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Solution of Linear Simultaneous Equations - III 

 

Hello friends. So, we have seen the Solution of Simultaneous Equations by using direct 

solvers. We looked at the naive school book approach of Gaussian elimination for 

elimination of variables, sequential elimination of variables from each equation and 

followed by backward substitution to solve the unknown solve for the unknowns. 

The other one we discussed about the factorization of the matrix coefficient matrix into 

LU factors lower triangular and upper triangular and in case of special case of structural 

mechanics or finite element general finite element problems, most of the case times we 

are dealing with positive definite and symmetric matrices. So, in that case both the 

factors turn out to be transpose of each other, they can be made to be transpose of each 

other. 

So, eventually that LU decomposition reduces to a simpler Cholesky decomposition in 

the form of L L transpose. And the coefficients of this factors of the matrix can be 

obtained from one to one correspondence and those there is a straight forward algorithm 

which allows us to compute the factors of the matrix and once these factors are available, 

then the system of equations can be solved by a two stage process and that results in the 

solution of unknown variables of the system of equations. 

So, this is in general very straightforward procedure, the only problem with respect to 

finite element method use of direct solvers in finite element method is that the factors 

that we have the either Gaussian elimination or even the LU decomposition or LL 

transpose decomposition Cholesky decomposition, the factors may actually generate 

terms which were zero earlier.  

Because the coefficient matrix in finite element analysis that we generate that we get 

from finite element analysis is a strongly banded matrix and a sparse matrix, lots of 

positions are zeros I mean there is not much there is no information there it is all zeros. 



So, the point is those zeros if we have to store, then we have to allocate that floating 

point storage for assigning that zero which does not actually contribute to computation 

much or that does not lead to the characterization of the equations governing equations, 

but during the process of solution by this Gaussian elimination or by Cholesky 

decomposition, those zeros might be filled in with non zero entities during the process of 

elimination. 

So, the fallout is, we cannot take advantage of neglecting zero terms or not assigning 

storage space for zero terms, we have to assign the storage for at least the triangular half. 

If it is an symmetric matrix coefficient matrix is symmetric then at least one half has to 

be stored including all zeros and that is all though one half I mean below diagonal can be 

eliminated I mean that storage can be avoided because it can work from the principles of 

symmetry symmetric structure, but still there might be still a large number of zeros 

which might have to be provided or which might have to be accounted for and that leads 

to a huge storage requirement. 

So, iterative solvers which actually require only a series of matrix and vector 

multiplication. Essentially, a series of matrix vector multiplication the coefficient matrix 

itself is not modified at all. So, in that situation in this particular case it becomes very 

advantageous proposition that we store only non zero elements of the matrix. So, a large 

matrix with I mean n by n, n can be a very large number I mean number of degrees of 

freedom can be can run into easily run into millions for a typical finite element run. 

So, for a such a large matrix instead of storing most of them as zeros, we can just store a 

few non zero elements and with a mechanism with little book keeping to keep track of 

which row and which column what is the address of each of these non zero elements and 

then we can design an algorithm for matrix vector multiplication and that is all that is 

required for iterative schemes. And that leads to considerable saving in storage space and 

that allows the computations to be performed in using high speed memory of the 

computer. 

So, iterative schemes are actually very much preferred in a finite element solution or 

even for computational fluid dynamics approach, I mean all those dealing with very large 

system of equations and very fast and very efficient solvers iterative solvers are now 

available which can actually give a good competition to the direct solvers in terms of 



accuracy and efficiency and they are and with the added advantage of saving the storage 

space, they are ah gaining quite a lot of acceptance in scientific computing. 
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So, essentially iterative solvers, as I mentioned here coefficient matrix for large scale 

systems is often sparse and banded with very few non zero elements. So, efficient data 

structures we can design efficient data structures to store only non zero elements and that 

will allow us to faster processing using high speed memory and the problem of fill- ins 

that is encountered during direct solver by using Gaussian elimination or LU 

factorization is a troublesome and that may not be encountered in the process of iterative 

solvers. 

So, that is what we arrive at possible solution to avoid this problem of fill in is a way to 

arrive at the solution of equations by using only matrix vector multiplications. So, we do 

only simple basic linear algebra system operation matrix and vector multiplication series 

of them one after the other. And that leads to what we call as iterative solver we keep on 

improving upon the initial guess; initial guess of the solution.  

We start with trial guess of the solution it can be anything, it can be a very bad guess 

whatsoever and we continuously improve upon the guess and we can nudge the solution 

towards the true solution as accurately as possible within the machine tolerance floating 

point arithmetic tolerance. 



So, typical examples I mean these are get Jacobi and Gauss Seidel iterations, these were 

the very early propositions for iterative solvers and these are still taught in classroom 

example for iterative solvers although these are only good for that purpose. Nobody uses 

them for serious computation because the rate of convergence is too slow there are way 

better algorithms available for iterative solvers, but still they provide us very good 

vehicle to understand the basic issues involved in iterative solvers and they are very easy 

to implement as well. 

Then next in degree of sophistication is what we call as steepest descent algorithm. This 

is derived from the optimization technique I mean the minimization problem. So, this is 

one of the algorithms for very quickly achieving the minimization of a function. So, one 

of those gradient based approaches. So, steepest descent algorithm and then we come to 

a very powerful technique which has its own several variants, but we will study only the 

simple standard format which is applicable for symmetric matrices conjugate gradient 

algorithm. 
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So, let us start with Jacobi and Gauss Seidel iterations. So, we can as I said these are only 

good for classroom instruction purposes because they are very slow to converge. So, the 

idea is to replace to consider the iterative scheme G is a matrix some matrix multiplied 

by X k + 1th that is the improved version improved estimate of the unknown and that is 

given by G - A multiplied by X k. So, that is the previous estimate of the solution or if we 



are starting then it will be the initial estimate of the solution anything any guess estimate 

and b is of course, the vector right hand side vector. 

So, if you look at it this is a modification of original system of equations A x =b. So, we 

take this simple distinction that X iterative scheme. So, X k is being modified to X k + 1 

and using this matrix G suitable matrix. So, what is this matrix G.? So, matrix G I mean 

we can always refer to this as if I consider this simple mathematical operation. So, k + 1th 

iteration of the unknown vector is given in the slide. 

So, again as I said this is only for mathematical notation we are not inverting matrix G 

here. So, if we start with some trial vector X 0 and we define this matrix I – G-1 A as 

matrix B, then the successive iterative steps lead to let us go to starting from X 0. X 1 = B 

times X 0 + G-1 b. So, this will lead to if we keep on doing it again and again and 

substituting recursively X 2 will be in terms of X 1 and so, on. 

So, this eventually leads to k + 1th = Bk+1. So, that is matrix B k + 1 matrix B keeps on 

multiplying k + 1th times and this is again going to be because this is going to be 

recursively added up. So, this is again going to be a series of powers of B.  

So, B raised to the power 0 + B + B2 + B3  and so, on until the previous iterate multiplied 

by G inverse b. So, if matrix B is somehow size of the matrix B if it is less than 1, then a 

large power of B would approach a null matrix because I mean anything less than 1 if we 

raise it to sufficiently large positive power that will diminish in size and eventually it will 

approach 0. 

And this series solution I mean one identity matrix + B + B2 + B3 and so, on. So, this 

actually converges to I minus B inverse. If the size of the B matrix the norm of the B 

matrix that is second norm. So, that is the eigen value largest eigen value of B matrix is 

less than 1. And then if this happens then what does it say? So, this term vanishes 

because B raised to the power k plus 1 this approaches a null matrix. 

So, null matrix multiplied by X 0. So, that is going to be a null vector and this reduces to 

I – B-1. I minus B inverse. So, what is that? I – B-1 inverse is going to be what is I -B? I - 

B is going to be G-1 A. I- B is going to be G-1 A and inverse of that is going to be A-1 G. 

So, what we have here is A-1 G multiplied by G-1 b.  



So, eventually what we will have is A inverse B and that is the solution true solution that 

we were looking at. So, this is how it converges to the true solution. So, what should be 

the choice of matrix G which facilitates this convergence to the true solution and that 

choice is G inverse should be equal to 2/ μ times identity matrix where μ is the estimate 

of largest eigen value of A. 

So, if that condition is satisfied if G inverse is considered to be this or for that matter if I 

can put it other way around. If G is equal to mu by 2 times identity matrix, then this 

convergence criteria would hold or this procedure would converge and then the spectral 

radius or the norm spectral norm of matrix B would be less than 1 and the iterations 

would converge. 

Now, the whole problem is now how do we estimate this largest eigen value of matrix 

A? It is not a very difficult proposition we will discuss in our after few lectures this eigen 

value problem. So, we will get to know how to estimate the largest eigen value and 

please note that we do not need the exact eigen value, we just need the estimate of largest 

eigen value.  

So, it may be an upper bound estimate and we can find upper bound estimate just by 

observation by just looking at the rows of matrix A we can find out the upper bound 

estimate of the eigen values for matrix A that is by using the Gershgorin theorem. So, 

more on that later when we discuss eigen value problems. 

So, the point is knowing a matrix A it is possible to identify a suitable matrix G which 

when used in this particular way, this leads to true solution in a recurrence form. So, this 

actually G inverse we choose this because it is easy to invert I mean this is essentially a 

diagonal matrix. So, this product G inverse A is very easy to compute and G inverse b is 

also very easy to compute right. 

So, no further no inversion explicit inversion is required it is already a diagonal matrix. 

So, that is how the calculations proceed and the iterative solutions they gradually move 

towards the true solution. So, for Gauss Seidel iterations we take advantage. So, this is 

what the what we discussed here.  

This is the Jacobi scheme where the entire vector is updated in one go we can slightly 

improve upon that by considering making use of whatever I mean term by term if we 



improve then whatever k + 1th iterate we have already estimated some elements of X, we 

can take advantage of that in this iterative scheme and speed up the convergence a little 

bit and that is what is referred to as Gauss Seidel iterations. 
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So, for Gauss Seidel iterations we take advantage of the currently available updates of 

unknowns in current iterations and that is very easily done by again rearranging the 

operations computations within the loop of computation and that is easily arranged and 

the iterations are stopped when a suitable norm of residual vector.  

So, this is the error in solution b - A times X k the current iterate if this residual. So, if 

this is not equal then please look at the let us refer back to our original proposition 

original concept of definition of solution of simultaneous equation as the right hand side 

being resultant of the vector sum of column spaces. 

So, this is column space sum of column space and b should be the resultant of this 

column sum linear combination of these columns of matrix A and this is the error in that 

computation.  

So, if it is true solution then obviously, residual vector would be null vector, but it is 

quite possible or it is almost always there that for engineering analysis, we may not be 

interested in having a very precise solution to the last point or 14th place of decimal. 

Generally we are ok we are happy enough with the solution if it is accurate up to two or 



three places of decimal or whatever may be the engineering tolerance; tolerance for 

computation. 

So, when we do that; that is the there will be some error of approximation and we 

compute this size of error what is the norm, what is the magnitude of this error and if that 

is less than a suitable acceptable tolerance level then the iterations are stopped or it 

continues in the recursive manner. A small residual implies a small error in solution only 

if the condition number of the matrix that is kappa of matrix A is small. 

So, now this is condition number which measures the whether the system of equations A 

X is equal to b is ill conditioned or not. So, that depends on the condition number of 

matrix A and essentially this condition number measures how far the column spaces are 

independent or the columns of matrix A they provide independent basis to represent the 

right hand side vector. 

So, if the condition number is small, then this residual small residual that we have 

computed. If the residual error is very small, then that also implies that this solution 

computed solution is also very close to true solution. If the condition number is very 

large then a small residual need not mean or need not imply closeness of the computed 

solution with true solution. A reason in visual example I mean you can see if the two 

examples two lines are almost parallel to each other they intersect over a large area. 

So, the solution can lie anywhere in this point in this position. So, there is a large amount 

large possibility which can qualify as a solution. So, the error would be small over a 

large range and any point in that range could qualify as a small error in this equilibrium 

or satisfying the equation, but the computed solution may be not very close to the true 

solution and that correspondence I mean small residual corresponding to true solution 

close to true solution is like this. 

So, two lines very sharp intersection. So, then if there is only one solution one point 

within even within the limits of floating point round off error etcetera. So, vagaries of 

taking care of all vagaries of floating point arithmetic even then the computed solution 

can be very accurate and that is why this condition number is a  very important criteria 

for specially for the iterative solutions or iterative solvers.  



For direct solvers condition number does affect the computation and round off error 

etcetera and that will have its own effect on the computed solution. Computed solution 

may not be very close to true solution, but there is no mechanism to improve upon or 

even test whether the computed solution is good enough or not. 

Iterative schemes at least you have one has that possibility to keep on iterating keep on 

refining the solution and see if we can get anything better. So, Jacobi and Gauss Seidel 

iterations the convergence is very slow even with the use of one of the standard 

techniques in numerical methods over relaxation. So, we slacken the system of equations 

and that may accelerate the convergence to some extent. 

So, successive over relaxation technique. So, X k + 1 is given by ω times  k +1 +1 - ω X 

k where   k + 1 is the Jacobi or Gauss Seidel estimate. So, it is a linear combination of 

what we compute using Jacobi Gauss Seidel estimate and some weightage is given to the 

previous iterate and that weighted sum is taken as the new solution and that is put in the 

recurrence relation for next iteration and this generally accelerates the process.  

The relaxation parameter ω has to be a value between 0 to 2 and that will ensure 

convergence for positive definite systems and symmetric systems and for the finite 

element structural mechanics, solid mechanics problems, we are dealing with symmetric 

positive definite systems. So, this is not an issue at all. 

So, choice of ω between some number between 0 to 2 would ensure convergence and 

little faster convergence than what we normally achieve by using standard Jacobi and 

Gauss Seidel iterations. So, this is the basic introduction to iterative solvers, in our next 

lecture we will discuss the more powerful techniques that is steepest descent gradient 

based approach and of course, the workhorse that is almost a standard issue in all 

iterative schemes the conjugate gradient method  very powerful and very fast iterative 

scheme. 

Thank you. 


