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Lecture - 20
Finite Elements of C0 Continuity in 2-D and 3-D-II

Ok  friends,  so  we  saw  the  governing  differential  equation  for  three-dimensional

homogeneous and isotropic elastic continuum. Initial governing differential equation is

in terms of the force equilibrium, so obviously, it is in terms of the stresses and body

forces and the rate of change of momentum or the so called inertia force. 

And once we take into account the generalized Hooke’s law to relate stresses to strains,

and then the definition of the strain components, relating different strain components to

the deformation we can transform the governing differential  equation in terms of the

deformations.
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And that governing differential equation in terms of deformation can be given in terms of

a differential operator that relates strains to displacement L . So, LT DLu  is the vector

of deformations plus f  is the vector of distributed body forces along each component

oriented along respective coordinate directions, and this is equal to the rate of change of



momentum. So, that is essentially the statement of Newton’s second law, all the forces

acting on the body, are equal to rate of change of momentum of the body.

Our  objective  is  finding  an  approximate  solution.  So,  approximation  û  as  an

approximation for u ,  v̂  as an approximation for v , and ŵ  as an approximation for

w . So, collectively we can refer to this as the vector û  as an approximation to vector

v̂ . 

And when we substitute this approximation in the governing differential equation that is

what leads to the domain residual. So, the domain residual of the governing differential

equation due to approximate solution is given by 

RΩ=LT DLu+f −ρü  

L  is the familiar differential operator which relates strain to displacement.
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So, LT D , D is the constitutive relation matrix; and L strain displacement operator; and

û  is  the  displacement  plus f  the  body  forces  minus  ρ ü .  So,  that  is  the  second

derivative of the displacement with respect to time i.e.  accelerations. We are of course

assuming that mass of the body does not change with time within the domain. So, this is

the domain residual.



Now, you may find the equivalence with the way we develop finite element formulation

for one-dimensional problem. The whole idea was to find out what is the error in the

approximation. If we are looking for an approximate solution there will be some error in

the solution, and that error or residual within the domain is to be minimized for getting a

good quality of solution. And that is what we are trying to do here; we first estimate the

residual or the error of approximation.
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And then we develop the statement of weighted residuals and develop the weak form of

the statement of weighted residuals. So, this is the weighted residual statement. W  is a

weighting function.  Please note that  RΩ  here that we are looking at is a vector  with

three elements; there are three relations in each coordinate direction. So, this is in a sense

a set of simultaneous differential equations. 

So, there are three differential equations, and here the residual that we are looking at are

three  residuals  –  R
Ω x ,R

Ω y ,R
Ω z ,  i.e.  residual  along  x  direction,  residual  along  y

direction, and residual along z  direction. So, accordingly there will be three weighting

functions. So, W is a diagonal matrix with  W x ,W y ,W z  along the leading diagonal of

this 3 by 3 matrix.

Transpose is something that I put intentionally although for a diagonal matrix transpose

really does not matter, W  is same as its transpose. So, W T RΩdΩ . So, I substitute for



RΩ  the residual. So, LT DL { û¿  that is the first term of the domain residual, and then

the two terms WT f  and ρW T ü , and they are all under domain integral. 

Domain Ω  here is a three-dimensional domain enclosed by some boundaries in x,y,z

space. So, it is a triple integral. And this is the complete weighted residual statement in

the strong form.

Now, you may recall  that  the first  step towards the development  of a finite  element

model is to develop the weak form of the weighed residual statement. The whole point of

developing the weak form is that we need to look at the boundary term of the weak form

in order to identify what are the primary variables  of the problem, and what are the

secondary variables of the problem. 

So, look at the first term of this governing differential equation. And let me just take one

row of the equation, this operator form is sometimes not so obvious to understand. So, let

me just look at this first term of this equation.
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∭
Ω

W x[ ∂σ̂ xx

∂ x
+
∂ τ̂ yx

∂ y
+

∂ τ̂ zx

∂ z ]dΩ

These  are  all  approximate  stresses  because  they  are  derived  from  the  approximate

displacements. So, we look at only this particular term just to illustrate how we develop

the weak form. The process is similar for each term. 



So, W x
∂
∂ x xx σ  is of course, proportional to d11  so that is the element of constitutive

relation matrix multiplied by ϵ xx . So, σ xx  is equal to d11  times ϵ xx ; ϵ xx  is equal to

∂ û
∂ x

, so that is the first term. So, domain integral of the first term of the residual of the

first row.

Now, by using the chain rule of differentiation, I will have 

∂W x

∂ x
d11

∂ û
∂ x

+W x ( ∂
∂ x

d11
∂ û
∂ x )

So, I can replace first term by the above term. So, essentially what this means is 

∂
∂ x [W x d11

∂ û
∂ x ]−

∂W x

∂ x
d11

∂ û
∂ x

This can be converted into a boundary integral by using Gauss theorem or divergence

theorem in vector calculus.  So it is a three-dimensional domain enclosed by the two-

dimensional boundary and the derivative is with respect to x . So, appropriately it will

be

∬
Γ

nx d11
∂ û
∂ x

W x dΓ

This is what the boundary term looks like.

And then second term is of course

∭
Ω

∂W x

∂ x
d11

∂ û
∂ x

dΩ

This is what you can refer to as three-dimensional analog of integration by parts that we

did  in  the  one-dimensional  problems  by  which  we  traded  the  derivatives  from  the

residual term to the weighting function term and that is what we have done here.

So, the derivative from the residual term is transferred to the weighting function term.

And then there is a boundary term that comes by invoking the Gauss theorem or Green’s

lemma. So the domain integral is transformed into this particular integrand multiplied by



the  respective  direction  cosine.  So,  for derivative  with  respect  to  x ,  it  will  be  the

direction cosine of the outward unit normal with respect to x  

This we can do term by term. For the second term it is derivative with respect to y . So,

it will be n y  in the similar term here. In the third term, it is derivative with respect to z

direction, so it will be nz  in the third term. 

We can continue with this term by term and then the weak form can be developed as the

weighting function multiplied by the matrix of direction cosines. So, this is the matrix of

direction cosines nx ,ny ,nz , and that multiplies with these stresses –  stress vector.

So, the first term is boundary integral and minus this second term is the domain integral,

which contains LW ,  so that  is  the differential  operator  L  from the stress terms is

transferred to the weighting function term. 

And then the third and fourth terms are of course the domain integral with respect to

forces and inertia term. And N̂  is the direction cosine matrix transpose, so that comes

from the respective differential operator. And nx ,ny ,nz , these are the direction cosines

of the unit normal.

So, once we are done with that, we look at the boundary term of this weak form. We can

see that this is the weighting function W , which is a diagonal matrix of three weighting

functions – W x ,W y ,W z  along the diagonals. 

So, it appears in its natural form on the boundary term without any derivative. So, that

implies the primary variables are the unknowns of the problem. So unknowns of this

equation are u - the displacement.

So, the primary variable of this problem are the displacements. And the multiplier here,

these are the surface tractions. So, these are the stresses along the boundaries. These are

the corresponding secondary variables. 
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So, u  is the primary variable vector. So, collectively I can refer to this as a vector u ,

all three displacement components. And T  is the traction and that is given by N̂T σ , in

the vector form. And these are the secondary variables if I look at the component wise,

so  u  that is the displacement along  x  direction, corresponding secondary variable is

the traction or the forces along x  direction. 

So, that would be σ xx nx  + τ xy ny  + τ zx nz . So, these are the surface tractions along x

direction.

And similarly for  y  and  z , so we have  v  and  T y ,  w  and  T z  as corresponding

pairs of primary variables and secondary variables. And as we discussed earlier primary

variables and secondary variables will always come together in the boundary term. So,

that  it  is  always a  work like  quantity,  it  is  always the  work done by the  secondary

variable tractions in moving through the primary variables.

So, now looking at the boundary term, we can infer that the approximate solution that we

need  to  construct  needs  to  be  continuous  in  the  primary  variables.  These  are  the

displacements with non-vanishing first derivative in the domain.  Because the domain

integral that we have here involve first derivative of this approximation Lu ; L  is a first

order differential operator. So, the first derivatives of the displacement  should exist. So,

non-vanishing first order derivatives are required.



And the element itself has to be C0 continuity i.e. continuity of the zeroth derivative of

the primary variable  across element  boundaries are needed for discretization,  exactly

same as what the inference was from the boundary term for one-dimensional problem.

For two-dimensional problem also it is the similar kind of inference that is drawn. 

So, we substitute the unknowns of the problem in the weighting function term in the

boundary term, and we get the primary variables as  u ,  v , and  w , in place of  W x ,

W y  and W z .

So that  is  the basic  primary  variables  interpolation  that  is  required to  be continuous

across  the  inter  element  boundaries.  And the  elements  that  we develop should  have

suitable interpolation model for this displacement components while preserving this C0

continuity.

How do we construct  these  elements?  This  is  the  problem that  we  need  to  look  at

because this odd domain Ω  needs to now be split into several sub domains that is finite

elements. 

Now, looking at this weak form, we identify the finite element model. Now, we will look

at what kind of finite element model would be suited. The domain is three-dimensional,

so the element has to be a volume element; it has to enclose a volume.

Now, the simplest regular figure which can enclose a finite volume is a tetrahedron with

four vertices.  So,  that  is  the simplest  finite  element  in  three  dimensions,  four noded

tetrahedron.  Two-dimensional  analog is the domain is  an area domain,  plane domain

bounded  by  a  curve.  So,  the  simplest  element  that  we  will  have  in  case  of  two-

dimensional  problem should enclose an area – finite  area.  And the simplest  element

which can enclose finite area is a triangle, so three noded triangle.

So, three nodded triangle in two dimension, four noded tetrahedron in three dimension,

are the simplest elements in two and three dimension, but of course, we can go further

and  develop  other  elements.  For  example,  I  can  use  four  noded  rectangle  that  also

encloses area in a two-dimensional  plane.  And similarly analog of rectangle in three

dimension is a cuboid. So eight noded cube can be used for three dimensional domain.



So, triangle and tetrahedron belong to one family of elements that we can develop, then

we can have another family of elements rectangle and cube. And of course, there are

other possibilities  such as triangular prism or even wedge element, so that will also be

enclosing volume. 

Now, the treatment  of the finite  element  formulation remains the same. It  now boils

down to defining these respective elements which will satisfies following requirements.

They  have  to  enclose  area  and  they  also  have  to  ensure  the  continuity  of  the

approximation across the element boundaries. 

So, we will see how that is achieved. Once we take care of that, then all that remains is

the basic interpolation model. How are the unknowns interpolated within the element in

terms of primary variables defined at the nodes of interpolation?

For a substantial portion of our engagement will be devoted to just this discussion of

development of interpolation function for different element geometries. And subsequent

analysis of the finite element model would be straightforward.

So,  in  our  next  lecture,  we  will  simplify  these  three-dimensional  equations  to  two-

dimensional cases because fewer terms to work with and the diagrams are easier to draw

and easier to understand. So, the basic philosophy of finite element approximation is

more easily understood when we discuss in two dimension, three dimensions bring in lot

more complications of visualization.

So, in our next lecture, we will take the similar equations for two dimensions, and then

develop  finite  elements  for  two  dimensions  first,  and  see how  things  work  out  in

different form. And from there we will return to this discussion of three-dimensional

finite elements, and see how the discussion of two-dimensional finite elements can be

extended to three-dimensional finite elements in a straight forward seamless manner.

Thank you.


