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Hello friends. So, we have seen how to model dynamic effects in finite element analysis. 

We assume accelerations to be interpolated in the same way as the displacement field is 

interpolated or approximated within the element, and then the domain integrals are 

evaluated. And we end up with matrix, so inertia system inertia matrix and that is 

referred to as consistent mass matrix.  

So, this word consistent is nothing consistent about this evaluation system of evaluation, 

it only refers to that accelerations are interpolated consistently with that for the 

displacement. So, the interpolation model for acceleration is consistent with the 

interpolation model for displacement that is the only interpretation.  

There is not nothing I mean as I said earlier nobody knows how the accelerations vary, 

but this simple construct of using the same interpolation model as displacement for 

approximation of acceleration agrees with the, I mean the results agree with the 

observations.  

And moreover that is because of the fact that over no matter what the variation actual 

variation might be, over a small enough region any curve, any variation can be 

reasonably approximated by a lower degree polynomial, and that is how this simple 

approximation for displacement being extended to interpolate the acceleration actually 

works in practice. So, we have consistent mass matrix. 
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And we saw that the conservative system the equation of motion  can be given as for the 

element level, it has mass times nodal accelerations plus stiffness times nodal 

displacements, and this is equal to the nodal equivalent time dependent forces. So, this is 

what we call as system  inertia mass, and that can be evaluated using interpolation of the 

displacement NT N integrated over the domain multiplied by the density.  

And that leads to this consistent mass matrix and K is of course given by the domain 

integral involving strain displacement matrix.  

So, BT D, D B, this of course works very well for continuum elements, interpretation of 

B varies from B and D the strain displacement and continuum constitutive relation that 

varies from application to application for example the strain displacement matrix that we 

are referring to that refers to the curvature in case of beam problem, and constitutive 

element here D in that case refers to the flexural rigidity of the problem. 

And similarly for plate bending problem, also we have similar kind of curvatures and 

flexural stiffness, flexural rigidity coming in picture coming into the analysis. So, with 

appropriate interpretation, this generic expression for element stiffness matrix that is BT 

D B, where B is the strain field relation I mean relation matrix relating the relevant strain 

field strain or curvature fields to the nodal values of primary variables. And D is the 

matrix or the element which transforms which relates the strain field or curvature field to 

this appropriate stress or stress resultants. 



 

 

And this element mass matrix is of course NT N, so that is consistent mass matrix. And 

using these, we can have the basic constituents of any dynamic system. So, this simplest 

dynamic system would involve some mechanism to store potential energy which is 

represented by this stiffness matrix or the stiffness of the element, and some mechanism 

to store kinetic energy which is represented by these inertia terms. 

And with these, the oscillation once the system is set in motion it will continue to 

oscillate infinitely it will never come to rest that is what the conservation I mean the 

transformation of energy will do. The potential energy will come keep on converting to 

kinetic energy; kinetic energy will keep on converting to potential energy just as in the 

case of motion of simple pendulum.  

Simple pendulum oscillates from mean position to extreme position, and to the other 

extreme position. So, this happens by virtue of constant transfer of energy from potential 

energy to kinetic energy, from kinetic energy to potential energy. At this point extreme 

position, the system has maximum potential energy. And once it is and it is at rest. Once 

it is released from this position of rest, the it begins to move downward, and the potential 

energy is gradually converted into kinetic energy until it reaches mean position. 

When the pendulum reaches this mean position, all energy has been converted into 

kinetic energy and by virtue of its momentum it moves forward. And again the energy 

conversion from kinetic energy to potential energy happens until the point when all 

kinetic energy has been converted to potential energy, and the motion stops because 

there is no further momentum the velocity is 0.  

Then it begins downward motion. And again this cycle of this constant interchange of 

energy keeps on happening. And this motion, this motion will keep on happening 

indefinitely because there is no loss in this particular in this equation that we have there 

is no mechanism by which some part of energy or is I mean loss in energy during 

transformation is modeled. 

So, if there is no loss during this transformation, then this keeps this oscillations will 

continue forever. And obviously that does not happen, and it remains any physical 

system because by the that is by the principles of thermodynamics it is impossible to 

have any physical system which will not involve any transformation without any loss of 



 

 

energy right. So, any physical system, energy transformation system has to be 

accompanied by some loss without that it is not physically realizable. 

So, when we do that, so some loss mechanism has to be incorporated of course, there are 

the energy can be lost in several ways, but it so happens that most of the time the energy 

lost in engineering systems is very, very small in per cycle. For example, the simple 

pendulum experiment if you recall, it keeps on and doing infinite very, very long. I mean 

if we leave it for on it is own it will continue to oscillate for a very long time and only 

after very long time, it will the pendulum will come to rest on its own. So, during every 

cycle of oscillation the amount of energy that is lost is  very small. So, while there can be 

several mechanism, for example, energy can be lost during friction, energy can be lost 

due to a viscosity or the viscous drag and so on.  

So, there are different mechanisms, but we also need to look at what is convenient for us 

for analysis. It so happens that any energy loss mechanism other than velocity 

proportional damping viscous damping that is what we have during in a some form of 

viscous damping. Of course, it can also have different powers of velocity. So, we only 

restrict our attention to viscous damping which is proportional to the linear velocity term. 

So, when we do that, then we have very interesting expression. So, this is mass 

multiplied by acceleration. So, then we can have some velocity proportional damping, 

and then displacement proportional elastic force restoring forces, and then the nodal 

equivalent of forces.  

So, this term is of course, loss mechanism viscous damping to model energy dissipation. 

Only this form of energy dissipation gives us a linear differential equation. This is still a 

differential equation, second order derivatives in time, first order derivative in time 

velocity, and this is displacement. 

So, this is still a differential equation, ordinary differential equation, but if we choose any 

other dissipation energy dissipation mechanism this equation will be a non-linear 

equation. This is the only variation, this is the only energy dissipation form which 

provides us which yields a linear equation.  

And therefore, we continue with this form because as it is compare to these two terms 

inertia term and the elastic force term, restoring force term, this term the energy 



 

 

dissipation term is generally very small. So, it really does not is not very significant or 

very dominant term in the equation, but we need to model, we need to have some 

mechanism of energy dissipation. So, we include this in the form of a linear viscous 

damping term. 

And then what should be the damping coefficient? Again we can adopt possibly the same 

formulation as that for the mass matrix or inertia matrix. We can assume velocities are 

also interpolated in the same way as the displacements. And some velocity proportional 

coefficient, viscous damping coefficient and we integrated over the domain, and we get 

we can get the damping matrix C.  

So that would again if you look at it that would again be proportional to mass matrix 

because that will again involve NT N integral over the entire domain, so that would be 

proportional to mass proportional damping as it is called so that can be directly derived 

from the mass matrix that we already have. 

Other equation can be, there are Rayleigh damping models so called Rayleigh damping 

model. So, what is done is matrix C is considered to be proportional to mass and 

stiffness. So, αM times βK and alpha and beta coefficients are to be evaluated by some 

condition.  

So, if user specified, if the user specified certain condition, then alpha and beta can be 

evaluated. And with that matrix C can be determined. If matrix C needs to be 

characterized in total, we often do not need matrix C to be mentioned to be defined 

explicitly. We will see why. 

So, once we have this element level equilibrium, so total element level equilibrium 

including dissipation, this can be assembled, this can be taken to assembly, process of 

assembly and plus boundary conditions, and that gives us the final global system of 

equations. 

So, essentially what we have done here is up to this point by using finite element 

modeling, we have transformed a partial differential equation which involve derivatives 

with respect to space coordinates as well as derivatives with respect to time. So, we have 

used finite element modeling within in the spatial domain, and converted that partial 

differential equation into an ordinary differential equation.  



 

 

Now, if the dynamic terms were not there, then it would be simply quasi static problem. 

But if the dynamic terms are important, if the frequency of excitation is reasonably close 

to frequency of natural frequency of the structure or frequency of excitation is very high 

compare to natural frequency of the structure, then the dynamic effects are important and 

the complete system needs to be modeled. 

So, once we do that, then we have this ordinary differential equation with constant 

coefficients with certain initial conditions. Now, boundary conditions have been 

incorporated in the problem. And there would be some initial conditions with u at time t 

= 0, there would be some vector initial displacements.  And similarly  at time t is equal 

to 0 that would be initial displacements and initial velocity. Because it is a second order 

differential equation we will need two initial conditions to determine the constants of 

integration. And those are determined those are given by the specified initial 

displacements and initial velocity. 

And this system of equations can now be solved using suitable techniques for integrating 

this ordinary differential equation. Now, we can solve this problem using finite element 

again I mean because it is a time is also a dimension. So, we could have in principle, we 

could have possibly modeled entire system using four dimensional finite elements, three 

spatial dimensions and one time dimension.  

But as you can appreciate the problem size increases exponentially from one dimension 

to two dimension, there is a steep rise in the problem size, number of variables. From 

two dimension to three dimension, it is almost with respect to N cube. And from three 

dimension to four dimensions including time also in the same finite element formulation, 

then the number of variables become huge. And practically I mean almost impractical 

problem to solve. 

So, what is done is we decouple these systems. And we first develop I mean it is a 

variable separable form. We distinguish this space variation with respect to space 

coordinates separate from variation with respect to time coordinate. And we model finite 

element use finite element to model the spatial variation.  

And for the and then we end up with this ordinary differential equation in time. And now 

this ordinary differential equation in time can also be used solved again using one-

dimensional finite element in time dimension. Because there is only one dimension left 



 

 

now in time so that can be those kind of finite element formulations can also be 

developed.  

But it so happens that one-dimensional finite element formulation in time provides 

results which are in many cases identical with those that we arrive by approximation of 

these time derivatives by finite differences. Finite differences, if you look at it, those are 

based on some simple application of Taylor series.  

So, at two different instants of time, so or it could be  t and delta t. So, i, so this is the 

time dimension. So, this is t i, and this is t i + 1 distance between them spaced delta t 

apart. So, what it means is t i + 1, so the value two different values are two adjacent time 

instants divided by the time interval between them, so that finite difference is an 

approximation to the derivative of the function. 

So, this actually comes from after truncating the Taylor series expansion at expanded 

around time t is equal to t i. Now, it can be done I mean this is of course, forward 

difference, we can have a backward difference, we can have central difference and so on. 

So, first order derivatives can be approximated, second order derivatives can be 

approximated. And then once we do that, then we find that these are derivatives would 

be replaced by displacements.  

So, the acceleration terms would be replaced by displacement components and delta t 

terms the time interval. So, eventually this differential equation will again be converted 

into an algebraic simultaneous equation which can be solved. So, we will come to that 

this is what we call as time marching scheme. We go from one time step to another time 

step and predicting solution starting from initial condition that is at time t is equal to 0, 

we keep on predicting motion at next time steps, so that is a what we call as time 

marching schemes.  

And we will discuss those numerical integration schemes in for the time dimension in 

separate lecture. But point here is, there is another thing that we need to analyze here. 

We have been referring to the importance of frequency or when it is important to model 

dynamic effects, and this concept of natural frequency has been recurring very often 

repeatedly. 
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So, all that if you recall the basic formulation that we had, so  over . So, this is 

omega n that is the natural frequency of this structure; omega bar is the excitation 

frequency. So, how do I find or what is this what do we mean by natural frequency of 

structure? And how can we find it, what is the, what is the way to determine it?  

One way is of course simple pendulum if you recall that experiment in physics, simple 

experiment in physics, we actually compute the I mean measure the time taken for 

complete oscillation, and that becomes the natural period. And inverse of that is the 

natural frequency that is how we calculate experimentally. 

But that kind of experiment cannot be performed for every kind of structural system. So, 

what is it or under what conditions do we have those natural conditions or what we call 

as natural frequency. So, how do we determine natural frequency? One thing that we 

observe from this simple pendulum experiment is that this motion of the pendulum is a 

very special kind of motion.  

It is called of course Simple Harmonic Motion, SHM, but it is not just this motion of this 

bob. Every single point in this simple pendulum system executes simple harmonic 

motion of the same frequency, because every point on this thread as well as bob reaches 

the extreme position simultaneously it will cross the mean position at the same time, and 

it will reach the every single point will reach the other extreme position at the same time. 



 

 

So, this is what we have it is not just SHM, it is synchronous SHM. Every single point 

executes simple harmonic motion of the same frequency in phase right, synchronous 

simple harmonic motion. So, we try to ask ourselves this question, is it possible for the 

system to execute synchronous simple harmonic motion? And for that, we ignore the 

damping term just to make it simpler as it is. As I said damping is a very, very negligible 

very, very small quantity, so that can be neglected. 
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So, we look at what we call as free vibration problem because in the simple pendulum 

oscillation, there is no external force acting on it. It is just initial disturbance. And after 

that, the pendulum oscillates, so that is a free vibration. And during the free vibration, it 

is like natural instincts, I mean, if you are left free, then your natural tendencies come 

out.  

And it is the same thing in the vibration. So, if the structure is allowed to vibrate freely 

on its own accord, it reveals its character. And that character is what we refer to as 

natural frequencies and how it vibrates. So, free vibration, so free vibration problem, we 

define it as M. So, there is no excitation force. So, there would be initial disturbance and 

that is all. After that the system will be allowed to vibrate on its own.  

So, we examine under what conditions does the system execute synchronous simple 

harmonic motion. So, what is synchronous simple harmonic motion? If u (t) that is the 

displacement nodal values of displacement, so I define this as so let us say some 



 

 

amplitudes because in the simple pendulum experiment also if you see every point 

execute simple harmonic motion, but the amplitude is different.  

So, this ɸ is the vector of amplitude of different points different nodes in this structure 

may execute simple harmonic motion with different amplitudes, but their time variation 

would be of the same frequency ω. So, , so that is a harmonic motion. So, it is an 

harmonic of omega. 

So, under  what condition will this admit? So, it can be either sin  or cos whatever. 

Time t is variable from 0 to infinity, it can be anything. 

So, this term obviously cannot vanish. ɸ is an arbitrary vector, I mean if it ɸ is a 

absolutely if ɸ is null vector, then again it represents trivial solution that is no motion is 

happening nothing is moving at all system is at rest, so that is not of interest to us. We 

are looking for oscillatory motion response, so ɸ cannot be 0. So, the only way this 

equation can hold is when this becomes singular, coefficient matrix becomes singular, 

and that is when determinant of K - M is 0.  

And this is what we call as characteristic polynomial because characteristic polynomial 

in , is a variable. So, this will be I mean if this is n/ n if there are total number of n 

number of degrees of freedom or the size is let us say matrix K is n by n, M is n by n, 

then this is going to be nth degree polynomial in  this determinant is equal to 0. So, 

this is going to be nth degree polynomial in . And the roots of this polynomial are 

referred to as the eigen values.  

Eigen is the German word for character. So, those are the eigen values, and the positive 

square root of those eigen values that will be the natural frequencies of the system. So, 

the idea is the solution, the answer to this question is under what conditions does the 

system execute synchronous simple harmonic motion?  

The answer is there are a few discrete frequencies which are roots of the characteristic 

polynomial, positive square roots of the roots of characteristic polynomial at which such 

synchronous simple harmonic motion is possible. And for each frequency, there would 

be corresponding set of amplitudes. Now, that would be proportional. 

So, if ɸ is an amplitude vector, corresponding amplitude vector of simple harmonic 

motion, any constant multiple of phi is also an admissible amplitude vector because they 

all move proportionately. So, this is referred to as solution of this is referred to as eigen 



 

 

value problem or the algebraic eigen value problem. And this has tremendous 

applications in the different fields of science and engineering, solution of algebraic 

eigenvalue problem. 

This is if I write in this form general form this is equal to A x = λB x. So, here lambda is 

referring to , and x is referring to this vector ɸ right. So, this is what we call as 

generalized algebraic eigenvalue problem. The standard form is just A x is equal to λ x, 

when matrix B is identity matrix. 

So, in this, in the structural dynamics problem, we have stiffness matrix as one matrix 

and mass matrix as another matrix. So, together they form a generalized eigen value 

problem. And positive square root of the roots of these positive square roots of the eigen 

values are the natural frequencies they correspond to the natural frequencies of the 

system at which synchronous simple harmonic motion is possible. 

And those are also the frequencies at which resonance can happen. So, the excitation 

frequencies that is a very important criteria for dynamic design for dynamic effects. Try 

to design a system such that natural frequencies are as far as possible detuned or they are 

far removed from the excitation frequencies. If we can do that that will lead to 

considerable savings in engineering design. 

So, we stop here and we will discuss more on how to solve this algebraic eigen value 

problem. The problem itself is a very vast and very vast problem, and different types of 

eigen value problems and there are different algorithms for doing that. And we will try to 

understand it more how to solve this eigen value problem numerically and in an efficient 

manner more efficient methods of solving algebraic eigen value problem. 

One thing is with any numerical technique the definition of a concept is almost never a 

good algorithm to compute. So, this eigen value computation is never done by trying to 

find the roots of this characteristic polynomial. This is only for the purpose of definition. 

The computation is entirely different ball game. We will deal with it in our next, I mean 

after a couple of lectures. 

Thank you. 


