain. 
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So, after the semi-discretization to approximate the dependence with respect to space 

variables; x y and z the governing partial differential equations can be converted to 

ordinary differential equations in of variation with respect to time. 

And a generic representation is first order derivative d v / d t is given as a function some 

function g as a function of t the time variable and the unknown variable that is v with 

appropriate initial condition v at time t is equal to 0. Let us call it v0. 

So, that is the statement of the problem and using this information that we have, the 

function v that we need to compute has to satisfy this initial condition at time t is equal to 

0 that v at time t is equal to 0 should be equal to v0; some specified value. And the time 

rate of change of function v is given by f known function g as a function of time and v 

the current value of the variable v. 

Second order equations of motion that arise in the study of structural dynamics or 

vibration problems. They can also be transformed into a set of first order equations by 

using the auxiliary equations as done for we can actually recast the quadratic eigenvalue 

problem as well in the for an eigen linear eigenvalue problem by defining the state 

vector. 

So, we define a state vector let us say v is defined as a vector of u and  so, displacement 

and velocity. So, the  when we talk in terms of rate of change of v then, that will also 



include a term involving acceleration and the equations can be arranged so, as to hold the 

identity and the second order differential equation in terms of displacement u velocity   

and acceleration  can be converted into state vector v and . 

Now, returning focus back to this particular equation  is equal to g of t and v. So, let us 

try to derive develop the Taylor series approximation around time t. 
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So, function v at some instant t n plus delta t would be given as shown in the slide. So, 

this is the Taylor series expansion, in the neighbourhood of the time instant t n. 

So, the function v that we need to compute can be expressed as a Taylor series expansion 

in the neighbourhood of t n the time instant. Now, let us ignore the truncate it after the 

first order term and ignore the higher order terms for delta t is very small. So, higher 

order terms can be neglected in comparison with the first-order term. 

So, ignoring higher order terms, the basic scheme for advancing the solution in time. So, 

idea is I mean we start with initial value. So, at time t is equal to 0; this function is 

known v at t 0 is known and knowing the function, because this function is also known. 

So, substituting for v 0, then we also know what is the initial value initial velocity at time 

t is equal to t 0. So, knowing this  at time t is equal to t 0, we can actually find what is 

going to be the value or we can predict what should be the value of v at next time step by 

incrementing the contribution coming from the derivative. 



So, that is what we obtained ignoring the higher order terms. The basic scheme for 

advancing the solution in time is obtained as v n + 1 is equal to the next time step the 

value of the function at next time step is approximately equal to v n the value of the 

function at current time step t n plus t times g of t n v n, because this function is known 

as we know this function as a function of t and v for . 

So, we substitute this for the value of t and v at t n and this is the first order 

approximation for unknown value at next time instant. And then, we can go back and this 

becomes a recursive relationship. So, for computing n + 2 we substitute here, instead of v 

n we write v n + 1 and here, we substitute t n + 1 and v n + 1 and so on it goes. 

So, this is referred to as forward Euler time marching scheme. I mean we are marching 

ahead in time which one step at a time, we are projecting the solution in the next time 

step. And knowing the value I mean knowing the function of the derivative function or 

derivative and knowing the time instant and the function value at the previous time 

instant, we can estimate what is the derivative at the time step and we can add increment, 

because of this gradient function to the function value over the time step. 

So, this is referred to as forward Euler time marching scheme and its local truncation 

error I mean we truncated it at the higher order term second order term. So, local 

truncation error is of the order of delta t squared and global error at any time instant, 

because it is going to be added up accumulated. So, global error will be little less 

accurate. 

So, it will be of the order of  t and it is referred to as being first-order accurate scheme. 

And therefore, first order accuracy is not a very good accuracy and this has although, this 

is very simple to implement. I mean very trivial to code on a computer actually and; 

obviously, nothing comes for free. So, if something numerical technique is such a simple 

algorithm to code then; obviously, there has to be some catch. And the catch is this is this 

technique is numerically unstable. The problem is there is no constraint on the next time 

instant on which it is being the solution is being predicted. All information is based on 

the previous time instant and there is no protection against what is happening within the 

interval that we are projecting the solution ahead in time over the interval. 



So, whatever is the mechanics happening, we have absolutely we are not taking into 

account anything about that interval. We are projecting solution in the next instant of 

time based on entirely on the information available at the previous instant; that is all. 
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So, forward Euler scheme and this is known as explicit scheme. Since, the solution 

advance one at step at a time is based on information that is completely specified at the 

beginning of the time step. So, there is no uncertainty as far as the information is 

required to for the prediction to next time step. 

So, this is called explicit scheme and as we have seen that is a general character of 

explicit schemes, they are in general very easy to compute and they are  very efficient in 

the sense that they do not require too much of computation. But they do come at a the 

offside being they do come at a penalty incur a penalty in terms of tendency to be 

unstable at times.  

So, explicit schemes are in general extremely sensitive to the size of time step and can 

diverge very quickly as I said they can they have a tendency for instability. So, to protect 

against such instabilities, a constraint can be imposed at the end of the time step by 

considering an estimate of the gradient term at the end of the interval.  

So, this gradient term; instead of using this gradient term at the beginning of the interval 

that is at t n, we make use of this gradient term I mean invoke this gradient term at the 



end of the interval. So, tn + 1. Now; obviously, this gradient term g requires information 

about v as well. So, this  that we use as a value at n + 1. 

That can be taken as a Euler forward Euler estimate of v n. So, in order to compute this, 

we use Euler estimate forward Euler estimate. And then, use gradient that estimate to 

compute the gradient at the end of the interval and then use it for computing the next 

value of v at next time instant and this is known as the backward Euler algorithm implicit 

backward Euler scheme. 

And this is implicit, because we are using information at the end of the time step at 

which the solution is being computed. So, we are computing solution at n + 1th times 

step and we are using information at n + 1th time-step in addition to the information at 

the previous time step. So, this is an implicit scheme it is based on the information at the 

current time step at which the solution is being predicted. So, this; obviously, has a I 

mean the constraint is imposed at the end of the time step. 

So, it prevents it from diverging and gradient information is captured at the end of the 

interval and that has a much important much better performance over the forward Euler 

scheme and still the algorithm I mean little bit of computational effort is increased. We 

need to estimate this time marching twice; first using forward Euler estimate and then 

use that estimate in the gradient function and then, use that gradient estimate gradient 

function at the end of the interval to compute the next estimate of the forward Euler 

scheme; so, backward Euler. 

And that results in this particular constraint at the end of the time interval results in 

considerable improvement in the stability characteristics of the scheme. So, now, we 

come to more generic way. I mean this is of course, coming straight forward from Taylor 

series expansion or even finite difference approximation, we could have formulated this. 

So, more generic formulation is based on. 
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The analytical solution d v / d t is equal to g ( t ) and v with v t is equal to 0 as v0. It can 

be given analytically we can generate it as v 0 that is the constant of integration plus 0 to 

t integral from 0 to t of this gradient function. Now, the entire set of numerical schemes 

can be developed by using this how to evaluate this integral definite integral. Now, this 

definite integral I mean we have already seen it before all definite integrals in on a digital 

computer. They are evaluated using quadrature rules.  

So, we have seen several quadrature rules that have been earlier I mean rectangle rule 

trapezoid rule Gauss quadrature Newton code Simpson rule and so on. So, this definite 

integral can be evaluated using several different quadrature schemes. And each of those 

has its own convergence or accuracy properties I mean error term and so on and that will 

have effect on the quality of computation. 

So, definite integral can be approximated by a suitable numerical quadrature estimate 

and if we assume trapezoidal rule, then the trapezoidal rule can be invoked and the 

function value at next time instant v n + 1 can be given as v n + Δ t / 2 and average of the 

function values gradient values at the two-time instants. 

So, g at t n v n and g at t n + 1 and  n on where  n is the forward Euler estimate at t is 

equal to t n plus 1. So, once we have this forward Euler estimate, then we can invoke 

trapezoidal rule and this can be invoked. So, this is an improvement I mean if you look at 

it, this is similar to backward Euler except that instead of having only function of I mean 



the gradient evaluated at end of the time interval, we are looking at average of the 

gradient over the at the beginning and at the end of the time interval and evaluate it the 

contribution to get the function value at the next time instant. 

So, next in line comes very popular scheme popular family of schemes which are 

proposed by Runge and Kutta. 
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So, there are of different orders and essentially the whole point is concentrated the entire 

scheme is concentrated on how do we estimate this gradient function. This quadrature I 

mean the whole crux of the problem is if v 0 is known how accurately can I compute this 

integral or this integral. And for that we need to know, because the function this gradient 

actually depends on the function v itself and v is not known; v is known only at 0 and in 

between this duration this function v is not known. 

So, the entire effort now I mean Runge-Kutta the algorithms; they are based on how to 

approximate how to get a better degree of approximation of this gradient function within 

this interval over which it is being integrated. So, 0 to I mean t n to t n + 1 during this 

interval how do we approximate this gradient function. 

So, accuracy of the computed solution can often be achieved by getting a refined 

estimate of the gradient function. Series of schemes can be developed known as Runge-

Kutta family based on successive refinements of the gradient function within a time step. 



So, from t n to t n + 1 within this time step, how the gradient function varies. And 2nd 

order scheme Runge-Kutta 2nd order scheme can be developed considering the Taylor 

series expansion Taylor series of the gradient function around the midpoint of the 

interval. So, let us denote the midpoint as n plus half. So, gradient function at t n plus half 

will of course, depend on the function value at n plus half. 

And then, it will be of course, interval t - t n + (1/2) and then gradient function the 

gradient of the gradient function g dot and higher order terms I mean delta t square 

terms. So, integral of gradient within the interval t n to t n + 1 leads to cancellation of the 

second term; this term cancels out, because of this term being positive at one half and 

negative for the other half. 

And therefore, this leads to a higher order of convergence merely by sampling the 

gradient at the midpoint; just, because we are sampling the gradient value at the 

midpoint, allows us for cancellation of this term I mean first order term and the 

convergence accuracy is increased by one order. 

So, that is a very clever construction and this midpoint evaluation can of course, be 

evaluated by using several approximations. 
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And that is done by using successive gradient values. So, k 1 let us say k 1 is the grade 

value of the gradient at beginning of the time instant t n and v n. And at the midpoint, the 



gradient k 2 is defined as g at t n + Δt / 2 and v n Δ t / 2 times k 1. So, this is essentially 

forward Euler estimate for predicting the value of v at midpoint.  

So, essentially k 2 is the value of the gradient considering the forward Euler estimate for 

value of the variable v at midpoint using the gradient function at the beginning of the 

time instant. And then, using this gradient value, we can estimate the second the 

prediction; that is v n + 1 is equal to v n + Δ t times k 2. 

So, that is the midpoint gradient and that is by virtue of that sampling at midpoint it gives 

us higher order convergence. The most commonly used and we go to higher order term. 

And most commonly used Runge-Kutta scheme is of 4th order its 4th order accurate and 

it involves four stages of refinement of the gradient function. 

So, we keep on repeatedly refining the gradient function. So, k 1 is of course, the at the 

beginning of the interval. Using k 1, we find out what is k 2, then using k 2, we find out 

what is k 3. So, just separating the I mean again forward Euler estimate, we can we keep 

on changing the value of the gradient term by using the previously used improved 

estimate of the gradient term. 

So, here you can see these gradient terms k 1 is the beginning of the interval, k 2 is based 

on the gradient term at the beginning of the interval. So, this is forward Euler estimate. 

And k 3 again based on the previously refined estimate of the gradient k 2 and evaluated 

at the midpoint. And then finally, k 4 is evaluated at the end of the time step. So, t n +1. 

And we make use of this previous refined estimate of gradient function to find out what 

is the again forward Euler scheme to find out what should be the value of the function at 

the estimate of the function value at the end of the time step. And then, use these in the 

Simpson rule like formulation. 

So, next time instant value at the next time instant v n +1 is given as v n previous time 

instant + Δt / 6 multiplied by now, weighted some of the gradient values. So, k 1 + 2 k 2 + 

2 k 3 + k 4. So, that is a weighted some of gradient values and that is averaged over it. All 

the sum of weights is 6 and this is a considered to be a much refined estimate of the 

gradient function and the value that we get is very accurate. 



And it is indeed the most efficient and most sort after numerical technique for solving 

non-linear problems particularly very sensitive problems involving non-linear dynamics 

and chaotic systems; Runge-Kutta 4th order scheme is the default go to algorithm to solve 

those problems. 

Of course, we can there are several possibilities here. We can dynamically change the 

time steps by keeping track of the error. So, that is called Runge-Kutta 4 5 r k 4 5. If you 

look at several MATLAB or octave implementation, there will be a function ode 4 5 that 

actually is solution of this ordinary differential equation in time initial value problem, 

using Runge-Kutta 4th order method and 5th order method and that 4 5 is actually this 

4th order and 5th order Runge-Kutta estimate. 

So, 5th order is just to estimate the error compare, because that is an higher order method. 

So, that is difference between 4th order estimate and 5th order estimate is an indication 

of the error in computation. So, wherever error increases above the acceptable limit, time 

steps can be reduced and when the error goes below acceptable limit, time step can be 

increased. 

And that is how adaptive time stepping can be achieved, in case of Runge-Kutta 

schemes. 
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So, adaptive Runge-Kutta scheme. So, 4th order scheme is one of the most popular time-

marching schemes. The computational costs, however, increase significantly for very 

small step sizes. And therefore, we would like to take as large steps as possible whenever 

the function variation is relatively smooth. 

So, how do we keep track? So, an adaptive scheme can be developed based on specified 

allowable error say epsilon to automatically change the step sizes. The estimate of error 

in computed solution is obtained by taking difference between the solution computed by 

two different orders of schemes. So, let us say pth order and p + 1th order and that is what 

I referred to as o d e for 5 4th order scheme and 5th order scheme. 

So, the computation of difference or the size of the difference between a higher order 

result from the lower order result, that is an estimate of the error in computation. And if 

this error is large, the computation I mean based on this error computed error, the time 

step for the next increment can be automatically selected by taking it as a fraction of or 

scaling up or down of the time step for the previous calculation. 

So, Δ t n +1 can be scaled by this ratio. Epsilon is the tolerance level and Δ n + 1 is the 

error in computation over the last increment. And if delta is smaller than epsilon, then 

this scheme will automatically allow us to take larger interval larger step size. If error is 

larger than epsilon, then it will try it will give us smaller step size appropriately. 

And this adaptive time scheme generally gives very good results and result I mean very 

highly dynamical system highly non-linear dynamical systems can be analyzed very 

accurately by using Runge-Kutta schemes. Now, these are all. So, far we have dealt with 

these are all single step methods; Euler scheme, Runge-Kutta scheme, because they are 

projecting making use. 

I mean all these methods make use of the values or the information available at the 

previous time instant and knowing the current time instant, we predict what is going to 

happen at the next time instant and that is all. We these methods do not really bother or 

do not really require information about anything beyond one step back right. So, for to 

compute the solution at n + 1, we only need information that is available at nth time 

instant. 
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We do not really need information about n - 1th time instant and n - 2th time instant, but 

that there is a question. I mean if the whole point is to obtain an approximation of this 

gradient function, what is wrong if I have the information and I can generate an 

interpolation and then, extrapolate over one step to get a estimate of gradient function g 

and then develop analytical solution. 

I have interpolated function and that can be integrated analytically and develop the 

solution. And that is what leads to multi-step methods, where we make use of 

information over the several previous time instants and try to construct suitable 

approximation over the gradient function. 

So, possible to use computed response at previous time instants and predict solution at 

the current time step as an increment over the solution at an earlier time instant that is v n 

+ 1 = v n - 1 + the integral v n - k; k steps back. And then, integrate this gradient function 

from between time instant n - k to n + 1. So, the entire function can be approximated. 

So, now, we have this gradient function, because we know the function values at various 

previous time instant. So, gradient functions information is also available and that allows 

us to construct a reasonably good approximation for the gradient function over this 

interval which goes beyond the current instant and unknown territory of next time 

instant. 



So, above integral is evaluated. For a polynomial interpolation of the available gradient 

values at previous time instants. So, we can have this as a just as in Lagrangian 

interpolation model and the gradient function can be evaluated as a interpolation of the 

previously computed gradient values at previous time instants. And once we have this 

gradient function available analytical form, we can evaluate it and suitable coefficients 

can be generated. 
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So, interpolating polynomial can be of any degree depending on the number of function 

evaluations used in the interpolation. However, the integral is always evaluated. So, 

whatever may be the degree of polynomial. I mean that depends on how much steps back 

we are going. So, whatever may be the degree of polynomial interpolation for the 

approximation of gradient function, the integral is always evaluated over the interval n - 

k to n+ 1. 

And if we choose k = 0 that is no backward I mean just the previous step and we get 

what is known as Adams scheme and the explicit I mean that is an explicit scheme and 

known as Adams-Bashforth. And that is based on just the previous instant value and 

coefficients can be evaluated by using this interpolation model. 

So, several time instants in between the time interval can be developed and 

approximations can be generated. And this β q i can be evaluated as an integral of these 

Lagrangian interpolation models. 
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An implicit form called Adams-Moulton is obtained if the interpolation is extended to 

include the time step at which the solution is to be computed. So, we can have the 

interpolation that I mean gradient function is also interpolated at the next time instant. 

And in this particular ray’s the iterations may be required, because the solution v n + 1 is 

not known on and it figures on both sides of the equation. So, iterative scheme is 

required to compute the value of v n. 
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And often Adams-Bashforth and Adams-Moulton scheme they are used in tandem; one 

is explicit. So, that is used as a predictor and Adams-Moulton is used as a corrector of 

this predicted solution. So, constituting the predictor step, Adams-Bashforth and Adom 

Moulton is an implicit scheme to find the corrected solution the corrector step.  

So, we stop here and we will discuss the direct solution of 2nd order differential equation 

in time in our next lecture. 

Thank you. 


