
Finite Element Method and Computational Structural Dynamics
Prof. Manish Shrikhande

Department of Earthquake Engineering
Indian Institute of Technology, Roorkee

Lecture - 48
The Algebraic Eigenvalue Problem - II

Hello friends. So, we have seen the power iterations in action for computing the how any

arbitrary vector can be nudged towards the eigen vector corresponding to dominant eigen

value.  And we explained that  this  is  why the search directions  for higher  powers of

matrix A in Krylov sub space they tend to lose their independence. And they need to be

re orthogonalized or made independent of each other by virtue of by using the Gram

Schmidt orthogonalization process.

So, before discussing some of the algorithms for solution of this algebraic eigen value

problem. Let us first go through the tools basic tools of the trade, the basic workhorse

that  are  used  in  these  solution  of  this  eigen  value  problem,  algebraic  eigen  value

problem. So, first of all let us ascertain I mean, since we are working with the digital

computers  and we all  know what are the problems with floating point  operation and

everything is approximate.

So, what is  the sensitivity  of the eigenvalue computing computed eigen value to the

approximation?  I  mean,  computed  approximation  because  the  matrix  A  that  we  are

targeting for which we have we are trying to compute the eigen values and eigen vector

that matrix A itself may be approximate. With that may not be exact representation of the

matrix A that is actually that should actually be representative of the system because of

floating point arithmetic and round off errors. 

So, matrix A can still be can itself be in error. So, the question natural question arises do

small  errors in matrix  A? It  can be a good approximation,  but it  is  a approximation

nonetheless with some errors. So, do small errors in matrix A imply small errors in the

computed eigen value, under what conditions? 

If it is true if small errors in matrix A are they mean they imply small errors; I mean, the

errors in the computed eigen values are also small. Then; obviously, the computation is



robust otherwise we may need to take precaution. So, under what conditions does this

happen?

(Refer Slide Time: 03:24)

So, let us derive this result, let us consider that Δ A  is the error matrix. So, instead of

A it is A+Δ A  which is the true matrix representing the system. So, that will change

the eigen value problem from A x=λ x  to  (A+Δ A)(x+Δx ) . So,  x Δ x  is the

incremental change in the eigen vector.

Because for small changes in matrix A we do not expect very large changes in the eigen

value solution. So, this is a small change in matrix a in the neighbourhood. So, eigen

vectors  will  also be in the neighbourhood and eigen values will  also be it  be in the

neighbourhood. So, x+Δ x , so (A+Δ A)(x+Δ x )=λ+Δ λ .

So, small increment in eigen value multiplied by the incremental eigen vector now let us

work out these expansion and this results into this change in eigen value. So,  λ x

because this is what we are interested in small errors in the computed eigen value. So,

what is the change in eigen value? So, Δ λ x=A Δ x+Δ A x−λ Δ x .

And we are ignoring the higher order terms. So, product of small terms for example,

product of  Δ A  with the  λ Δ x  is ignored and product of  Δ λ  with  Δ x  is

ignored. And by invoking the orthogonality we pre-multiply by the left eigen vector. So,



we  have  
Δ λ= yT x

.  So,  this  will  be  scalar  and  that  is  what  we  take  it  in  the

denominator here.

So, for the eigen left eigen vector for the same eigen value, so not orthogonality. So, of

the same eigen value, so we multiply this by yT A Δ A x  and this is scaled by yT x

that is the scalar. And we take the norms what happens is if we take these norms then

Δ λ  will be equal to; I mean, now we can look at the individual terms. So, this norms

will be equal to product of individual norms that will be less than individual norms.

So, Δ λ the magnitude of the error in eigen value λ  will be equal will be less than

the norm of y_2 multiplied by norm of x_2 . So, Euclidean norm divided by the norm; I

mean, the whatever is the magnitude of the scalar yT x  and then this second norm of

this matrix Δ A . So, this will be the spectral norm.

So, largest eigen value of Δ A . So, sensitivity of eigen value s this is referred to this

sensitivity of the eigen value. So, this is what scales the error this is the measure of error

in matrix A. So, this error in matrix A is scaled by this constant and this is called the

sensitivity. If this sensitivity is small then the error in the corresponding eigen value is

also going to be small. And this depends on of course, this is of course, if we scale then

scale to unity then this will be of unit length. y and x they can be scaled to unity, so they

will be of unit length. 

So, this scaling sensitivity factor depends on this denominator y transpose x. So, what is

this y transpose x? This is the projection of y along x, so this is the cosine of the angle

between these two vectors. And value of the cosine function varies between + 1 to - 1

and it will be + 1 or - 1 only when the angle between the two vectors is 0 or 180 degree.

So, the only way this becomes equal to 1 that is when the sensitivity of the eigen values

would be would not be; I mean, the error in eigen values will not be amplified by a factor

greater than 1 with respect to the error in the matrix A. So, that is when y and x if they

are identical that is when the left eigen vectors and right eigen vectors are identical.

So, if they are identical then the that angle is going to be 0 angle between them is going

to be 0 and this product y transpose x is going to be equal to unity. Because these are the

cosine between the two vectors is going to be unity. And therefore, we can conclude that



for symmetric matrices the left and right eigen vectors are identical and the sensitivity of

the eigen values to errors in A is small. And that is why it is important; I mean, in the

beginning  we  emphasize  that  generalised  eigen  value  problem  can  be  converted  to

standard eigen value problem.

But this trivial procedure of computing B^-1 A and writing that as a standard eigen value

problem is  not  a  preferred  technique,  preferred  way.  Because  of  this  reason  it  will

increase the sensitivity of the computed eigen values to the errors in the matrix of; I

mean they operator matrix the B^-1 A. Because B−1 A  is not going to be symmetric,

is not guaranteed to be symmetric and left eigen vectors will be in general different from

the right eigen vectors.

And then the sensitivity will be greater than 1. So, that is the basis for doing all that

jugglery to convert generalise eigen value problem into standard eigen value problem

instead of going through the straight root of  B−1 A .  So, this we discussed only to

emphasize the need for that Cholesky decomposition of matrix B and always maintaining

the symmetry of the matrix if the original matrices are symmetric to begin with. That is a

very very valuable property and we should not lose that in computation.

So,  symmetry  is  always  a  symmetry  of  the  operator  matrices  is  always  a  desirable

property for any numerical computation.  Now, we come to one of the very powerful

tools  of  eigen  value  computation  that  is  called  similarity  transform.  So,  similarity

transform refers to a transformation of these system matrices in such a way that although

the matrix may change, but its eigen values are not changed.



(Refer Slide Time: 11:59)

So, the basic idea is if we have two matrices, two square matrices A and B. Then there

will  exist  there exists  a positive definite  matrix  C such that  A C = C B that can be

proven. And if C is positive definite then; obviously, I can write C^-1 A C = B. And if I

can do that, so if λ  and x they are the eigen values and eigen vectors of matrix B then

I can write this as AC x = CB x by post multiplying with x and CBx=λ x .

So,  B x=λ x , so that will be  λC x . So, that is  λ  is also an eigen value of A

with C x; I mean, if I can look at this as a vector C x C times x is an is a vector. Then this

is simply the eigen vector of a and λ  is also the eigen vector of eigen value of matrix

A. So; that means, I can take C from right hand side to left hand side.

So,  C−1 AC x=λ x  so;  that  means,  that  eigen values  of  a  are  preserved under the

transformation C−1 AC for any positive definite C right. So, λ  is the eigen value of

A and if I can find some matrix  C−1 AC  where C is a positive definite matrix then

this C−1 AC  also possesses the same eigenvalue λ . 

And that is a very powerful result because I can nudge matrix A to a form by similarity,

by  using  these  similarity  transform  to  a  form  which  is  which  allows  for  easier

computation of the eigen values and eigen vectors. I mean, we can find at the whole

point  is  finding  the  determinant;  I  mean,  by  definition  it  is  the  determinant  should

vanished. And the easiest way to find the determinate if the simple structure, simplest

matrix for which determinant is easiest to compute is the diagonal matrix. 



So, if I can somehow arrange the sequence of operation such that C−1 AC  gradually

changes to a diagonal structure then the problem is solved, we have computed all the

eigen values of the system. And this basic idea forms the basis of several eigen value

computation algorithms. 

But as I said earlier I have been emphasizing on this aspect repeatedly C−1 ; I mean,

this inverse of matrix C should never be computed. I mean, we should never be asked to

compute inverse of a matrix that is too much of an effort and too error prone. Because it

requires lots of floating point arithmetic operations and each floating point arithmetic

operation incurs a round off error.

So, this C−1  computation should be avoided. So, the solution is of course, if I choose

C as an orthonormal matrix orthogonal matrix right. So, if I choose C as an orthonormal

matrix then the inverse of C is computed is given by the transpose of C. So,  CT

becomes  its  inverse.  So,  I  can define  similarity  transform by using a  transpose of  a

matrix orthonormal matrix.

So, I have to choose the matrix C in such a way that it is comprising of orthonormal

representation.  And  because  the  eigenvalues  of  these  two  matrices  are  similar  are

identical these two matrices A and C−1 AC  they are said to be similar. And if C is

orthonormal  then  C−1  is  identical  with  CT  and  CT AC  operation  is  called

orthogonal similarity transform.

So, if C matrix  is an orthonormal matrix then  CT AC  is referred to as orthogonal

similarity transform. And that forms the backbone of most of the algorithms for solving

eigen  value  problem  as  we  will  see.  So,  the  first  example  of  this  orthogonal

transformation is what we refer to as Givens rotation. 

Now, this Givens rotation is similar to what we have in the coordinate transformation for

reorientation of frame element local coordinate system to global coordinate system we

will see that. So, something similar to rotation matrix that is orthogonal matrix.



(Refer Slide Time: 18:14)

Coefficient  matrix  A is  progressively nudged towards a diagonal  form by successive

orthogonal similarity transform. And the idea the goal is to make an off diagonal element

vanish at one time. So, what happens is we define I mean we have some elements let us

say x1 is on some diagonal and x2 is an off diagonal element in the same column. So, let

us just look at these two elements and it is pre multiplied by this operation.

So, cos theta - sin theta sin theta cos theta. So, this is what if you recall this is what we

had for transformation of coordinate system from local coordinate to global coordinate in

trust problems or even for frame problems. So, we try to map this as our objective is to

make this off diagonal term x2 to vanish. So, that this is the result, so we want this term

to vanish. And if we want this term to vanish that is possible when I look at this second

line of equation x1sin θ+x2cosθ  should be equal to 0.

And that gives me the result by knowing this x1 and x2 I find out what should be the

values of cos theta and what should be the value of sin theta which will give me this

result right. So, if it is x1sinθ+x2 cosθ=0  then the only if the simpler arrangement is

I just make x1 or sinθ  to be proportional to - x2 and cosθ  to be proportional to x1

and then it should be done. 

And that is what is done here problem is solved by using cosθ defining 



cosθ=
x1

√x12+x22

and sinθ as 

sinθ=
−x2

√ x12+x22

With these choices of  sinθ  and  cosθ  if  we evaluate then this problem will be

solved. 

So, the off diagonal term x2 is the off diagonal term and that will be solved, that will be

annihilated. And that is the objective gradually we need to nudge the matrix to a diagonal

form. So, if we call this as a, so this forms the basis of Givens rotation.

(Refer Slide Time: 20:55)

So, Givens rotation is essentially an modification of an identity matrix with these four

terms cos theta - sin theta and sin theta and cos theta they occupying, they only modify

the four places of the identity matrix. So, i i, i j, j i and j j and this is to annihilate the

element i j of matrix A right. 

So, identity matrix rest of the matrix rest of the identity matrix remains same we only

look at i i, i j, j i and j j. And these coefficient actually go as i i element goes as cosθ ,

i jth element goes as -  sinθ , j i goes as  sinθ  and j j goes as  cosθ . So, g i i



cosθ , g i j - sinθ , g j i sinθ , g j j cosθ . So, that GT A would have a 0 in i

jth position.

So, if  we multiply this  then i  jth position would be vanished.  So, this  trigonometric

functions they are terms are evaluated based on the same evaluation that we had in terms

of x1, x2. Instead of x1, x2 we now have a_ii and a_ij corresponding elements of the

matrix and these cos theta and sin theta are evaluated and the cosine the Givens rotation

matrix is defined.

Now, to complete the similarity transform we have to post multiply it with G that would

be  the  complete  similarity  transform.  So,  after  that  would  be  orthogonal  similarity

transform that is affected by the product GT AG . Now, GT A  has annihilated i jth

position to be 0, that has first i jth position to be 0 this post multiplication by G may

again make it  non zero.  But that  magnitude wise it  will  be smaller  than the original

value.

So, post multiplication by g generally makes i jth element non zero, but it is of a smaller

magnitude than before. So, what we are doing is we are shifting the mass of the matrix

towards  the  diagonal.  So,  that  gradually  the  entire  mass  of  the  matrix  would  be

accumulated towards on the diagonal of the matrix. And those diagonal elements would

be the eigen values of the matrix, given matrix A.

So, this is Givens rotation which actually targets one element at a time to make it vanish.

Another powerful technique is called Householder transformation. In; I mean, in contrast

with  the  Givens  rotation  where  we  target  only  one  element  at  a  time  Householder

transformation actually targets one whole column at a time. So, it when makes one whole

column to vanish in one similarity transform.

So, it is possible to define a reflection of a vector about a plane through the origin such

that resulting vector is a multiple of the first Euclidean unit vector e 1. So, e 1 is 1 0 0 0

0, so that is the starting vector we start with.



(Refer Slide Time: 24:54)

So, Householder reflection matrix is defined as P1=I−
2
vT v

v vT  such that P_1 when

multiplied by x it will make it proportional to e_1. So, that except for the first element all

the elements of this vector would vanish very powerful technique. 

So, instead of Givens rotation which looks at which operates element by element, one

element at a time Householder matrix would make all elements, but one to vanish. And

the way to do that is by suitable choice of this vector; I mean, this vector v can be chosen

such that x it can be + or - using this scalar multiple; I mean, the norm of length of vector

x multiplied by the Euclidean first Euclidean unit vector e_1.

So, sign of this term is chosen to be same as that of the first element to avoid catastrophic

cancellation during the subtraction operation. So, if it is of the same sign as the original

vector  then  there  is  no  chance  of  incurring  any  errors  due  to  this  catastrophic

cancellation.



(Refer Slide Time: 26:30)

So, this is essentially the Householder matrix. So, this is the plane and this P matrix is

causes the reflection of this matrix along about this plane on to the first Euclidean vector.

And Householder matrix P is symmetric and orthonormal and this is a workhorse we can

keep on multiplying this repeatedly. So, first column we will make it; I mean, vanish all

the elements except the first,  second matrix P_2 it  will make vanish all the elements

except the second diagonal and so on. 

So, this way we can actually make the convert the square matrix to upper triangular form

very easily in a very very quick manner. And they are also orthogonal matrices, so they

are implemented they can be implemented as rank one update. So, this is actually a rank

one update. 

So,  P  A  is  implemented  as  A−v wT  and  w;  I  mean,  these  are  all  numerical

implementation issues for efficient computation. And this matrix P if the transformation

matrix is completely defined once we define this vector x and vector v and which is

defined which is completely defined by the vector x which is to be reflected.

So finally, I mean at the beginning of the discussion of iterative schemes we said that we

can identify what is the largest eigen value of a matrix A just by inspection and that is

defined by Gerschgorin radii. So, we can impose bounds on the eigen values. So, we can

find the range between which at least one eigen value of the matrix will lie. And once I



have this range by using this Gerschgorin radii Gerschgorin radius there will be as many

radius, as many disks as the number of rows in the matrix.

So, for an n n by n matrix there will be n number of disks. So, I can get the largest disk

and I can get the estimate of the or bounds on the eigen values that eigen value will lie

between these. And I can choose the largest bound upper bound and that can be used for

construction of the matrix G that that we define for construction of iteration scheme for

Jacobian Gauss–Seidel iteration and that will ensure convergence of the matrix. 

So, we wanted that matrix  B−1  to be equal to  2
μ ×I  and  μ  is the estimate of

largest eigen value. 

(Refer Slide Time: 29:41)

And that largest eigen value estimate can be obtained from this Gerschgorin radii. And

that = simply the diagonal element of the matrix A of each row and multiplied added to

the of some of all diagonal elements. So, basically the idea is eigen value is bounded by

the diagonal element of any row - the sum of off diagonal elements absolute value of

some of all the off diagonal elements and the diagonal element + some of all off diagonal

elements absolute value.

So, these are the bounds that are on the available on the eigen values and the larger of

these can be computed, can be worked out as the estimate for choosing the matrix for

iteration. And that will complete our discussion, that will facilitate convergence of the



iterative  scheme.  So,  we  stop  here  and  next  lecture  we  will  discuss  about  specific

techniques  of  eigen  value  computation  by  using  these  tricks;  I  mean,  basic  tools  of

computation.

Similarity transform, Givens rotation, Householder transform and also Gerschgorin radii,

so that provides us initial estimate of the eigen value. And using these we will compute

we  will  discuss  some  of  the  very  powerful  numerical  algorithms  for  solution  of

eigenvalue problems.

Thank you.


