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Hello  friends.  So,  today  we  start  with  a  new topic  very  important  topic  which  has

applications in all fields of science and engineering in the importance or in the nature of

prevalence how prevalent this topic is finds its usage in a different fields. It probably

ranks only next to equation solver solution of simultaneous equations.

And what we are referring to is the algebraic eigenvalue problem. And singular value

decomposition is a related problem which can be cast as an algebraic eigenvalue problem

as well, but it is more efficient to solve in its own formulation.
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So, let us define what is understood by what is meant by algebraic eigenvalue problem

and what it means. So, essentially the algebraic eigenvalue problem is defined as Ax =

λ x  where a is a^2 matrix x is of course, a vector and λ  is a scalar. So, what this

means is we are looking for that particular vector x which when multiplied with a matrix

given matrix A results in a scaled version of its own self; that is the vector does not

change its direction it only changes its magnitude.



Now, that is a very very special property. Normally, when a matrix multiplies a vector

that  implies  a  rotation  in  plane.  So,  in  this  particular  case,  we are  looking  for  that

particular vector for a given matrix which when multiplied with this matrix does not

change its direction, but it only is affected it only changes its length. So, the whole idea

the formal statement is matrix vector multiplication that is A times x results in a scaled

version of the same vector.

A very special result which holds only for a few select vectors for a given matrix A and

this does not happen for any arbitrary vector if a matrix A is given. And λ  is known

as the eigenvalue of this matrix A and associated with this eigenvalue is the vector x that

is called the eigenvector.

So, it is this pair eigenvalue eigenvalue and eigenvector; the computation of this pair of

eigenvalue and eigenvector I mean there can be several such pairs for a given matrix. So,

this process of a computation of these eigenvalues and eigenvectors is what is referred to

as the algebraic eigenvalue problem.

Now,  a  nontrivial  solution  for  this  A x=λ x  exists  only  when  determinant  of

A−λ I=0 . So, that is when I take this λ x  to a left-hand side.

So, this is what I get A−λ I x=0 . So, the solution of this when I say nontrivial; that

means, I am looking for vector x which is not a null vector. So, for an non trivial solution

x cannot be a null vector, then the only way this equation can hold is when this matrix

becomes singular and that is when determinant of  A−λ I=0 . So, when we expand

this determinant. So, this will be an nth degree polynomial in terms of %lambda.

So, these there will be n number of roots of these polynomial nth degree polynomial. So,

those  roots  of  this  characteristic  polynomial.  This  is  called  as  the  characteristic

polynomial and roots of these characteristic polynomial are known as are referred to as

the eigenvalues.

Eigenvalues are the roots of this characteristic polynomial. And once we find a particular

eigenvalue,  we  can  substitute  it  back  in  this  equation  and  then  find  compute

corresponding eigenvector to a degree of I mean constant of proportionality. So, we can

shape we can find out one particular eigenvector for in I mean. If x is an eigen vector

then, alpha times x is also an eigenvector of the matrix.



So,  it  can  always  only  be  determined  to  a  constant  of  proportionality  there  is.  So,

eigenvector is not unique, because this matrix A−λ I  is of course, a singular matrix.

So, there is no there cannot be a unique solution to this. So, there has to be a constraint

additional constraint before vector x can be calculated and that constraint is by imposed

by assuming some value for one of the elements or two couple of the elements depending

on what is the multiplicity of this eigenvalue and then the rest of the elements of this

vector can be calculated.

So, and that is why it is not possible to say that we solve for this system of equations,

because this  system of equations is still  singular and constraints  have to be imposed

before we can compute the eigenvector. So, standard eigenvalue problem is referred to as

A x=λ x .

So, there is only one^2 matrix a and x is the corresponding eigenvector which results

after multiplication by A into a scaled version of it or we can have vector multiplying

from the left side. So, there form that form becomes yT A=λ× yT . So, this is also an

eigenvector.
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So, these are referred to as. Here, x operates on the right-hand side. So, this is referred to

as the right eigenvector and here, y operates on the left side of the matrix A. So, this is

referred to as the left eigenvector of matrix A. If matrix A is symmetric then; obviously,

there is no difference between left eigenvector and right eigenvector they are identical.



So,  x  is  called  right  eigenvector  and  y  is  called  the  left  eigen  vector  and  for  a

corresponding  to  a  value  eigenvalue  specific  eigenvalue  λ .  And  these  can  be

interchanged. I mean left eigenvector of A is the right eigenvector of A^T and vice versa.

So, that is simple mathematical operation; if we take the^T, then the result is arrived at.

And for symmetric matrix A, left and right eigen vectors are identical. So, this is as far as

standard  eigenvalue  problem  what  is  referred  to  a  standard  eigenvalue  problem  is

concerned.

Now, we can also have a  generalised eigenvalue  problem. For example,  in this  case

instead of λ x  what we say is A x results into another vector which is  λ×B×x .

So, there are two matrices here. So, A x results into a scaled version of another rotation

of matrix of vector x. So, A x=λ B x  or yT A=λ× yTB .

So, that is generalised eigenvalue problem and; obviously,  there is not I mean lot of

similarities  between  the  two  generalised  eigenvalue  problem  can  be  converted  into

standard form or standard eigenvalue problem can be considered as a special case of

generalised eigenvalue problem where matrix B is identity matrix. And here, if we pre

multiply  by  B^{-1},  then  this  generalised  eigenvalue  problem  actually  reduces  to

standard form.

So, it can be readily converted to standard form as B−1 A x=λ x  for a positive definite

matrix B. Now, the trouble with this is  B−1 A  is not necessarily symmetric, even if

both A and B are symmetric.

Now, the reason for symmetry is very very important. It is not just limited to the storage,

because if it is if A and B are symmetric, then we can get away or we can do all the

computation by storing only about half of the matrix. We do not really need to store

other half. I mean lower diagonal lower triangular portion of the matrix right.

So, that is that results in considerable saving in the storage space and resulting into more

compact storage, but if we pre multiply by B−1 , then this symmetry may be lost; even

if A and B are both symmetric,  B−1 A is not guaranteed to be symmetric. So, that is

another reason why pre multiplication by inverse is not really a good idea and not really

required as well.



The  preferred  form is  to  ah.  Since  B is  considered  to  be  positive  definite  and it  is

symmetric. So, its decomposition is going to be LLT  a Cholesky decomposition. So,

once we have this, then this B−1  can be easily converted into this particular form. So,

this  entire algebraic equation,  this standard eigenvalue I mean generalised eigenvalue

problem can be referred to as.
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Let me just say A x=λ B x . So, if B=L LT , then I can write this as. So, this I can

write  it  as  right.  So,  L−1  is  easy  to  compute  that  you  can  be  computed  using

simultaneous equation.  I mean the triangular system of equations can be solved for a

multiple right-hand size which = identity matrix and inverse of this triangular matrix L

can be easily computed. So, that is what we arrive here, I mean L−1 .

So, and this is of course, identity matrix. So, we define assume this to be like this. So, we

define  another  vector  x̂  which  is  given by  LT x and that  defines  new problem

x̂=λ× x̂ . And if I write this as Â x̂λ x̂ . So, this becomes the standard eigenvalue

problem which has the same eigenvalue.  Eigenvalue is same as the original problem.

Eigenvectors are related to the original eigenvectors through LT x= x̂ .

So, once we compute x̂ , we can recover the eigenvector corresponding to the original

problem from this simple relation that  x̂=LT x and solving this system of equations

we can compute the vector x desired vector x. So, this is how the conversion transference



conversion of generalised eigenvalue problem into standard eigenvalue problem format

is actually implemented in practice. It is never done as B−1 A .

So, that is what we are referring to here. So, preferred form is  L−1 A L¿ x̂=λ x̂ . So,

that  becomes  alternate  form  I  mean  how  a  generalised  eigenvalue  problem  can  be

converted into a standard form. So, why is it so important, why is eigenvalue problem so

important or so why prevalent so prevalent in a different fields.

One thing is we have already seen several instances all through this course we have seen

the importance of knowing the basis defining the basis of an n dimensional space or

vector space. So, knowing the proper basis to expand or to analyse any vector or to solve

any problem is very very important.

Now, finding a suitable basis is not a very easy task except for constructing the basis for

eulidean ah euclidean vector spaces, where the unit vectors are the basis. So, 1 0 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0 0 and so on.

So, eulidean unit  vectors they form they are very easy to construct  and they can be

generated, but while they are easy to generate, they are not really very convenient or to

simplify the problem and many a times eigenvectors that we have, because these are

derived from the operating matrix of the problem.

So, they often offer considerable simplicity to the problem being posed. So, it is possible

to transform the problem into a much simpler form by using by using the transformation

of variables where eigenvectors of the matrix they serve as the basis.

Now, why is it? So, convenient or why the eigenvectors form a convenient basis. It is,

because of the very interesting property that eigenvectors form and orthogonal set of

base vectors or they are mutually orthogonal to each other.

So, if I compute. I mean there are as I said there are different eigenvectors corresponding

to different eigenvalues. So, one matrix can have several eigenvalues. Those are the roots

of the characteristic polynomial. So, for each eigenvalue, there would be a corresponding

eigenvector.



Now, what we are trying to say here is as long as the eigenvalues are distinct that is two

eigenvalues that I am looking at they are different from each other they are distinct, then

the eigenvectors are orthogonal to each other and that is a very very powerful property.

And orthogonality is always desirable that always leads to a very efficient transformation

system, because for an orthogonal matrix we do not need to compute the inverse, its

transpose its own inverse.

So, that we have ah discussed earlier when the when discussing the change of coordinate

system or change of basis. So, the transformation between one basis to another basis if it

is  related  through an orthogonal  matrix  or  orthogonal  set  of  column vectors  then,  it

becomes  the  moving  from  one  basis  to  another  basis  becomes  very  very  efficient

calculation and very very stable numerical operation. So, let us look at this orthogonality

of eigenvectors in little detail.
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So, right eigenvectors x_i corresponding to an eigenvalue λ i  is orthogonal to the left

eigenvector at y_j corresponding to the eigenvalue λ j ; these two are different λ i  is

different  from  λ j  so;  that  means,  y j
T A xi=0  and of course,  it  also means that

y j
T x i  that should also be 0. If this is 0, then the other way round is also possible for all

i not equal to j.



Now, for symmetric matrix A, this is actually this reduces to the same set of vectors x_i

is same as y_i left eigenvectors are same as right eigenvectors, but this is the general

statement if A is un symmetric or then, this is the general rule that left eigenvectors are

orthogonal  to  right  eigenvectors.  And  this  is  has  immense  practical  utility  as  a

convenient basis to generate an orthonormal basis set of basis vectors.

And decomposition of matrix by rank one updates by orthonormal eigen vectors. So,

because yT x=I . So, if I collect all eigenvalues and eigenvectors in a common form.

So, A x, x is the column of eigenvectors and  λ  this is the diagonal matrix of all

eigenvalues.  So, this is the in essence statement of all n number of eigen values and

corresponding eigenvectors.  So,  this  is  for  right  eigenvectors  and this  is  for  the  left

eigenvector.

So,  yT A=λ yT  or  if  we can post  multiply  yT ,  then it  becomes  x λ yT=A ,

because x yT=I .

And then we have this A−1  can be easily converted to, because A−1  of matrix A

can be easily converted by this matrix, because λ  already involves, because x and y

they are orthogonal with respect to each other. So, their inverses can be easily computed

they are given by respective transpose matrices and inverse of a λ  that is a diagonal

matrix. So, that is also easily computed.

So, this computation of inverse by using eigenvalue expansion is a very very simple rank

one update. So, this actually implies if we expand this in terms of summation of these

vector  products,  then  each  term.  There  are  n  number  of  terms  here,  and each  term

actually contributes to one rank building up one rank of the matrix A complete matrix.

So, A if A is full rank matrix n with rank n, then n number of terms each of these terms

will actually add one rank to the system.

And this validation of mathematical model A or A−1  of the system by reconstruction

by using experimentally determined eigenvectors and eigenvalue. So, this is a very very

useful tool for reconstruction of the matrix. For example, system flexibility matrix can be

a  structural  flexibility  can  be  constructed  by  observing  some  eigenvalues  and

eigenvectors from the vibration data of this structure.



And using those flexibility matrices, we can draw useful inferences about the health of

the structure. So, these are all applications that are possible. And hence, these tricks I

mean the eigenvalues and eigenvectors the importance of eigen values and eigenvectors

in constituting or in giving the orthonormal basis is very very crucial in simplifying the

problems and even finding new insights into the problem.

So,  now, how this  actually  works or what  is  what  happens when we multiply  eigen

matrix  with a vector.  And in last  lecture while  discussing conjugate  gradients,  I  had

discussed that ah in Krylov subspace we have the matrix we have the sub space or the

Krylov subspace elements of this Krylov sub space are given by r0 , then A r0  and

A2 r0 , A3 r0  and so on.

So, higher powers of a matrix A are involved and that is what gives us new directions

new directions with each iteration. And there we said that for higher powers of A, it is

possible that the vectors may begin to lose their independence and that we will see.
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Now, why that will happen why that can happen. So, what happens is if x is the original

vector and it is multiplied by A. So, it is rotated like this. And let us say %phi_1 and

%phi_2, there are two eigenvectors right. So, of matrix A.

So,  if  there  are  two  eigenvectors,  then  they  constitute  the  basis,  because  they  are

orthonormal vectors. So, I can use them as a basis vector to expand the any any arbitrary



vector. So, vector x here, can be expressed as  C1×ϕ1+C2×ϕ2 ;  ϕ1  and  ϕ2  are

two eigenvectors of matrix A corresponding to the eigenvalues λ1  and λ2 .

So,  A×x  will refer to  A×C1ϕ1+A×C2ϕ2  and  A×ϕ1  is of course, equal to

λ1ϕ1  that is the by definition of eigenvalue problem and  A×ϕ2  is going to be

λ2ϕ2 . So, that is what we have. So, A x=λ1C1ϕ1+λ2C2ϕ2 . Now, this is what we

look at it.

So,  λ A x .  So,  this  is  vector  C1ϕ1  this  is  what  makes  it.  So,  vector  x  can  be

decomposed as a combination of resultant of this C1ϕ1  and C2ϕ2 . So, this is what

vector  x  is  representing  and  resultant  of  this  C2ϕ2  and  C1ϕ1 .  Now,  after

multiplying with matrix A it results in  λ1C1ϕ1 . So, this contribution get scaled by

λ1  and this component gets scaled by λ2.

So, λ2C2ϕ2  resultant is A x and if I multiply with A again, then it becomes A2 x

which is resulted by  λ2C1ϕ1 , because this will again be equal to  λ1C1 Aϕ1 . So,

that will be equal to  λ1ϕ1 . So, that will be  λ1×λ1 = λ2 . So,  λ2C1ϕ1 . And

similarly here, it becomes λ2
2C 2ϕ2 .

So, gradually as we keep on increasing multiplying with A repeatedly, what will happen

is; this matrix or this vector A raised to the power n let us say some higher power of ah

matrix A. This vector will be aligned will tend to align with ϕ1 . The components of

ϕ2  will be subsumed. I am of course, assuming that λ1   is greater than 1 and λ2

is smaller than 1 which will happen some of the cases I mean relative speaking.

So, if λ1  is much larger than λ2 , then gradually this multiplication will align with

the dominant eigenvalue and corresponding eigenvector. So, this is what it means.

So, what will happen is for higher powers of A, this will all these vectors will tend to be

very close to the eigenvector corresponding to the dominant eigenvalue of matrix A and

that  is  why the vectors  in  the Krylov subspace begin  to lose their  independence  for

higher powers of A and that is why it is required to make them orthogonal by using gram

Schmidt orthogonalization after a while.



So, that this is basic idea of the matrix vector multiplication by successive multiplication

of the matrix. We will we can nudge a vector to align with its dominant eigenvector. So,

we consider a second order matrix or 2 by 2 matrix and the eigen pairs are λ1ϕ1  and

λ2ϕ2 .

The set of eigen pairs eigenvectors ϕ1ϕ2 ,  they constitute a valid basis to represent any

arbitrary  vector  x  as  a  linear  combination.  So,  that  is  why  we  can  write

x=C1ϕ1+C2ϕ2 . And multiplication by A rotates the original vector x by scaling of

the  components  along  the  eigenvectors  by  I  mean  by  scaling  will  be  by  the

corresponding eigenvalue. So,  ϕ1  is scaled by ϕ1  component is scaled by  λ1 ,

ϕ2  component is scaled by λ2 .

And this actually hints at the first algorithm for computing eigenvalues and eigenvectors.

We just keep on multiplying whatever, we start with the vector any vector it could be any

vector we multiply with A.

Again, this new vector that we get we multiply with A new vector we get we multiply

with A. Eventually, it will align with the dominant eigenvector as we see here, in this

graphical picture graphical. I mean gradually x we started x somewhere here and the first

dominant eigenvector is aligned here.

So,  this  dominant  eigenvector.  So,  this  vector  x  can  be  nudged  towards  dominant

eigenvector  by  successive  multiplication  of  matrix  A  and  that  suggests  us  the  first

algorithm  to  solve  for  to  find  out  to  compute  the  eigen  spectrum  the  complete

computation complete representation of eigenvalues with eigen vectors  that  is

referred to as the eigen spectrum. So, this is what we refer to as the power law or power

of scaling.



(Refer Slide Time: 31:21)

So, successive multiplication by a rotates any arbitrary vector x_0 progressively to align

with the eigenvector associated with the largest eigenvalue. Now, the only thing that we

need  to  do  is  we  need  to  scale  them after  each  multiplication  after  each  ah  matrix

multiplication  so  that  we  can  detect  the  convergence;  otherwise,  it  will  keep  on

increasing by a factor of λ  and it may not be easy to detect the convergence.

And as I said this is the loss this is the reason for loss of independence in search direction

in the method of conjugate gradients for solution of simultaneous equations. So, let us

assume x_0 as a a linear combination of basis vectors or eigenvectors as the basis.

So, ∑
i=1

n

C iϕi   n number of terms. So, when I start with I mean starting with x_0 as the

trial vector; first vector x_1. If I multiply with a x_0 and then, divided by some let us say

some number. Let us say it is I call it as a λmax . So, that is the maximum eigenvalue, it

can be some any number some.

So, if I scale it by this number. So,  
λi

λmax
. So, each term would be scaled by this

λi
λmax

; λmax  is the largest eigenvalue. So, if λmax  is largest eigenvalue, then  is;

obviously, going to be less than unity. And there will be only one term which is going to

be unity that will be 
λmax
λmax

.



So, whichever eigenvector that λmax  corresponds to that term will have coefficient of

1. All others will have coefficients. I mean this ratio of eigenvalues less than one. And

for  this  repeated  multiplication  of  matrix  A this  ratio  will;  obviously,  diminish  with

positive powers with every iteration and any ratio any number which is smaller than 1

less  than  1.  And  if  we  keep  on  repeatedly  multiplying  it  its  value  will;  obviously,

diminish it will approach 0.

So, for large p, terms with λ i . So, eigenvalues ith eigenvalues λ  eigenvalues with

smaller than λmax  will be annihilated. They will be suppressed and eventually, we will

be left with only one term that is corresponding to  λmax  and that is why the power

iterations this is called power iterations.

So, the by virtue of the power of multiplication repeated multiplication, any trial vector

starting  with  any  trial  vector  we  can  converge  to  the  eigenvectors  associated  with

dominant eigenvalue the largest eigenvalue largest eigenvalue in magnitude.

So, this is the first algorithm, but we computed the eigenvalues and eigenvectors I mean

the  dominant  eigenvalue  and  eigenvector  corresponding  to  dominant  eigenvalue,  but

what next. This is just one of the n number of eigenvalues and eigenvectors and quite

often, it is not the highest eigenvalue and eigenvector that is of interest rather it is the

other way round.

So, lower end of this spectrum is of more interest for engineering analysis. So, how do

we compute  that.  How do  we  go  about  with  that  computation  of  rest  of  the  eigen

spectrum we will discuss in our next lecture.

Thank you.


