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Hello friends.  So, we were discussing about the deformation and idealization for the

deformation  of plate  elements  plate  plates  and how we approximate  the deformation

within the plate by virtue of deformation of the mid surface plane and thereby reducing

the 3 dimensional problem into a 2 dimensional problem by neglecting the variation of

the deformation with respect to  thickness normal  deformation  transverse deformation

with respect to thickness direction. 

So,  the  deformation  I  mean  the  Kirchhoff  constraint,  I  mean  vanishing  shear  strain

constraint imposes that mandates the requirement that the plane section rotations they are

same as the slope of the deflected slap deflected curve deflection curve normal deflection

curve.
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So,  ∂w
∂ x

=−θy  that is rotation about the y axis and similarly  ∂w
∂ y

=θx that is the

rotation about X axis. And that imposes I mean this equality imposes the constraint of

vanishing shear strain. 



So, once we have this vanishing shear strain then because of these deformations rotation

of the about the axis section rotations about the individual axis x and y there can be axial

deformations just as I mean theta y rotation about theta y will lead to deformation along

stretch or compression along the x direction. 

Similarly rotation about X axis will involve extension and compression about along y

axis. And the extent of extension and compression will be proportional to the distance

from its surface.
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And that  is  what  is  given  I  mean  this  is  similar  to  what  we have  in  case  of  Euler

Bernoulli beam, this axial strain is proportional to the distance from the neutral axis and

we can have compression above neutral axis and tension below neutral axis in case of a

sagging moment. And similar kind of geometry is defined for plate accept that it will be

now in 2 dimensions. 

So, we have z×θ y that gives the deformation along x axis that is u component and v

as a function of x, y, z that will be  −z×θx  rotation about the x axis. And if we

substitute  from the Kirchhoff constraint  these section rotations  can be represented in

terms of derivative of the deflected shape. 

And that is how we have this deflection uniform u component displacement proportional

to  derivative  partial  derivative  of  deflected  shape  and  similarly  v  component



displacement is proportional to partial derivative of w with respect to y. Now once we

have this u and v displacement along x and y direction now; obviously, this can be this

deformation  field  can  be  represented  in  terms  of  can  be  transformed into  strains  by

standard definition. 

So, εxx  direct strain is given by partial derivative rate of change of u with respect to x

and that gives us relationship I mean relates it to the curvature of the flexure of plate.

And similarly εyy direct strain along y direction so that is also related to the curvature

and then we have shear strain. So, that is ∂ u
∂ y

+∂ v
∂ x

 and that is related to 2 z ∂2w
∂ x∂ y

.

And then there are normal strain along z direction because the variation of w along the

thickness direction has been assumed to be 0 so ∂w
∂ z

rate of change of w with respect

to z is 0. And then the shear strain vanishing shear strain that directly follows from the

Kirchhoff  constraints.  So,  transverse  shear  strains  are  0 implying  that  corresponding

shear stresses should also vanish for an isotopic and elastic plate.
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Obviously shear strains are 0. So, shear stresses should also vanish; however, because

there  is  transverse  load  on  the  plate.  So,  where  the  how  does  how  do  we  get  the

equilibrium, what is there to balance this transverse load? So, there this transverse load



on the normal surface has to be balanced by the shear forces shear stresses in the plate,

that is how the vertical equilibrium will be held. 

So, shear stresses cannot be 0 and this apparent dichotomy can be resolved by assuming

by the limiting case that it is infinitely rigid in shear and that is again similar thing we

also experience in case of Euler Bernoulli beam, there is shear strain there is no shear

deformation yet we have shear forces there and that is resolved by considering the shear

rigidity to be infinite.
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So, these are the stress resultants in a plate, simple I mean these are all the forces that can

exist and based on these stress resultants we can impose by considering the equilibrium

of  forces.  I  mean  force  equilibrium  and  moment  equilibrium  we  can  develop  the

governing equation. 

So, now, they we discussed that the strains are always in plane, out of plane strains are as

0 εzz  is 0 and shear strains in yz and zx planes are 0. So, that corresponds to a state of

plane strain; however, plane stress condition is more closer to observations. The results

predicted  by  plane  stress  model  is  actually  has  a  better  agreement  with  what  we

observed.

But; obviously, it cannot be plane stress because there is the normal surface is not free of

traction. So, normal to thickness direction we have forces here. So, it is not really plane



stress  condition  ideally  speaking.  So,  the  problem  is  this  is  resolved  by  neglecting

Poisson’s effect and also assuming plane stress conditions to prevail over each laminar.

So, each layer we consider the flip plane stress conditions prevail. 

So, normal loading and distribution bending of plate leads to the distribution of stresses

and stress resultants as we show here in this sketch and using these distribution of stress

resultants we can now establish the equilibrium equations. So, the bending moment these

moments they are related to the stresses here respective stress components. 

(Refer Slide Time: 09:18)

So,  these are  the stress  stresses and these are  the stress  resultants  that  we have.  So,

bending moments stress resultants per unit  length are obtained from the integration I

mean the of the stress field with lever arm z and integrating over the thickness and we

get the M_xx and M_yy and then twisting M_xy and M_yx. 

And once we impose the moment equilibrium we will see that I mean that is from the

standard mechanics continue mechanics point the complimentary shears should be equal.

So, M_xy by corollary M_xy would be equal to M_yx because  τxy  is going to be

equal to τ yx .

So,  although  the  deformation  is  considered  to  be  invariant  through  the  thickness  w

normal deformation of the plate the stresses; obviously, are not invariant through the

thickness of the plate and therefore, the plane stress assumption is not exactly valid, but



we resolve this problem by considering each lamina of the plate that is plane at constant

value of z to be in a state of plane stress as I mentioned earlier. 
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So, for an isotopic plate, isotropic medium we can relate stresses to strain using plane

stress I mean so this  is where plane stress assumption comes in for plane strain this

matrix would be different. So, we as we said plane stress conditions are have a better

agreement  with  what  we  observe  in  during  experimental  studies  experimental

observation and therefore, we stick to plane stress assumption.

So, this is the constitutive matrix for plane stress model and once we relate these strains

to the curvatures. So, we can relate these stresses to curvature and then stresses can be

transformed into moments as we discussed earlier there is a stresses relate to moments.

So, we can have moment curvature relationship in terms of the constitutive matrix. 

Where now this D is a isotropic plate rigidity so Eh cube. So, again here you see similar

to what we have in the case of being flexural rigidity. So, that is depth appears as a third

power. So, here also h appears as the thickness appears in the third power. So, and that

gives us I mean thickness is important it has to have just having thickness dimension to

be small very small compared to a 2 other dimension is not enough. 



For a 2 dimensional entity to behave as a plate it is required that it should have sufficient

flexural rigidity or plate rigidity and that is governed by this term Eh cube. So, there is

some bit of thickness is required and of course, the Young’s modulus.
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So, maximum stresses can be obtained by evaluating these at values of z = + or - h / 2

and they can be related to the moments.  And maximum minimum values of stresses

occur  at  the  plate  surfaces  and  these  relations  are  of  course,  useful  for  design

calculations.  Once  we  have  the  moment  then  we  can  simply  find  out  what  is  the

maximum stress of respective stress I mean direct stresses and shear stresses.

So, transverse shear stresses they are maximum at the mid surface I mean in zy plane and

zx plane and they vary through the thickness.
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And once we integrate these transverse I mean we can find the resultant transverse shear

forces and they can be represented as representative value of a scale down of maximum

shear stress and that would be multiplied by thickness and two third of that; that is what

it works out. So, these are again transverse shear forces that are going to be used for our

equilibrium equations. 

So, contribution of transverse shear is ignored in Kirchhoff plate  bending theory and

therefore,  shear stresses transverse shear stresses should be very small  in comparison

with  the  bending  stresses  that  actually  govern  the  behaviour.  So,  existence  of  finite

transverse shears in spite of vanishing transverse shear strain is reconciled by assuming

infinite shear rigidity as I mentioned earlier.
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And  then  once  we  impose  this  vertical  and  vertical  force  equilibrium  and  moment

equilibrium then we lead to we are led to 3 equations for these 3 vertical equilibrium and

moment equilibrium. And then we can eliminate Qx and Qy from these equations and

combine all of them to get one equation in terms of combining all moment components

and including transverse load as well as the inertia term.

(Refer Slide Time: 15:37)



In  operator  form we can  relate  these  two moment  and curvatures  moments  and the

applied  forces,  and  where  this  nabla  is  the  just  the  gradient  vector  and  L  is  the

differential operator involving curvatures defining curvatures.
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So, far we developed it for edges plate edges oriented along the frame of reference. So, x

and y coordinate axis I mean if the plate dimension plate edge is oriented arbitrarily for

any arbitrary orientation  where the plate  edge is  defined by normal  n and tangential

direction s. 

So, they can be related to Mx and the moments and shears along defined along x and y

by suitable resolving and using the direction cosigns of these normal and the moments

normal to the normal and torsional moments they can be related to the moments M x and

Mx and Mxy. And similarly, Qn can be related to Qx and Qy using the direction cosines

of the normal.

And the Cartesian derivatives can be related to similar to the Jacobian transformation,

Jacobian of the transformation using that Jacobian of the transformation the Cartesian

derivatives can be related to normal derivative and tangential derivatives.
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So,  eventually  we come with the governing differential  equation  in  terms of  normal

deflection of the plate and that if we substitute for moments in the moment equilibrium

equation  then  moments  are  proportional  to  the  curvature.  So,  that  is  second  order

derivative of normal displacement or transverse displacement. So, that is so in terms of

displacement it becomes a fourth order differential equation.

So, this is the governing differential equation and D is as I said it is the isotopic plate

rigidity. Now, in order to define develop the I mean this is the finite equilibrium equation

for the plate bending problem, in order to develop the finite element for finite element

model for this problem it is first necessary to identify what are the primary variables and

secondary variables and for that we develop the weak form of this governing differential

equation. 

So, it is as we know it is a 2 dimensional equation variations with respect to x and y. So,

we define the weighted residual statement w is the weighting function and we take the

weighted residual statement put it to 0 integrate it over the x y domain and again using

divergence theorem it  can be the boundary term and the differential  equation can be

transformed and a boundary term can be developed.
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And the derivatives can be transferred. So, we have 2 boundary terms so that will have

two derivatives being transferred to the waiting function terms. And eventually we will

have only the highest order of spatial derivative as 2 in the entire equation in this weak

form. 

So, the highest order of spatial derivative is 2 Mx Mxy again it is the highest order is 2

Mxx is proportional to the curvature. So, that which is the second order derivative again.

So,  and  then  the  boundary  terms  there  are  how many  boundary  terms.  So,  we  can

identify  3  primary  variables  here.  So,  ∂w
∂ x

and  ∂w
∂ y

so  these  are  the  weighting

function terms in the boundary term.

So, the appropriate  primary variables  would be the normal  displacement  along the z

direction so that is ∂w
∂ x

 so that is the deflection I mean slope of the deflected shape

along x, then ∂w
∂ y

that is that will be slope of deflected shape along y so that would be.

So, these 3 are the primary variables that we can identify and corresponding to that we

have secondary  variable.  So,  this  is  the  transverse  shear  and these  are  the  moments

corresponding moments corresponding to the respective rotations.
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So, this is what eventually we have by substituting for that moment and in terms of

moment  curvature  relationships,  and  we  now  have  second  order  derivative  spatial

derivative that is highest.
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And  we  can  identify  we  can  again  transform these  into  normal  and  tangential  and

combine the terms. So, we can have normal derivative and tangential derivative and Qx

Qy can be combined to become Qn, Mx Mxy can be combined to become Mnn and

similarly Mns. So, torsional and direct rotation.
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So, again we can use operator form to reduce for a compact representation of the this

domain integral.  So, that is the compact representation of domain integral and this is

boundary integral and from boundary integral we can this is the constitutive matrix D is

related  to  plate  rigidity  and  plane  stress  model.  So,  three  primary  variables  can  be

identified from the boundary term. So, that is the normal deflection w and 2 orthogonal

rotations so that is ∂w
∂ n

and ∂w
∂ s

.

So, either  ∂w
∂ x

and ∂w
∂ y

in case the plate is oriented along x and y direction or in

any arbitrary orientation it is better to refer to del n normal and tangential derivatives. So,

essentially 3 primary variables and corresponding 3 secondary variables, but we should

realize  that  it  is  a  fourth  order  differential  equation  and  a  fourth  order  differential

equation should not have 3 pairs  of primary and secondary variables.  The maximum

primary variables and secondary variables should be only 2. 

I mean you can relate it to what we have in case of Euler Bernoulli beam it is also a

fourth order differential equation, but we only have 2 primary variables and 2 secondary

variables. So, it so happens that these three conditions are not really independent so they

can be reduced to just 2 independent conditions.
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So,  this  integral  can be defined as  again integrating  this  in  the boundary integral  as

assuming A and B are the points. So, if I integrate it along this boundary A to B then this

is what it becomes by again using the divergence theorem, and then this is the boundary

term and this is the evaluation of these limits.

And if it is a circular disk I mean smooth geometry then this evaluates to 0, it will be

both the points will converge and they will the derivatives these normal Mns would be 0

at individual I mean this difference would not turn out to be cancel each other, but for

plates with sharp corners this will not in general cancel out.

And that will lead to what we have as unbalanced shear force at the corners and that will

lead to lifting up of the corners. So, in case of rectangular geometry plates if it is simply

supported  then  we can  see  that  knife  edge support  then  we can  actually  see  this  in

response to applied load in the middle the edges they tend to lift up. So, that is because

of the unbalanced shear force that we have here at the boundaries and that is called free

edge condition. 

So, this is this problem or realization that these 3 boundary conditions that we have from

the  weak  form they  are  not  really  3  boundary  conditions,  they  are  not  independent

boundary conditions, but they are related to each other and they can be reduced to 2

independent boundary conditions and this is called Kirchhoff free edge condition and

that is that results this dichotomy.



So, then using this constraints so the boundary conditions can be resolved into 2 parts

and we have normal effective transverse shear and then effective moment.

(Refer Slide Time: 26:20)

And then we have just two primary variables if you look at it in this form so transverse

displacement and the rotation normal about the normal. So, that is about the theory about

plate bending theory and now we look at what is the issue here. So, as it is the equations

are rather involved and it becomes one thing that we have been consistently arguing all

along  that  plate  is  essentially  an  extension  of  beam  in  another  dimension  I  mean

horizontal extension of beam. 

So, a natural thought process would be probably it should be possible to derive finite

element  formulation  in  the  way  similar  to  Lagrangian  for  interpolation.  We  have

interpolation model for one dimensional beam and let us say along x we can also have

similar model for beam spanning in y direction and just have a product of these two

terms and we should have interpolation model for xy plane flexural model for xy plane. 

Just  as  we  do  for  Lagrangian  interpolation  we  have  Lagrangian  interpolation  1

dimensional  Lagrangian  interpolation  in  along  x  we  have  1  dimensional  Lagrangian

interpolation  along  y  and  multiply  these  2  and  we  get  the  desired  Lagrangian

interpolation for C0 continuity for 2 dimension xy dimension. So, in this case of course,

we need C1 continuity because the primary variables are the derivatives first derivatives.



So, c 1 continuity we have beam elements cubic Hermation polynomials along x along y

multiply them.

So, that was the first attempt at development of finite element model, but unfortunately

that does not succeed, very soon it was realized that this is not possible because it cannot

I mean this product term it cannot model constant curvature state. So, constant curvature

that is second order derivative. So, that is what we have similar to the constant strain

condition in case of flexure problem.

So,  constant  curvature  state  cannot  be  maintained  by this  product  of  cubic  Hermite

polynomials in 2 dimensions. So, cubic Hermite along x multiplied by cubic Hermite

along y so this product function it does not ensure the constant curvature state. So, that

way I mean if we cannot model constant curvature then; obviously, it is not suitable that

kind of model is not suited for developing a finite element model. 

So, how do we develop finite element model and what do we how do we go about it we

will discuss in our next lecture.

Thank you.


