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Hello friends. So, today we start a new topic on very interesting and exciting field for

Development of Finite Element Method that is how to model the problems related to

Plates and Shells. As you know, plates and shells, they form very very important parts of

structural system ranging, I mean spanning across different disciplines starting from civil

engineering systems, I mean roofs and shelters to the flanges of aircrafts and so on.

And these are all of course, have tremendous applications, I mean interest in industry.

And not  surprisingly this  topic  has experienced or has witnessed massive amount  of

research effort in trying to develop the theory for finite element analysis, finite element

model for the solution of plates and shells. And one reason is of course that the problems

are not so trivial or not so simple as earlier problems that we have been dealing with.

And we will see why that is so.

And  in  the  order  of  difficulty,  plates  have  present  their  own  set  of  difficulties  of

peculiarities in modeling that need to be considered. And shells add another dimension

of complexity by virtue of its geometry, and that has its own set of peculiarities that need

to be accounted for in the modeling.

And sometimes, it is possible to get reasonably good approximations reasonably good or

acceptable degree of accuracy in the computed solution by using some of the ad hoc

methods that we have seen to work very beautifully in the case of variational crimes. So,

that we discussed in our earlier discussions.

So, before we begin with the finite element modeling of plates and shells problem, let us

first  discuss  about  the theory of plate  bending,  and shell  behaviour,  and what  is  the

difference between plates and shells and how they are different from the other structural

systems or other continuum mechanics models that we have discussed so far.



So, first as I said the geometry and kinematics, they play an important role in the theory

of plates and shells. So, a simple example that is representative of what we are dealing

with.
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So, what do you see in this is that, it is a two-dimensional extent in X-Y plane, in this

case.  The dimensions  are  very  large  compared  to  the dimension along the  thickness

direction, and so, in that respect it seems more close to plane stress kind of situation that

we had discussed earlier in continuum mechanics problem. Thickness direction is very

small compared to the other in plane dimension in X-Y plane.

But, the difference from plane stress conditions is that the loading is normal to the plane

whereas, in plane stress condition, the normal to surface loading was 0, the surfaces were

free of traction. So, that is the main feature, distinguishing feature of this plane plates

problem.

So, more formally the plates and shells can be conceived as two-dimensional extensions

of beams and arches. So, in one-dimensional, what this purpose of beams is to withstand

the normal loads or transfers to the axis, load supply transfer to the axis. They withstand

that by virtue of primary predominantly by virtue of flexure. 



And similarly, arches there are special forms which again withstand the loads normal to

the span of the arches span direction. And the mechanics of resistance is not so much

bending as it is through the axial thrust in the members.

So, these are all used to support loads normal to the surface. So, plates and shells, they

can just stretch, I mean stretch beam to across the Y direction and stretch arches across

the Y direction, and we get plates and shells. A distinctive feature of plates end shells is

that the thickness dimension is much smaller than the other two-dimensions as we saw in

during this discussion.

And the difference in plates  and shells  is  that,  in  plates  the resistance mechanism is

primarily  flexural  and some shear  deformation,  whereas,  for shells,  it  is  primarily  in

plane  or  membrane action.  Just  as  in  arch,  if  it  is  an arch then this  load is  actually

withstood by the axial thrust in the arch members.

So, it is the same thing as in the case of in the case of shells. The primary acts structural

action is that of in plane or membrane action and that is what it distinguishes it from

plates. But geometrically they all both of them share this common feature that thickness

direction,  dimension  along  thickness  is  very  small  compared  to  the  other  two-

dimensions. And of course, shells have curvature, plates do not.

And  modeling  is  based  on  certain  kinematic  constraints.  Just  to  make  life  simpler,

because of this small dimension small along thickness direction, it is possible to make

certain simplifying assumptions and that allows us to develop simpler theories which

will allow us to model less using smaller number of variables and the problem can be

solved in a more reasonable or small number of variables, and the number domains can

be represented using smaller number of elements.

So, that is the primary reason for using the plates and theories for plates and shells, so

that certain kinematic assumptions can be imposed on the displacement field, and that

leads to reduction in the number of variables.

So, since thickness is very small in comparison with the other two-dimension, the out of

plane deformations are assumed to be invariant throughout the thickness. So, that is the

first assumption. So, the normal to the surface, the deformations, they are assumed to be

same at each lamina. If we consider divide this entire thickness into as several laminates,



then each lamina has the same deformation, so that continuity, I mean there is no void or

no gaps in between during the process of deformation. So, if it was a homogeneous solid

plate and during after the deformation it remains homogeneous solid plate and that can

only happen when the normal to surface deformation is same across the thickness.

So, continuity of the medium is maintained. And this allows development of a working

model for the strain field with reference to the out of plane deformation of the mid-

surface. So, now, if thickness is, I mean is the deformation is invariant with respect to

thickness, then it is very convenient frame of reference to align the origin or the mid-

surface plane that is at  Z coordinate to be 0, that to be the reference plane.  And the

deformations are measured with respect to this particular reference plane at Z = 0.

So, this invariants of the deformation through thickness, effectively throws out the third

dimension and the entire problem can be modeled in a two-dimensional reference frame

as we discussed at Z = 0, the reference plane in, and that would be lying in the X-Y

plane.

And the material filaments, normal to the mid-surface. So, if this is mid-surface, and the

filam,  the normal  planes  to planes  normal  to  this  mid-surface,  we assume that  these

planes remain normal and straight after the deformation as well. During the deformation,

before deformation, during deformation, and after deformation.

So,  this  assumption  is  analogous  to  our  very  familiar  assumption  of  Euler-Bernoulli

beam flexure, that is plane sections, normal to neutral axis remain plane and normal after

the deformation. So, these mid filaments, normal to the mid-surface. They extend up to h

by 2 or - h by 2. So, half of thickness above and below the mid-surface.

And the bounding surface at these two at these extremes, half of thickness about the mid

surf mid-surface, and half of thickness below mid surface they are referred to as top

surface and bottom surface, respectively.

So, in case of a plate, I mean what we call as a plate the thickness is small, but not too

small in comparison to other dimensions.
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I mean for example, I would probably it might I mean this let us say handkerchief, right.

So,  in  this  case  two-dimensions,  they  are  very  large  compared  to  the  thickness

dimension, right. So, but this does not qualify to be called as a plate. This is not a plate,

because it has no flexural restraint, it has no flexure flexural capacity. So, this is what we

call as a fabric, right. So, this is a fabric. This is not a plate.

So, that is an important distinction that one needs to realize, and one needs to appreciate

that the thickness of a plate is small, but not too small. Because as we all know from the

our study of flexural bending of beams depth of the beam plays an important role in its

flexural rigidity the Young’s, the moment of inertia, I varies proportional to third power

of the depth. And that is what derives the flexural rigidity for the beams and same thing

happens for the plates.

So, thickness is important parameter. So, flexural rigidity is contributed by thickness and

also by the Young’s modulus of elasticity. No doubt. But, if thickness is too small, then

it  will  behave  as  a  more  as  a  fabric  and  not  as  a  plate.  The  predominant  mode  of

deformation  will  not  be  flexural  in  that  case.  And  plate  by  definition  is  a  flexural

member.
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So,  an extremely  thin entity  acts  like  a  fabric,  and has negligible  flexural  resistance

which  is  an  important  aspect  of  the  plate  behaviour.  So,  as  a  rough  guideline,  so

thickness to length ratio t by L varies from 1 over 100 to 1 over 5, where L represents the

general characteristic length of a plate element.

So, a plate like behaviour, what is it to call something as a plate like behaviour? So,

essentially the flexural deformations in response to the applied loads. Loads which are

coming which are being applied normal to the mid-surface, and they do not cause any

significant  changes  in  the  dimension  of  the  mid-surface.  Mid-surface  itself  remains

invariant. 

Similar thing, I mean exactly parallel to I mean you can always draw parallel with Euler-

Bernoulli  hypothesis.  Neutral  axis  is  one  which  does  not  change  length,  during

deformation, bending and after bending. So, this is what is happening in plates also. So,

replace neutral axis of being with mid-surface of the plate. The mid-surface does not

change in its dimension. 

So,  this  is  what  we call  as  in  extensional  bending.  So,  that  is  essence  of  plate  like

behaviour.  So,  it  is  a flexural  deformation which is  in  response to  the loads  applied

normal to the surface, but the mid-surface geometry, mid-surface dimensions, they do

not change appreciably. So, though those can be ignored. So, this is called in extensional

bending, and this is what is critical what is known as plate like behaviour.



So, it is inextensibility,  inextensional  only at  the mid-surface,  above mid-surface and

below mid-surface,  there  are  changes  happening,  right.  Just  as  in  the  case  of  beam,

neutral  axis  is  what  is  does  not  change  the  length.  Above  neutral  axis  there  is

compression,  below  neutral  axis  there  is  tension  in  case  of  sagging  moment  being

applied or concave curvature, the beam taking concave curvature.

So, if this is plate like behaviour, what is it to say a shell like behaviour? So, a shell like

behaviour is where the mid-surface undergoes significant stretch or contraction and that

is  called  extensional  bending.  I  mean  quite  naturally  because  as  we  said  shell

predominant  behaviour  is  membrane  action,  in  plane  action,  the  normal  force  is

converted into axial forces axial thrust in this member surface I mean the shell geometry

or arch members.

So, that will act axial forces they will of course, cause axial deformation. So, extensional

deformations would be there. So, a shell like behaviour is one where the bending action

is facilitated by extension or contraction of the mid-surface. So, that is what we call as

shell like behaviour.

So, now, we can have plates, let us start with the plates. We can have plates which are

which  can  be  thin  plates  or  thick  plates.  For  example,  I  mean  this  as  we  said  the

thickness can range from 100s of representative dimension; 1, dimension representative

length, or 2, one-fifth of the representative length. So, there is a wide range of thickness.

So, if to the other x, of one extreme we have very thin plates, and at the other extreme we

have thickness, which is slightly I mean one-fifth of length is not too much. It is not even

one order lower, I mean about there. So, again the it is similar to the difference between

slender beams and thick beams or deep beams. So, where the depth beam, depth is very

high very large depth.

So,  we have  what  distinguishes  deep beams from slender  beams.  That  is  in  slender

beams the Euler-Bernoulli hypothesis governs. That means, the shear deformation, shear

strains are 0, there is no shear distortion of the section. Whereas, in the deep beams the

difference  is  the  shear  deformations  are  no  longer  negligible  it  may  still  be

predominantly flexural, but shear deformations do account for significant deformation,

transfer displacement is contributed by shear deformations as well.



So, in that situation shear deformations cannot be ignored completely.  And the same

thing happens in case of thin plates and thick plates. In thin plates, shear deformations

are negligible, and those are ignored and in case of thick plates the shear deformations

are accounted for.

So, we start with theory of thin plates which is more popularly known as in popular

literature. It is referred to as Kirchhoff’s theory for thin plates. It is the same Kirchhoff

which give us Kirchhoff’s laws in electrical engineering circuit, network analysis. So, the

first  is  of  course,  assumption  similar  to  plane  section  remain  plane  before  and after

bending. So, mid surface material normal’s to mid-surface, before deformation remains

straight and normal to mid-surface after deformation.

And transverse shear is assumed to be negligible. So, again that is a condition which is

approximated by thin plates under small  deformation.  So, when small  this  transverse

shear is negligible, then that allows, I mean if we consider the transverse shear to be

vanishing, then it allows us to have a special constraint on the deformation.
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And of course, the variation of normal displacement with respect to thickness is 0. So,

there is no variation. So, along the z direction, it the transverse displacement w along z

displacement along z axis is invariant with respect to z. So, w as a function of x, y, and z

can be represented as just two-dimensional variation w as a function of x and y.



And plate thickness is uniform, so that three-dimensional stress effects are negligible,

and the plate is symmetric in fabrication about its mid-surface. So, that all the beautiful

symmetric geometry, similar triangles,  that we use for derivation of flexural formula,

these are, those are all applicable.
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So, the normal loads should be distributed on the plate surface area of dimension h or

larger. So, I mean again it is a the distributed load on the surface. It should not be just

one point that will lead to very heavy stress concentration and difficult to distribute it

because. And so, about the thickness extent of thickness, so the distributed normal loads,

distributed on the surface, they should be distributed over an surface area of dimension

let us say which is comparable to the thickness or larger than that.

So,  in  accordance  with  the  assumption  of  in  extensional  bending,  the  boundary

conditions are such that no significant extensions of the mid-surface can develop. We

will discuss more on the boundary conditions for Kirchhoff plate theory subsequently.

So,  now,  the  vanishing  shear  strain.  So,  there  are  no  shear  deformations.  So,  the

complete deformation field can be stated in terms of normal displacement of the mid-

surface that is given as a function of x and y. So, w as a function of x and y, and the

rotation of the mid-surface normal’s about X and Y. So, theta x and theta y. And once we

have theta x theta y multiplied by lever arm, so that gives us the deformation.



So, the point is when we define the rotations, section rotations, they give us the distortion

plane distortion of the cross section and that is what the shear strain is. So, we define.

Since, the we the basic assumption is shear strains are negligible or shear deformations

are negligible, we compute the shear strain and impose it to 0 by the definition.

So, γyz  and γzx , these are the shear strains, transverse shear strains in YZ and ZX

planes,  respectively.  And  the  shear  strains  are  given  by,  ∂w
∂ y

−θx ,  so  that  is  the

rotation of mid-surface normal about X axis and ∂w
∂ x

+θ y=γzx  and that is also equal

to 0. So, these are the constraints, shear constraints that we impose on the deformation

field. And based on this we develop the geometry.
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So, this is what the deformation field is. So, theta x that is the rotation. So, this double

arrow notation is when the positive sense is when the right-hand thumb points to the

direction of arrow, then the direction of curl of fingers is the sense of rotation. So, this is

theta x rotation, and this is theta y rotation, rotation about Y axis, if this is X plane X axis

and this one is Y axis.

So,  if  you  look  at  it,  so  theta  x  will  lead  to  deformation.  So,  this  represents  the

deformation of the ∂w
∂ x

, and the relationship, why the deformation strain, deformation



in ZX plane would be like this. So, ∂w
∂ x

 =  negative of θy ; rotation about Y axis.

And similarly, we can have normal to this axis, so along Y. And we can have similar

geometry which will define the constraint shear constraint for YZ plane.

So, how these deformations allow us to develop the governing differential equations of

motion starting from moment curvature relationships, and then relating it to strains, and

then two stresses, and from there we develop the equilibrium equation, we will discuss in

our next lecture.

Thank you.


