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Hello friends. So, we have seen some of the methods of computing eigen values and

eigen vectors, where we targeted one eigen pair at a time and then having computed one

eigen pair at a time; at a time we converge to the next eigen pair by using some sort of

orthogonality or purification technique or even shifting procedure and we could compute

the other eigen vectors other the next eigen vectors in the spectrum. 

So, now we look at some of the algorithms which are used for more large scale eigen

value problem and first one very powerful and very popular technique for I mean large

scale solution of eigen value problem is what we call  as QR iterations.  In numerical

analysis or numerical techniques books, it is often referred to as HQRI or H standing for

householder transformation. So, and QR refers to the factorization. 

So, using householder transformation matrix, the reflection matrix we convert this matrix

a into a factor of orthogonal matrix Q and a right triangular matrix. So, R because this is

a matrix on the right of the matrix Q and it is it has a triangular structure.
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So, matrix Q is actually generated from a such that this will reduce this entire system

reduces it to upper triangular matrix. So, A is converted to upper triangular form. So, a

matrix  can  be  transformed  into  upper  triangular  form  by  a  series  of  householder

transformation. So, its very efficient to convert matrix a given matrix to upper triangular

matrix by using householder transformation and that accumulation of the transformation

that sequential accumulation that is what is we call as the transformation matrix that is

related to Q. 

So,  R_0 is  upper triangular  and Q_0 is  an orthonormal  matrix  and this  orthonormal

matrix is related to the householder transformation gradually.
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So, essentially what is done is a if I multiply this householder transformation P_1, then I

will get this matrix and 0 0 0 0 here and then of course, there are other rows that are

there. So, it can be done like this and then once I do P2
T , it will target this matrix and

there will be elements here and then there will be 0s all along.

So, these matrices the product of these, this is what refers to. If I look at it, then Q0
T A

= R because this is what is going to be converted to upper triangular matrix and if I

multiply  Q0
T  is of course orthogonal matrix. So, A is given as Q_0 R_0 let us say

A_0, right. So, this is what the entire factorization is. A can be defined as a orthogonal

matrix Q_0 multiplied by right triangular matrix R_0. 



Now if I define another matrix let us say A_1 as I reverse the order, what happens R_0

Q_0  having  computed  QR  factorization,  I  just  interchange  the  order  of  matrix

multiplication and define a new matrix. So, what is this matrix? This matrix I can write

this  as  Q0Q0
TR0Q0  because this  is a orthogonal matrix.  So,  Q0Q 0

T  is of course

identity matrix. So, when I do this, then this is actually orthogonal transform and sorry I

would. So, I define this QTQ  and R0Q  now Q0R0  what is Q0R0 . Q0R0

is just A0 . 

So, this essentially this by reversing the order of multiplication what I am eventually

doing is  implementing a similarity  orthogonal  similarity  transform of matrix  A, very

efficient technique. So, this similarity transform would require multiplication. Ideally if I

do implement it, then it will require multiplication of 3 n by n matrices and here I am

doing the same operation by just  multiplying  two matrices  A considerable  saving in

numerical effort.

So,  we  define  new matrix  by  reversing  the  order  of  multiplication.  So,  A_0  is  the

factorization by series of householder transformation, we get Q0R0 A0=Q0R0  that is

the  factorization  and  then  I  define  new  matrix  A_1  by  just  reversing  the  order  of

multiplication R_0 Q_0 and multiplication in reverse order is effectively performing an

orthogonal similarity transform by virtue of identity that we have. 

And the sequence we can keep on doing this repeatedly and we can do this A i=Qi Ri

and this new matrix will lead to R_i triangle multiplied by Q_i by interchanging the

order and so on. The matrix factorization and reversed operation reverse multiplication

can be continued until A is reduced until this matrix A that we have is reduced to upper

triangular form completely upper triangular form.

And that will have that is called schur form with eigen values on the diagonal of the

matrix and once we have the eigen values, then it can be we can go back to inverse

iteration  with  shift  parameter  to  compute  refined  eigen  value  and  the  corresponding

eigen vector and generally, one iteration is good enough to compute the corresponding

eigen values and eigen vectors. So, in this case by the Q R iterations, we can actually

converge to the eigen values on the diagonal of the matrix. So, this diagonal matrix that

we generate. 



So, in practice that is the theory that in for Q R iteration, in practice we actually first

consider  the  householder  transformation  to  convert  matrix  A into  upper  Hessenberg

form. So, upper Hessenberg form is like upper triangular structure with one sub diagonal

and rest of it is all 0.

So, this is all 0. So, this structure is what is known as Upper Hessenberg Form. So, we

convert the matrix instead of converting into right triangle upper triangular straight away

from  using  householder  transformation,  we  just  use  it  for  converting  it  to  upper

Heisenberg form. Now why do we do this upper Heisenberg form? We do this because

not all eigen values are guaranteed to be real in general case.

So, if they are a complex eigen values in some cases, then those complex eigen values

must occur in pair and those complex eigen values would occur would appear I mean in

this real matrix, they would occur as two by two sub blocks on this upper Heisenberg

form.  So,  this  upper  Heisenberg  form is  capable  to  also  represent  the  possibility  of

complex eigen values being there in the matrix.

So, of course for symmetric matrices they are now we do not have complex eigen values,

but for a general unsymmetric real matrix. We can have eigen values that are complex

and for that purpose instead of looking at  upper  triangular  factor,  we look at  matrix

transformation householder transformation to reduce it  to upper Heisenberg form and

when we do this for Q R iteration. 

Subsequently if there are any complex eigen values, they would appear as 2 by 2 sub

blocks diagonals on this upper Heisenberg form and the eigen values would be obtained

from the from solving the 2 by 2 eigen value problem and the complex conjugate eigen

values can be recovered from there.
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So, subsequently we try to once we have this upper Heisenberg form, then there is only

theoretically  there  is  only  one  off  diagonal  term  in  each  column  that  needs  to  be

eliminated.  So, the QR factorization is  achieved by using givens rotation subsequent

givens rotation. So, we have we accumulate givens rotations and convert this H upper

Heisenberg form into a QR factorization and then reverse the order to get the next upper

Heisenberg form.

Now, convergence can be accelerated by introducing a shift to the a Heisenberg form

before factorization. So, instead of H_0 we can factorize H 0−μ I  where μ  is the

estimate of an eigen value. Now, Heisenberg matrix for the next iteration is obtained by

reversing  the  order  of  multiplication  and  by  undoing  the  shift  in  the  that  was

implemented in the first iteration.

And then once we have this H_1, then again Q0R0  will again be computed by having

new shift  parameter  depending  on what  is  the  new H_1.  So,  this  shift  parameter  is

generally taken as the n n element of Heisenberg matrix and it is generally good shift

parameter in view of Gershgorin theorem because there is only one off diagonal term. 

So, there is an eigen value which lies in between h_nn and + or - the off diagonal term.

So, h_nn is a generally a good estimate of the of an eigen value and this shift parameter it

is a good choice for shift parameter, but of course this is only for when eigen value is

real for complex eigen value. The procedure becomes little more complex in the sense



that we now look at need to look at 2 by 2 sub diagonal 2 by 2 block diagonal elements

and implement that in the shift parameter. 

So, that procedure is a little bit involved, but that can also be taken care of in numerical

operations. So, this is work hours and householder QR iterations. They generally work

very well and they need to be followed up with one cycle of inverse iteration with shift

parameter to compute a really very good very accurate eigen value and corresponding

eigen vector. So, this QR iteration, they will provide us with the eigen values of good

approximation of the eigen values along the diagonal of the triangular matrix that we

eventually get by repeated iterations. Now we look at what is known as the sub space

iterations.

Sub  space  iterations  is  an  extension  of  power  iteration.  It  is  also  referred  to  as

simultaneous iteration and just as in power iteration or inverse iteration, we dealt with

one vector one trial vector in sub space iteration. We actually deal with we actually use a

set of independent vectors for iterations.
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So, instead of just one vector in power iterations direct or inverse, we choose a set of p

number of independent vectors in real number space and then perform incomplete QR

factorization. So, X_0 there are p number of vectors in this X_0 matrix. So, it is n by p

matrix. So, this n by p matrix we can perform incomplete QR factorization in the sense

that this is Q_0 is of course n by n and R_0 is n by p matrix.



So, R_0 will be upper triangular p by p and rest of the rows n - p rows. They are all null

null  matrix  entirely null  matrix.  So, Q_0 that contains first  p columns. I mean  Q̂

contains the first p columns of the orthogonal q matrix and R̂  is p by p. That is upper

triangular matrix upper triangular I mean rest of the things n - p rows are all 0s. So, Q_0

is the orthogonal n by n matrix and hat Q is first p columns of this orthogonal matrix. So,

eventually we perform these iterations. 

So, X_i is given as this decomposition Q_i R_i and then,  we define new set of trial

vectors X i+1  next iteration as matrix A operating on this incomplete orthogonal matrix

Q hat i and once I obtain this new set of eigen trial vectors X i+1 . I again decompose

them into  factorization  Qi+1  multiplied  by  Ri+1  hat  and  again  go  back  to  the

system.

And diagonal elements of ^Ri+1  they converge to eigen values as I tends to infinity as

iterations  progress.  The  diagonal  elements  of  this  triangular  matrix  R  they  would

converge to the eigen values and once we have the eigen values, then again the one cycle

of inverse iteration will  lead to a very accurate  eigen value and corresponding eigen

vector or we can just substitute in the this eigen value into the governing eigen value

problem statement and compute the corresponding eigen vector directly. 

So, convergence depends on closeness of vectors X_0 to the lower eigenvectors of A. So,

this choice of vectors that we have if they are in some way representative of the lower

end or the eigen vectors corresponding to smaller eigen values of matrix A, then the

convergence is going to be very very rapid. 

So, the basic steps I mean for generalized eigen value problem what we discussed here is

for these standard eigen value problem Ax=λ x for generalized eigen value problem

things become little more involved in the sense that there are two matrices and the trial

vectors need to be computed as a solution first.
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So, for starting with Xk  trial vector, we find what is B times X_k and then, find what

is the new trial vector  ^X k +1  going to be by solution of this system of equations and

once we find this ^X k +1 , we try we compute its incomplete Q R factorization and this

incomplete Q R factorization, we impose similarity transform on A.

So,  ^Qk+1
T A ^Qk+1=Ak+1  and similarly  ^Qk+1

T B ^Q k+1=Bk +1 . Now you look at it these

are all small smaller size I mean Ak +1  and B k+1 , they are in general smaller in size

than A and B because these are incomplete factorization. 

So, while A and B are matrices of size n by n A k +1 and B k+1  would be matrices of

size p by p which is generally very small compared to n by n and then this small system

of eigen values, eigen problem is solved by suitable technique whichever technique we

may adopt. So, this smaller eigen value problem.

Now, this small eigen value problem it is what we need to appreciate that we are looking

at scaling down by several orders of magnitude. While it is common in case of typical

finite element problem that A and B would be of the order of several millions in the size

while these matrices Ak +1  and B k+1 , these are we are referring to only of size a few

100 by 100. 



So, that is a tremendous saving or reduction in problem size and this eigen value problem

this is the reduced order eigen value problem which can be solved and once we can solve

this problem, then we find new set of eigen vectors as Q̂  times the eigen vectors of

this smaller eigen value problem, right and then again the entire cycle begins from this

step again.

So,  again  we multiply  B with  this  Xk +1 .  Find  out  what  is  ^X k +1 by solution  of

simultaneous equation and repeat these process again. So, reduced orders eigen value

problem that we had been looking at, they can be solved either by generalized Jacobi

method. 

We will discuss that generalized Jacobi which is actually series of givens rotations, so

that the matrix is nudge to diagonal form or QZ iterations again similar to QR iterations,

but  QR  iterations  refer  to  standard  eigen  value  problem,  QZ  iterations  refer  to

generalized eigen value problem where we perform decompositions on both the matrices.

So, alternatively the generalized form is reduced to a standard form. As we discussed

earlier  matrix  B  can  be  converted  to  Cholesky  factorization  LLT  and  then  the

problem can be transformed into standard eigen value form.

And then it can be solved by using QR iterations. The guidance of how many numbers

that we need to take the vectors is given by maximum of 2 m or m + 8, where m is the

number of desired eigen values. So, as I said the size the matrix A and B can be of

several millions of degrees of freedom and accordingly, there are going to be millions of

eigen values, but not all these eigen values are required. 

So, we can work with very few eigen values and may be only a few hundred. So, those

100 eigen values. So, if I need 100 eigen values, then the number of eigen the columns

independent vectors that I need to generate for these using subspace iteration is only

going to be twice m. So, 200 vectors that I need for completing the problem and the size

of the problem that I will need to solve eigen value problem would only be 200 by 200

instead of several millions.

So, that is how the sub space iterations are work arranged and then Jacobi iterations is as

I  said  it  is  successive  orthogonal  similarity  transform  by  using  givens  rotation  to

annihilate the largest off diagonal element.
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And that is what we do and we do it from both sides until the matrix A converges to the

diagonal matrix which are the eigen values and interesting part is accumulation of these

product matrices orthogonal matrices then converges to the eigen vectors and that in the

sense is the Jacobi iteration. So, it is essentially a sequence of givens rotations and we

can find out what is the iteration and how to arrange for that and for generalized eigen

value  problem,  there  can  be  generalized  Jacobi  transformation  again  using  similar

rotation matrices on both the terms both the matrices A and B.

And such that the they are progressively nudged towards diagonal, both of the matrices

and  eigen  values  are  obtained  as  the  ratios  of  the  diagonal  corresponding  diagonal

elements and that in a sense is Jacobi iteration and the problem is Jacobi iterations they

will provide us complete eigen spectrum as on in one go. So, it is all are none. So, either

we get the complete eigen values and eigen vectors or we do not get any.
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So, that is the problem and for this is the similar arrangement for Gibbons rotation, but

for generalized eigen value problem there are there is standard algorithm that can be

arranged and coefficient rotation matrices or orthogonal transformation matrices can be

defined as modification of the identity matrix.

You can see that there are two elements which differentiate, which make this rotation

matrix different from the identity matrix and these coefficients are evaluated from the

solution of these equations.

(Refer Slide Time: 27:14)



(Refer Slide Time: 27:30)

So, eventually this is what we have for definite positive definite Bt. The solution can be

obtained for these non-linear equations and similarly QZ iterations, they are similarity

transforms  two  sided  similarity  transform  similar  to  QR  iterations,  but  these  are

applicable to generalized eigen value problem. So, this advantage is these QZ iterations.

They are robust numerically even if matrix B is near singular, all other algorithms that

we have discussed for generalized eigen problem, Jacobi rotations etcetera they work

only when matrix B is positive definite.

But QZ iterations would work even if the matrix B is nearly singular or not a very well

conditioned. So, simultaneous reduction of A and B to upper triangular form and that is

what we call as generalized schur form and then the eigen values are obtained from the

ratio of diagonal terms of the respective diagonal elements and once we have these eigen

values, then the corresponding inverse iteration can be computed and associated eigen

vectors can be generated.
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So, with that we stop the discussion and Lanczos iterations are again related to Krylov

subspace that we had encountered in the discussion of Conjugate Gradient method and

they are essentially related to converting it to tridiagonal form and then using the similar

orthogonal transformation and then it begins to converge from both ends.

We get the eigen values from the lower end of this spectrum as well as from the higher

end of this spectrum and both extreme eigen values can be obtained gradually and then it

moves to the center. So, in some applications Lanczos iterations are quite useful, but for

most of the cases we will find that QR iterations and sub space iterations, they more than

serve the needs of the computation that we need. 

So, with that we end our discussion on eigen value problem. Of course, this is a very vast

subject and I just skimmed at the surface of this and hopefully that should allow you to

explore this particular subject in more detail on your own. In next lecture, we start with

Integration of Equations of Motion in Time.

Thank you.


