
Finite Element Method and Computational Structural Dynamics
Prof. Manish Shrikhande

Department of Earthquake Engineering
Indian Institute of Technology, Roorkee 

Lecture - 30
Finite Elements of Co Continuityin 2-D and 3-D- XII

Hello friends. So, we were discussing about solution of a bracket problem, plane stress

problem, steel bracket problem using Finite Elements. And we choose to discretize the

domain by using 4 elements of 3 elements of 4 node rectangle and 1 element of 3 node

triangle. 

And we saw how the mesh was discretized,  and the nodes, and what is the mapping

between the local node numbering and global node numbering within the element, and

how the displacements are interpolated once the coordinates are defined the of the nodes.

The interpolation  functions  can be derived.  And once the  interpolation  functions  are

available, they can be related to the derivatives.

(Refer Slide Time: 01:19)

So, the strain field and those derivatives the strain derivatives that these are essentially

the  derivatives  of  partial  derivatives  of  interpolation  functions.  Now,  these  partial

derivatives are completely defined when we specify the coordinates of the nodes. So, for

example, Ni is defined by as x - xj multiplied by y - yk divided by xi - xj by yi - yk.



(Refer Slide Time: 02:04)

Now, the first derivative is of course, a function of y and the denominator. So, just to tell

you,  so  
∂N i
∂ x

=
y− yk

(x i−x j)( y i− yk )
 .  So,  it  is  linear  in  y  and similarly  all  derivative

functions. So, N_i is essentially (x - xj) (y - yk) divided by numerator normalized at the

node (xi - xj), (yi - yk). So, derivative is simply this remaining expression.

This is completely defined the moment we have the coordinates of all these nodes in the

mesh. So, once we map these local node class identifiers i, j, k, and l, with the physical

actual node in the global mesh, then these derivatives can be evaluated readily by using

these coordinates.



(Refer Slide Time: 03:26)

And that is how the terms, respective terms, derivative terms in the domain integral these

are evaluated. So, ∂u
∂ x

 will be defined by similar shape function derivatives, and once,

because those are already defined in terms of nodal coordinates for each node, for each

element the. And this is of course, the waiting function that will keep on changing W can

be either N, Ni, Nj, Nk, Nl in succession.

So,  again  the  derivative  is  defined  in  terms  of  the  coordinate  functions,  coordinate

variables, nodal coordinates. And this expression then can be evaluated with respect to x

and y. So, domain integral and the this entire expression will be known as the stiffness

matrix of the problem.

So, this is the approximation within the element of any rectangular element, or for that

matter even for triangular element, the only difference is the number of variables nodal

variables and the size of this matrix N. Other than that, there is no difference between the

this  representation  of  displacement  field.  Of  course,  this  expression  of  interpolation

function  will  be  different  for  in  the  case  of  rectangle  and  for  from the  a  triangular

element.



(Refer Slide Time: 05:05)

So, for a triangular domain the interpolation functions can again be given in terms of

nodal coordinates, as we had seen during this during our discussion of triangular family.

So, Ni the interpolation function for ith node that we have, this is the ith node location in

the local node numbering for element.

So, this is defined in terms of coordinates of node j and node k, as (xj yk) - (xk yj), +, (yj –

yk) x. So, this is the coefficient of x and xk - xj multiplied by y. So, that is the coefficient

of y and the entire thing normalized by twice the area of triangle. So, this is the twice

delta is the determinant of the coordinates 1 xi yi, 1 xj yj, 1 xk yk. So, that determinant of 3

by 3 matrixis the; is equal to twice the area of the triangle enclosed by these 3 nodes.

So, similarly we have by cyclic permutation,  we can had derive the interpolation for

node j and node k, and you can see wherever we have j for the ith node interpolation that

is replaced byk for j’s node interpolation and so on. So, cyclic symmetryis holds in this

case.

So,  the  approximation  of  the  displacement  field  within  triangular  element  is  again

similarly  given  by  shape  function  matrix  multiplied  by  the  displacement,  nodal

displacement.  The  interpolation,  the  strain  field  is  again  same  differential  operator,

operating on the interpolation function. And because this is all of them are first degree

polynomials. 



So, the derivatives are constants. So, this strain field is constant over the entire element.

So, εxx  is constant over the entire element, εyy  is constant over the entire element,

and  similarly  γxy  is  also  constant  over  the  entire  element.  And  hence  the  name

constant strain triangle or CST that is often used for in place of 3 node triangle element.

(Refer Slide Time: 07:39)

So, in order to establish the element level equilibrium equations, we need the constitutive

matrix D for plane stress conditions, what are referred to as coefficients d11, d12, d33,

etcetera. So, these are the coefficients of those constitutive matrix.

So, these are coefficients are of course, going to be different for plane stress conditions

and for plane strain conditions. But for the once we idealize, once we consider, once we

reassure  ourselves  that  the  problem  that  is  being  dealt  with  is  consistent  with  the

assumptions  of  plane  stress  conditions,  then  the  constitutive  matrix  for  plane  stress

condition which is given by this is can be derived in terms of the element properties that

is Young’s modulus and Poisson’s ratio. And this is the constitutive matrix for plane

stress conditions.

We will also in this particular case because the loading conditions, they are constant,

they are not changing with time. So, there are inertia terms are not significant and we

will drop these acceleration terms, right. So, integral of W times ρ ü . So, this is the

acceleration term. So, these are the inertia terms that define the govern the dynamics of



this system, if the loading, if the system is subjected to rapidly changing loads or time

varying loads.

Since, in this particular case we are not looking at time varying loads, so this calculation

will not be required, otherwise this can be computed in the same way as other domain,

other  domain  integral.  The  only  thing  that  is  being  implicit,  that  will  be  implicitly

assumed is the where, while in this part in this particular expression, we are looking at

approximation of the displacement. 

In this particular term, requires consideration of the variation of acceleration, how are we

going, how are we approximating variation of acceleration within the element domain,

right. So, we will revert to this return to this particular point after discussion of this static

problem.

So, we ignore the dynamic effects. So, since the loads are static. So, now let us look at

the formulation of element level equation.

(Refer Slide Time: 10:35)

We take  element  number  1  defined  by 2,  5,  4,  1;  2,  5,  4,  1  as  the  element  of  our

discussion. Process is exactlyidentical for all the elements. So, we will only refer to this

in this discussion. Step by step process for all the elements and in going through the

entire every single step, you can see in the solved example in the book that we have my

book on finite element and computational structural dynamics. 



So, I will not repeat the entire, I will not go through the entire series of calculations for

all the elements in this discussion for paucity of times, because of paucity of time. So,

the element stiffness matrix can be defined, I mean the all the equations that we have

here, if I collect all these terms arrange it in matrix form, I will end up with equation of

this type. 

So, B transpose that is again derivative of the interpolation function. If you recall, strain

displacement matrix involves derivative of the interpolation function and since we need

to multiply, our weighting function is del v shape function by derivative of the weighting

function multiplies with all of these terms. So, that is related to the strain displacement

matrix again for Galerkin formulation and that is what we use.

So, essentiallyit boils down to expression of this type evaluation of expression of this

type B transpose DB. So, B transpose is the strain displacement matrixin the case of

borrowing the terminology from solid mechanics, D is the constitutive relation matrix,

and  B is  the  again  strain  displacement  matrix,  and this  is  to  be  integrated  over  the

element domain. 

So, element domain is this entire element domain which is bounded by range x ranging

from xi to xj and y ranging from yj to yk, right. So, these are the domains, and this is

what omega 1 ranges from xi to xj, yj to yk, or yi to yk, does not matter. So, yi and yj

they are identical. So, it  really does not matter whether I use yi or yj. It is the same

coordinate so yi to yk.

And  within  this  integral,  within  this  domain  this  these  are  to  be  evaluated.  In  this

particular  case,  the  element  is  the  directions  are  oriented  along the  are  parallel,  the

element  edges  are  parallel  to  the  coordinate  direction.  So,  these  integrals  can  be

evaluated very easily or straight forward manner and eventually the 8 by 8 symmetric

matrix  terms  can  be  evaluated  individually  as  this.  So,  these  are  some  of  the

representative evaluations that come out.

So, this is of course, E over 1 - ν2  is from the constitutive matrix D, and rest of the

terms they are coming from the product of B transpose DB individual elements that they

come. And this is the superscript, 1 refers to element number 1, and subscripts they refer

to the dimension. So, there are total 8 by 8 matrix, so 64 elements. So, the k 11 refers to

element in first row and first column for the element stiffness matrix.



And similarly,  I mean all  these elements element by element evaluation can be done

because all these interpolation function derivatives, they are known once the coordinates

of these nodes are known and then they can be evaluated. These are one-dimensional, I

mean linear functions of x and y, and these can be evaluated in, and the integral, definite

integral can be evaluated.

(Refer Slide Time: 15:29)

And this is the final integral that stiffness matrix that we have for element number 1. And

this scaling factor that we have is based on this Young’s modulus and the thickness t of

the element and Poisson’s ratio nu square. So, this is equal to 1.31 x 109 N/m, multiplied

by this coefficient matrix 8 by 8 coefficient matrix. So, that defines the stiffness matrix

for element 1. 

Once we are done with this, then we move to the domain integral, the load vector. So, we

are done with this. Now, we need to look at what is the body force component. So, what

are the nodal equivalent of these? So, if you look at it essentially this looks like a, this is

essentially the work done work equivalent. 

So,  what is  the work; so, that the work done by these forces in moving through the

displacement should be same as the work done by the nodal forces, what are we putting

and the nodes, and that the work done would be same as work done by the nodal forces

in moving through the nodal displacements with primary variable of that node. 



So,  that  is  what  is  evaluated  it  simply  n  f(x),  x  component  of  the  body  force  and

evaluated over the in domain integral domain interval.

(Refer Slide Time: 17:18)

So, this is what the nodal forces will look like, evaluation of nodal forces. So, waiting

function multiplication is represented by NT f. So, f is the vector of nodal forces. In this

case,  there  is  no  body force  in  the  along  the  x  direction,  but  there  is  a  body force

component along y direction that is self-weight, and that is referred to here as rho times g

per unit volume. 

So,  rho  is  the  density  and -  sign  because  weight  acts  vertically  downwards  and the

positive sign is assumed upward as the positive y direction. So, this is the body force

component along x and y direction, and when we multiply this with the weighting weight

function  matrix  or  the  interpolation  matrix  to  represent  the  weight  function

multiplication, domain integral. 

And then,  evaluate  it  along the  domain  xi  to  xj  and yi  to  yk,  we end up with this

expressions, that you can check and straightforward manner. And once we substitute the

values for all of these coordinates and for element number 1, and thickness and values of

rho and acceleration due to gravity g, we get this vector for the element forces as this in

terms of I mean Newtons, so many Newtons. 



So, essentially equally distributed at all the nodes. So, 1.76 Newton downward at all the

4 nodes.  So, that is the gravity load self-weight.  So, that takes care of the boundary

domain integrals in this case. So, this particular integral, both of these in both of these

equations they are taken care of, accept this inertia term which we are dropping because

acceleration is deem to be insignificant or negligible.

(Refer Slide Time: 19:51)

What remains now is this boundaryintegral. How to evaluate these boundaryintegrals?

And these boundaryintegrals are again evaluated by segregating the boundaries, looking

at each boundary at one time. So, this is gamma ij, the boundaryintegral is evaluated in

counter clockwise direction, and in this particular case this boundaryij is common with

the boundary for kl for element two. So, the those boundary terms would get cancelled.

Similarly,  if this boundary term along this edge will get cancelled with the boundary

term, similar boundary term coming from element number 3, and 1, 2, this boundaryit is

of course, the essential boundary specified. So, Neumann boundary condition does not

apply here. So, there will be reaction. So, though those reactions are unknown. And this

is of course traction free. 

So, boundary 4, 1, which corresponds to kl which coincides with the problem boundary

the  original  boundary  of  the  original  domain.  So,  we  only  need  to  evaluate  the

boundaryin along this edge 4, 1, right. All other boundaries conditions are not really

required to be evaluated, but nevertheless we will explain the process, how it is done. 



So, together the rectangular element, there are any rectangular element is defined by 4

boundaries. So, γij , γ jk , γkl , and γlk , and again these are the order I mean

the node numbering is the order in which we are moving. So, counter clock wise, i to j, j

to k, k to l and from l to i, ok, fine. So, this one should be li not lk. So, that is a typo of

here. Pardon for that error.

And  this  subscript  one  refers  to  element  number  1.  So,  for  element  number  1  the

boundary along the edge ij, for element number 1 boundary along jk edge, for element

number 1 boundary along kl edge, and so on. So, that would be given byintegral. Again,

thickness  is  of  course,  constant.  So,  integral  along  this  edge  weighting  function

multiplied by the traction,  tractions for node element number 1. Along this edge and

similarly for all these 4 terms, right.

And this traction, there are two components, I mean its two-dimensional problem. So,

there can be tractions components along x direction and components along y direction.

So, Tx or Tx and Ty and they are given by direction cosine, product of the direction

cosine with the normal stress and tangential  stress along the bound, along the bound

element boundary.

So, this is what we will get, vector of tractions along the element boundary, N hat, the

matrix  of  direction  cosines  of  the  outward  unit  normal.  In  this,  for  this  particular

geometryit is simply 1 and 0, and a representative boundary evaluation is what looks like

this. So, N̂ T 1 , so this is what Tx in along this edge Ty along edge 25 and again Tx

along 25, Ty along 25. So, both of them divided equally between the two nodes 2 and 5,

and then multiplied by what is the length and thickness of course remains.

And that completes the evaluation of the one boundary, one segment of the boundary,

and similarly we can go for next segment, and third segment, fourth segment, and that is

how we do that. And during the assembly, as we saw in the case of one-dimensional

element these for the edge of 25 there would be a corresponding matching contribution

coming from the element number 2 which would be from element 5 to 2. For element 1,

we counter clockwise direction was from 2 to 5. 

For element number 2, the correspond this edge would be evaluated from 5 to 2. And

accordingly the direction cosines would of course, be outward normal, so they would be



in opposite directions, and the corresponding terms would be of opposite signs and they

would cancel out during the process of assembly, right. At the individual element level

of course they do not, they appear, but during the process of assembly they would of

course cancel out.

And therefore, generally we generally do not bother about calculation going through this

calculation, unless this boundary coincides with the problem boundary. For example, this

boundary of 4, 1 corresponds with the or boundary of 4, 1 corresponds with the actual

problem boundary. So, we will evaluate it at this point. So, that brings us to the problem.

In this case, we have element number 3. We have this point load at the midpoint of this

edge P and then there is a moment M. So, how do we model these? How do we account

for these? So, P point load can be easily modeled as a Dirac delta function that s a

discontinuity. 

So, point load P at xis equal to x bar can be represented as function of P x as P delta x - x

bar,  and  then  this  function  P  x  can  be  treated  as  a  continuous  function  of  x  and

substituted in the integral. Integrant will be evaluated as the by using the property of

Dirac delta function, and that would result in point evaluation sampling at x bar, and

appropriately the calculations will be done.

So, all that we need to do is substitute for T x, the traction as instead of continuous

function, this variation of Dirac delta function at x bar whatever the coordinates of x bar

are. So, in this particular case it would be 225 because this is where the xis ranging from

and this is at 75 + 150. So, this is 150 and this is 75, so together its 225. So, it would be

xis equal to 0.225 meter. So, x bar is equal to 0.225 meter, for the problem that we are

dealing with.

And that leaves us with another issue, how do we model the moment because there are

no rotational degrees of freedom here, so how do we incorporate all the forces that we

have, the allowance is only for the rectilinear forces, force along x direction, force along

y direction, how do we model the moment, applied moment in this case, in this problem.

So, the way to model moment is that this moment can be represented can be replaced by

appropriate couple and this couple is equal to M by d, where d is this distance, right. 



So, this constant couple separated over a distance d that defines the moment. So, while

analyzing for moment we need to convert it into an equivalent couple that would be of

pair of concentrated load, separated by a distance, d. So, in this case d is the depth of this

element,  and these  would  then be  treated  same in the same way as  this  Dirac  delta

function for this traction in y direction. 

So, in this case, it would be traction along x directions of opposite signs. So, we will

have delta x - x 7, multiplied by y - y 7, - delta x - x 8, y - y 8. So, that is the variation

and using this variation it can be evaluated.

So, once we have this traction along x along this particular edge 7, 8, then this expression

can be evaluated in exactly the same fashion as this. So, instead of traction, we will have

these  Dirac  delta  functions  and  then  the  integrals  one-dimensional  integrals  can  be

evaluated.

(Refer Slide Time: 31:00)

So, once we have this evaluation, now similar equations the problem element number 1,

now for the element number 1, the equilibrium equations look like stiffness matrix for

element 1 multiplied by the nodal coordinates of for element nodal, variables for primary

variables  of  our  element  number  1 is  equal  to  the  element  force vector  for  node of

element number 1, and the secondary variables reactions for element  number 1. And

these are then placed into appropriate locations of the global stiffness, global equation,

equation for the entire system.



So, contributions from individual elements may then be assembled into global system.

So, we are done with first element. And these element level equations are plugged into

the placeholders for the global system of equations. Since, we have a total of 8 nodes

with two degrees of freedom. So, there will be 16 equations in this particular problem,

right. So, there are 8 number of nodes. So, total 8 number of nodes, each node has 2

degrees of freedom uj and vj. So, 2 degrees of freedom at each node.

So, there are total of 16 variables that we are looking at, so we need to have provision for

16  by  16  stiffness  matrix,  and  16  number  of  variable,  16  number  of  element  level

element  forces,  nodal  equivalent  forces,  nodal  equivalent  forces  and  the  secondary

variable tractions.

Now, how does the assembly take place? The keyis to find appropriate placement and

that  is  how  the  entire  assembly  process  is,  one  different  elements  contribute  the

contribution of different elements goes in the along the degrees of freedom that they

share or the nodes that they share with the adjacent elements. And one, the wayit is done,

it is automatically done in the program.

Again using very powerful data structuring techniques. If you are interested, you may

look  at  the  text  book  very  excellent  and  easy  to  read  text  book  on  finite  element

programming by Hinton and Owen which beautifully explains this process of assembly,

how it is done automaticallyin the in a computer program and how to prepare a data

structure suitable data structure to facilitate that.

So, essentially what it involves is mapping of element level degrees of freedom we know

there are two degrees two displacements at each node. So, u i, v i, u j, v j, u k, v k, u l, v

l, we know that this i j, k l, are numbered in counter clockwise direction. In the global

mesh, node i may refer to some particular node according to the mesh design. So, in this

particular example, ith node corresponds to for ith node of element 1 corresponds to node

2,  jth node  corresponds  to  node  5,  kth node  corresponds  to  node  4,  and  lth node

corresponds to node 1.

So,  appropriately  what  happens  here  is  whatever  is  the  coefficient  or  terms

corresponding to u i, they would go to corresponding terms of node 2 or x displacement

of node 2. So, in the global system of equations that corresponds to element 3 because

node 1 will have u and v, and node 2 will have u and v. So, ui would go to third variable



in the global system of variables and so on. And in this case ul, so that is the 4th node,

7th variable, 7 and 8th variable, in this element level variable, right. So, 1, 2, 3, 4, 5, 6, 7,

8. So, that is the 7 and 8th variable.

In the element level, they would correspond to the first and second in the global variable

because the 4th node in this particular local node numbering is actually the first node in

the global node numbering. And that is how the actual assembly goes.

(Refer Slide Time: 36:08)

So, in this global system you can see that there are 16 columns and the all the elements

are actually placed accordingly.  So, this is the stiffness matrix.  So, element stiffness,

matrix stiff coefficient of stiffness matrix of element 1, they occupy respective positions

corresponding  to  the  mapping  of  local  node  variables  with  the  global  node  global

variables, and similarly the load vector, the tractions and the body force. So, they also

figure, take the appropriate locations.

So, on this, so this is for element number 1. Contributions from element number 2, would

be superposed on this, added to that. So, some elements get added up, some elements get

subtracted, according to whatever their signs are, respective signs are. So, it is always

algebraic addition.

And then,  once we are done with element  number 2,  we are we will  go to  element

number 3, and add super impose element number 3 equations on this and then finally,



element number 4 equations on this. And once we have those all the 4 element equations

in place, then we impose the boundary conditions that are available for u1, v1, u2, v2,

u3, v3, that these displacement degrees of freedom should vanish. 

And once we impose that boundary condition then the rest of the system of equations can

be solved for unknowns, unknown variables.

(Refer Slide Time: 37:51)

And  once  we  do  that  these  are  the  solutions.  We  will  come  to  the  solution  of

simultaneous  equations  how  that  is  done.  You  might  already  be  familiar  with  the

simultaneous equation.  For example,  the elimination of variable and so on. And also,

Gaussian elimination and so on. But we will discuss that in some lecture down the line.

So, this is what the solution of primary variables looks like. And if I plot, I mean once I

do this then I can go back to interpolation model then I have the complete variation of

displacement all through the domain with respect to x and y. The displacement is of

course, continuous across the element boundaries. So, I can have the deflected shape of

the bracket which is what this looks like. 

This is often referred to as wire frame diagram of the deflected shape. And once I have,

once  I  extract  these  and  go  back  to  the  element  level  equations,  I  can  derive  the

secondary variables the stresses and so.
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This is the displacement u and v, all through throughout the as a function of x and y. This

is σ xx . You can see very beautifully the constant stress, I mean the tension at the top,

and compression at the bottom, and very beautifully my color-coded contours can be

seen.  And  this  is  σ yy ,  and  this  is  τxy  shear  stress.  And  these  are  just  the

representative of how the typical  results of a finite  element stress would look like,  a

finite element result look like.

Of course, these are what we call as smooth contours, in raw contours as we compute do

not  look  so  continuous  and  beautiful.  They  would  be  there  would  be  jagged  lines.

Because the continuity of stresses is not guaranteed,  continuity of displacement  is of

course, guaranteed along across the element boundaries, but not of these stresses because

the derivatives are going to be discontinuous.

And should,  therefore,  the  stresses  should  also  be  discontinuous  over  the  across  the

boundary. And that level of discontinuity is what provides us an estimate of the error in

the solution or adequacy of or whether we need to refine the mesh or we need to look at

further refinement in the finite element results. But that is a another topic, error analysis.

We will see if time permits.

So, we stop here. In the next lecture, we begin with a new topic called Mapped Elements

or Distorted Elements.



Thank you.


