
Finite Element Method and Computational Structural Dynamics
Prof. Manish Shrikhande

Department of Earthquake Engineering
Indian Institute of Technology, Roorkee

Lecture - 05
Polynomial Interpolation and Numerical Quadrature–II

(Refer Slide Time: 00:38)

Hello. So, yesterday we discussed this formulation of Lagrange interpolation as normalised

product of 0s of all other nodes evaluated at the node for which we are developing the

interpolation function. So, the product is essentially multiplied by equation of roots (x - x i),

(x- x j) and then this is evaluated at the i th node for which we are deriving the interpolation

function and that is normalised with respect to that value. So both the conditions of

interpolation that is N i evaluated at x j should be equal to δ i j .It should evaluate the unity at x

i, and it should vanish at all other nodes when i is not equal to j. And once we have this

interpolation function, then it can be combined with the function values that we have at

specified at these nodes and just to express it as a linear combination. So, f i is the function

approximation through interpolation model polynomial interpolation. So, nth degree

polynomial interpolation using Lagrange’s interpolation model.

(Refer Slide Time: 01:59)

Now, Lagrange interpolation as I said it is very easy to construct analytically, but it is very

cumbersome to evaluate beyond the first degree. As you can see it is constructed by

accumulating the products of each term. So, nth degree polynomial will require n number of

evaluations, and then of course, the normalisation that is division as well.

So, it is very inefficient to compute because there are far too many floating-point

multiplications and divisions. And as we had already seen earlier every single floating point

operation is a source of round of error. So, the key to reliable and robust computation floating

point computation is to do with as few floating point operations as possible and that will also

increase the efficiency of any algorithm.

Another problem with Lagrange interpolation is that they are global in scope. We just develop

entire approximation over the entire range. And if something goes wrong or if there is any

change in data or if we change the node a little bit here and there some somewhere in

between, then the entire exercise has to be started a fresh there is no way we can make use of

already computed results if there are any.

So, the entire process for even for one change in data point the whole process has to be

repeated completely from first step. And of course, when we talk of numerical computations

and efficiency it is of course preferred if previous computations can be reused for subsequent

computations.

So, the Lagrange interpolation as I said it is a polynomial nth degree polynomial is only of

theoretical interests and it is very easy to explain how it works. But because the polynomial

interpolation any polynomial nth degree polynomial passing through n + 1 number of points is

a unique polynomial. So, no matter which form of interpolation I use. As long as it is a

polynomial interpolating through function values n + 1 number of function values, then it is

going to be the same polynomial irrespective of which way I arrive at it. So, Lagrange

interpolation because of its simplicity and elegance in construction is often used for

theoretical analysis and error bounds etcetera, but never almost never for any actual

numerical computations.

So, to build upon that error the concern that it is a global polynomial, global scope and

everything has to be constructed afresh. We have improvement on that by use using Newton

interpolation model wherein we increase the degree of polynomial; we increase the degree of

interpolation. So, the first term is a constant term – p 0 it is a constant term; p 1 is a first

degree polynomial; p 2 would be second degree polynomial and so on. And so that the nth term

is the nth degree polynomial and that is how we construct this approximation.

(Refer Slide Time: 05:35)

And gradually so that we can make use of previous results and if any intermediate data is left
out or it has to be changed then from that point onwards it has to be modified. So, p 0 , the 0

th degree polynomial is chosen such that approximation function when it is evaluated at x 0

returns the specified values.

So, it is just the function value that specified at x0, so that becomes just a constant term c0. Let

us call it c0. Now, considering that c0 is already known, then we define next term p 1 x such

that p 1 x returns the value of f of x 0 when evaluated at x 0, and it returns the value of f of x 1

when it is evaluated at x 1. So, we impose this condition. And the way to do that would be to

enforce that the coefficient linear term should vanish at x 0. So, it is just x. So, the polynomial

model that works out is c 0 + c 1 that c 1 is still unknown, c 1 (x - x0). So, this first-degree

polynomial of course, vanishes at x 0, and because c 0 has been evaluated such that it returns it

is same as the value of the function specified function value at x 0. So, it meets that criteria.

And now we impose the condition that when p 1 x is evaluated at x 1, it has to return the

value of f x 1 f of x 1 that is specified. And when we impose that condition that allows us to

find out what is the coefficient c 1 going to be and that is what you get.

(Refer Slide Time: 07:48)

So, by enforcing the interpolation condition at x 1, we can evaluate what is the unknown

coefficient c 1 going to be. And you can see the pattern here now you can look at it as a

difference formula. It looks like a difference formula and it is a difference of formula, so that

gives us another way of developing the of computing the coefficients of Newton interpolation

model by using divided differences.

So, what you see here, c 1 evaluated as difference in the function values divided by the

difference in the independent variable. So, f (x 1)- f (x 0) / (x 1- x 0). And then next term

quadratic term is again imposed with the same addition on, I mean we add modification

whatever quadratic term (c 2 x - x 0)(x -x 1) on top of p 1 x, so the first degree polynomial, first

degree interpolation that we had earlier found.

And then again the interpolation constraint is applied that this second degree polynomial p 2 x

has to evaluate to f (x 2) at x 2. And when we impose this condition, then you get the basic

coefficient c 2 evaluated at f (x 2) minus that first degree polynomial evaluated at x 2 and

divided by this (x 2 - x 0) and multiplied by (x 2 -x 1). So, this is how it is recursively built

using previous approximations. So, nth degree term coefficient of nth degree term would be

evaluated by f (xn) minus value of the previous degree of interpolation polynomial evaluated

at x n and divided by the normalising factor.

So, the Newton form of nth degree interpolation polynomial is given by progressively

increasing degree of polynomial term in the series. So, starts with a constant term, then you

add a linear term, then you add a quadratic term, then you add a cubic term and so on until

you build nth degree term, so that is what the formulation or the conceptually Newton

interpolation model talks about. But as you can see here still there are far too many floating

point multiplications if we evaluate it according to this definition the way the Newton form is

defined. But if we look at this pattern very closely, we can see that the factors are common

for example, x - x 0 is a common factor for all terms starting from the second term all the way

to n + 1th term. Similarly, x - x 1 is a common factor for all term starting from third term to n

+ 1th term and so on.

So, we can actually minimise the floating point multiplication by recognising this and

rearranging the expression backwards instead of starting from constant term and going all the

way to nth term, we can start writing the expression from nth term and taking the common

factors and working our way back to 0th term or the constant term.

(Refer Slide Time: 11:56)

So, that is what we do here. Write the expression in the reverse order. And then once we

realise that there are too many common factors it is easy to reorganise this by taking the

common factors out and its number of multiplications drop down dramatically. And this is the

most efficient way of computing Newton interpolation polynomial. And this is called

Horner’s algorithm.

(Refer Slide Time: 12:30)

Another way of computing recursive evaluation I mean this is the evaluation of the function

itself Newton interpolation polynomial, but we still need to find out what is the value of these

coefficients, what are these coefficients c 0, c 1, c 2, etcetera.

So, this as I said earlier see the computation of c 1 provided as a hint that we can actually

compute these coefficients by way of divided differences. So, that is possible by using

recursive valuation of coefficients by using the divided difference of different orders and c 0

being the 0th order difference. So, that is the just the function value at x 0. Then c 1 is the first

order difference, and c 2 is the second order difference and so on.

So, if we arrange the values, then it is very easy to compute and coefficients can be computed

very quickly in an automated almost an in an automated fashion. And then the Newton

interpolation polynomial can be simply expressed in terms of divided differences.

So, here within square brackets f within square brackets x 0, these are the these denote the

divided differences. So, one term that is the 0th order divided difference, and this one is the k

+1th order divided difference, so coefficients. So, with this we can this way we can compute

the interpolation polynomial and evaluated it very efficiently for any particular value of x that

we may need by using Horner’s algorithm. And we can go ahead with our computations.

Now, in the beginning when we were discussing about the Weierstrass approximation

theorem, which said that it is possible to approximate any function no matter what its origin

by a polynomial approximation over a finite range.

And the approximation can be as close as desired that is theoretically true because

polynomials are an infinite family, I mean the basis infinite basis functions can be a

constructed. So, theoretically you should we should be able to find any function which is

finite without any singularities and over a finite region. So, we should be able to approximate

that function using sufficient number of polynomial terms, but the problem as I said earlier it

is not specified the Weierstrass approximation theorem does not tell us about how to

construct or what is the criteria for imposing the constraints of polynomial or closeness of

approximation, how it is to be measured, and that actually has a difference impact on the

quality of approximation as we will see just now.

(Refer Slide Time: 16:06)

So, importance of sampling points. So, where do I choose the sampling points? So the nodes.

If I have a liberty to choose the nodes of interpolation, I mean I can choose the nodes of

interpolation there are large number of tabulated data points and if I have the liberty to pick

the nodes according to my wishes, according to it is left to us, then it might be worthwhile to

see which nodes to choose, so that for a given degree of interpolation, so that we may be able

to derive a better approximation.

And you may like to look at this particular thing, I mean this is called Runge’s function that is

a rational polynomial. So, it is a function which is a ratio of I mean constant term divided by

some polynomial term in the denominator, so that it blows and then it decays as the

denominator increases. So, the solid line actually describes the Runge’s function exactly the

in analytical form, and the dotted line I mean the dashed line represents 10th degree

polynomial approximation. I mean when I when we say when we try to approximate we

would obviously inclined to divide uniformly any interval that we are given. So, for example,

in this case we are we have this interval from -1 to + 1. So, if I am asked to interpolate

between these I mean 10th degree polynomial, so I would just pick up eleven points which are

uniformly spaced in this range that is the first impulse that anybody would do.

Now it so happens that this is not a very sound strategy although it is easier for us to do that

and hope that everything will work out very well. But it so happens that it does not always

work out so well. So, the dashed line you can see is the 10th degree interpolation polynomial

based on for which the nodes were derived on the basis of equidistant approach. So, you can

see that the function value exactly matches at regular intervals. So, the Runge’s function and

the 10th degree interpolation polynomial they match exactly at the nodes of interpolation, but

in between the nodes of interpolation particularly I would draw your attention to the end

interval. There are wild fluctuations between the between two nodes and that is because of

the constraint that has been imposed. It is a very high degree polynomial, 10th degree

polynomial and 10th degree polynomial if it has to agree with the higher degree polynomials,

obviously have large curvatures and all. And once they have to agree to certain function

values, then there are going to be wild oscillations above the points.

So, there is a limit and that is why the virtue of using only lower order polynomials for

interpolation. Higher order polynomials, higher degree polynomials as an interpolation

function for approx construction of function approximation are not necessarily a good thing.

So, this is particular example I picked up just to highlight this point that more the higher

degree polynomial interpolation is not necessarily the best thing, very soon we hit the law of

diminishing returns.

So, the Runge’s function that I used here is 1/(1+25x2), and we approximated its values at by

polynomial interpolation. So, uniform spacing of sampling points or nodes of interpolation,

they cause huge errors between the nodes. At the nodes obviously, they agree because the

polynomial interpolation constraint has been imposed. So, there is no error, there is no

problem with that. But in between nodes of interpolation there are large oscillations, and with

no way we can consider that interpolation function or interpolation model approximation is

anyway close to the original function although they match exactly at the nodes.

(Refer Slide Time: 21:15)

So, although the Weierstrass theorem and by basic linear algebra, we know that it is possible

to approximate as closely as possible any finite function over a finite range by using

polynomial suitable polynomial approximation, but the details are not known, and that we

still remains an unsolved problem how to choose the nodes of interpolation, how to choose

the nodes for developing polynomial interpolation that will be the best possible optimal

location of points. So, we do not know the exact solution yet. But we do have some idea of

what should be a better solution, what would be a better solution rather instead of using

indiscriminate uniform sampling of data points?

And it so, happens that very interesting thing that it so happens that they roots of Chebyshev

polynomials, they constitute a merely optimal set of points which serve as excellent location

for the nodes of interpolation. So, these are the Chebyshev polynomials of a respective

degrees or increasing degrees. So, T 0 is a constant line, constant line at 1. So, that is the first

degree 0th degree constant part term. T 1 is a linear term, and T 2 is a quadratic, T 3 is cubic

and so on. And they have very smooth, very nice looking functions, but they also have very

interesting property that the roots of these Chebyshev polynomials are nearly optimal

locations for the nodes of polynomial interpolation. So, for a 10th degree polynomial, I need

11 nodes. So, I would just pick up the roots of 11th degree Chebyshev polynomial and locate

that.

(Refer Slide Time: 23:43)

So, what are Chebyshev polynomials? Chebyshev polynomials are a family of orthogonal

functions those are defined for x between minus 1 to plus 1 bounded range. Now, that can be

scaled I mean these functions can be scaled and the roots can be accordingly scaled up

outside the range. And they can be generated recursively from the lower degree terms. So,

first two members of the family are simply 1 and x. So, T 0 the constant term 1, and T 1 is a

simple x term. And higher degree terms are related to two preceding lower degree terms as T

n nth degree Chebyshev polynomial is derived from n +1th degree polynomial and n - 2th

degree polynomial as twice T n-1 - T n -2.

So, that is a Chebyshev polynomial has its own theory and very interesting development, but

that is just not much of interest for our purpose as far as nodes of a location of nodes of

interpolation are concerned. So, coming back to the Runge’s function and approximation that

you see here, so the other function non-uniform 10th degree polynomial approximation,

non-uniform sampling points those non-uniform sampling points correspond to the location

of roots of Chebyshev polynomial. And if I use those roots of Chebyshev polynomials, you

can see that the polynomial interpolation 10th degree polynomial of interpolation is

reasonably well behaved. And it can be and certainly pass off as a reasonably good

approximation for Runge’s function. And the same 10th degree polynomial using uniform

sampling points.

And the sampling points are not very different I mean they are this very slight shift in

sampling points. And the effect that they have on the quality of approximation is just

amazing. So, the location of nodes of interpolation is very, very crucial. And the same thing ,

I would urge all of you to please keep this picture in mind. And when we construct finite

element approximation, we will be discussing about nodes, although we may not be devoting

too much time on the mesh generation and what is the best good mesh or how to generate the

good quality mesh. You can keep this particular aspect in mind. The location of nodes has a

very important implication on the quality of approximation that we develop. So, that is for the

polynomial interpolation using only function values.

(Refer Slide Time: 26:57)

So, as we saw in the approximation of Runge’s function, if we concentrate only on the

function values, it can we can possibly have a very large errors in between the nodes because

there is no constraint on the derivative. There is no constraint on how the approximation

function approaches the function value at the nodes.

So, if we improve try to improve this situation by constraining not only the function values,

but also the derivative functions then that model is referred to as Hermite polynomial

interpolation. So, a better constraint approximation can be constructed by imposing

constraints on the derivatives of the approximation function in addition to the functional

values or function value at the nodes for interpolation.

So, at the nodes, we look at not only the function values, but also the derivative of the

functions. So, slopes of the function. So, constraints on the derivative of the approximating

function may be same as the derivative of the original function if it exists or some other

suitable value may be assumed. So, if the derivative is already defined, then it can be used or

we can impose some other we may derive we may impose something which may be able to

provide a better constraint on the approximation.

Now we look at this situation if there are n number of nodes, then if there are function values

and the derivative that is available at each node, then we are looking at 2n number of terms

2n number of constraints conditions are available. And if there are n +1 number of nodes,

then I am looking at 2n + 2, a number of constraints conditions that are available. And with

these 2 n + 2 number of conditions available, I can evaluate 2 n plus 2 number of coefficients

and 2 n + 1 or 2 n + 2 number of coefficients would be sufficient to uniquely define a 2 n + 1

degree polynomial interpolation and that is how we work out. And obviously, the formulation

is little bit more tedious more involved compared to simple function interpolation, but it is

very easy to formulate and for construction.

(Refer Slide Time: 29:40)

And we can define a function ɸ as a similar to what we have as the roots of the nodes ɸ(x) as

a function n + 1th degree polynomial x - x i product of x - x i terms. And then construct two

sets of polynomials based on the derivatives and the corresponding Lagrangian interpolation.

And then we can combine these and we can have the suitable polynomial interpolation based

on the linear combination of these two sets of polynomial functions. And again based on

interpolation of first term provides the interpolation of the function values. Second

summation provides the interpolation of derivative values at the nodes.

And together this complete interpolation model provides a better model for function

approximation which is relatively smoother than the interpolation model derived only on the

basis of function values. So, you can see that if I use a two point to two node model, the

Lagrangian interpolation or simple polynomial interpolation would fetch me only a first

degree polynomial interpolation.

Whereas, if I use Hermite polynomial, then I am looking at four constraints for two nodes and

then I can actually look at a cubic interpolation polynomial between two nodes. So, the

higher degree of smoothness of the function approximation is obviously, provides a

advantage in certain cases.

And of course, it comes at the cost of increased computations. So, wherever it is justified it is

a good model to adopt. So, piece wise cubic Hermite interpolating polynomial is a useful tool

for populating data between two consecutive data points, two consecutive data pairs while

preserving the trend that is another interesting property of piece wise cubic Hermite

interpolation.

Cubic Hermite interpolation as I said between two nodes. So, we can have a cubic

polynomial. Now, piece wise cubic polynomial has this very useful property that it does not

change the trend of data between the interpolation, so that has a very useful property, and it

can be a harnessed for wherever the need be.

(Refer Slide Time: 32:58)

So, another way of interpolation is the cubic spline interpolation, and that we will discuss in

our next lecture.

Thank you.

