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Lecture - 19
Finite Elements of C0 Continuity in 2-D and 3-D-I

Hello. So, we completed our discussion on the Finite Elements in one dimension and we

saw two application areas - one dealing with second order differential equation in one

dimensional domain and another one dealing with the beam bending problem which is

defined by fourth order differential equations in linear domain.

These  two  examples  allowed  us  to  explore  two  different  classes  of  finite  element

approximations  i.e.  finite  elements  with different  degree of continuity requirement  or

smoothness across the inter element boundaries C0 continuity and C1 continuity elements.

Now, we extend our discussion to more general problems of interest  that is  2 and 3

dimensional elasticity problems and as all problems are essentially 3 dimensional and

continuum modeling allows us to model all the problems using governing differential

equations of motion in 3 dimensional continuum. 

But with  some  simplifying  assumptions  the  dimension  can  be  brought  down and  a

reasonably good approximation can be obtained by using a 2 dimensional idealization by

some simplifying assumption in the third direction about the behavior either because of

the loading condition or the deformation condition and so on.

That  is  the  only  difference  otherwise  conceptual  point  of  view  there  is  really  no

difference  between finite  elements  of  2  dimensions  or  3  dimensions  except  that  one

dimension is extra in case of 3 dimensional elements.



(Refer Slide Time: 03:00) 

So,  the  beginning  of  the  discussion  of  course,  starts  with  the  governing  differential

equation  and  this  is  the  familiar  stress  block  that  all  of  us  are  familiar  with.  A

infinitesimally small cuboid of dimension dxdydz  and the stress components, which are

marked on each of the 6 faces and on the positive phases we have also mark the names of

the stress components are shown in the figure.

So,  σ xx , σ yy and σ zz  are  the  normal  stresses  along  respective  directions  and

τ xy , τ yz and τ zx  these are the shear stresses.  And of course there are complementary

shears and if we establish moment equilibrium of the forces acting on these infinitesimal

block we can come to this standard result that complementary shears are equal that is

τ zx=τ xz and  τ yx=τ xy .  Similar  for  other shear components. So, governing differential

equation is essentially a force equilibrium on a body of infinitesimal volume enclosed by

dx, dy, dz  and  the  governing  differential  equations  are  again  defined  by  force

equilibrium. 

∂σ xx
∂ x

+
∂ τ yx
∂ y

+
∂ τ zx
∂ z

+f x=ρ
∂2u
∂ t2

f x  is the body force component along  x  direction. And this is equal to the rate of

change of momentum along x . So, u  is the displacement along x  direction, v  is the

displacement  of  the  body along  y  direction  and  w  is  the  displacement  along  z



direction and ∂
2u

∂ t2
 is the acceleration or rate of change of momentum . ρ  is the density

and  for  unit  volume  we  have,  dxdydz .  Hence  ρdxdydz  will  be  the  mass  of  this

infinitesimal volume and multiplied by the acceleration. So, that is the rate of change of

momentum assuming that mass of the system mass of the body is invariant.

So, that is the basic governing differential equation and the classical methods of solution

in theory of elasticity of course, involve use of strain displacement equation. And then

there are stress strain relationships and then of course, there are compatibility equations

because these are not enough constraints to ensure unique valued deformation solution.

And solution of those is of course, very tedious and simpler approach is often used by

making use of  Airy stress function and trying to find solution of this governing basic

elasticity problem. Now that is of course, very much involved and feasible only for very

simple cases with regular geometries and simple loading cases.

So, we will explore how we can use finite element method and how simple the entire

solution  process  becomes  when we use finite  element  method when we apply  finite

element method to this problem.
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To take our discussion towards finite element formulation let us have a look at how these

stresses are related to the stresses mentioned in this governing differential equation. They

are related to the deformations that are produced in the body.

So, how these stresses are related to the deformations? By using the generalized Hooke’s

law, that is stress is proportional to strain and defined by  σ  that is the stress tensor

proportional to the strain tensor, ϵ  and D is the constitutive matrix.

ϵ0  is the initial strain, one common example is the strain due to temperature difference.

Those strains are not originating because of the forces and the loads imposed on the

body. So, this initial strain has to be removed for considering the stresses because of the

loads.  σ0  is  of  course,  the  initial  stress.  Similar  to  initial  strain,  the  body may be

prestressed.  So,  those  have  to  be  added in  addition  to  these  stresses  because  of  the

deformations. This is of course, a very general form of stress strain relationship and σ0

and  ϵ0  are known quantities.  So before the problem is handled, they can be straight

away incorporated in our formulation without a much ado.

So, we will drop these two initial values from the discussion and assume that we are not

dealing with initial strains and initial stresses just to keep our discussion simple. But you

will see that its not really much of an issue incorporating them in the formulation except

adding two more terms in our  process.  Further, we also assume for simplicity that the

material is homogeneous and isotropic.

So, the continuum that we are dealing with is homogeneous; that means the same elastic

properties apply throughout the domain. So, whether it is (x1 ,y1 ,z1 )  point or (x2 ,y 2 ,z2 )

point or (x3 ,y 3 ,z3 )  point, any point within the domain same elastic properties hold.

Now, the elastic properties can be different in different directions for some cases.  For

example,  the  timber  or  some  composites.  They  have  different  elastic  properties  in

different directions or more importantly in different orthogonal directions. So, those are

called orthotropic materials where the elastic properties,  which may be  same at every

point, but in orthogonal directions the properties may be different.  In general case for

different orientation we might have different properties.



So, those are in general referred to as unisotropic material. But to keep our discussion

simple and at the macro level when we look at the broad picture the material properties

do not really change with changing direction unless the material is spatially engineered

and  the  fibers  are  oriented  in  a  preferential  way.  But  in  general  we  see  random

crystallization and randomly oriented grains. So, the properties at macroscopic level are

more  or  less  identical  in  whichever  direction  we  look  at.  That  we  call  as  isotropic

condition.  So,  this  is  our  of  basic  framework.  We are  looking  at  homogeneous  and

isotropic elastic continuum and we are neglecting initial stresses and initial strain.

And since second order stress tensor will  have nine elements - 3 diagonal, they will be

the direct stresses σ xx ,σ yy ,σ zz  and then there will be 6 off diagonal terms called shear

stresses. Now we just discussed little while back that these off diagonal terms are equal

i.e. the stress tensor is symmetric. So, τ xy  is equal to τ yx .

So, instead of considering 9 elements of stress tensor we can only consider 6 unique

components and we can arrange it in a simple vector. And similarly we can also have

similar  kind  of  arrangement  for  strains.  So,  3  direct  strains  and  3  shear  strains

corresponding to the shear stresses.

So, these 6 stresses are related to 6 independent strains through a matrix comprising of

elastic coefficients and this matrix is known as constitutive relation matrix denoted by

D . 

So, in a sense what we are looking at is σ=D ϵ . So, stress is proportional to strain and D

is  the constant  matrix  of  proportionality  as  given in  figure.  E  here  is  the Young’s

modulus  ν  denotes the Poisson’s ratio and G  is of course, the shear modulus which

can be related to Young’s modulus and Poisson’s ratio.

So, that defines the stress strain relationship and if we want we can substitute for stresses

in  this  governing  differential  equation  and  we  will  have  the  governing  differential

equation in terms of strains and elastic constants. Still not very useful form as of now.

How are the strains related to deformations? Because primary motion is of course, the

displacement  along  x ,  displacement  along  y ,  displacement  along  z ,  3 orthogonal

directions.



So, the direct strains and shear strains are related to the deformations along Cartesian

coordinates through a differential operator.

(Refer Slide Time: 16:29)

So, you can see here ϵ xx=
∂u
∂ x

, that is the standard definition of direct strain along x ,

ϵ xx  is equal to rate of change of deformation with respect to x  and ϵ yy  direct strain

along y  direction.

So,  ϵ yy  is rate of change of  v - the deformation along  y  direction with respect to

coordinate direction y  and similarly for ϵ zz  - direct strain along z  direction is rate of

change of w  with respect to z . 

So, these are the 3 direct strains related to deformation components. Now we come to the

shear strains.  Shear deformation would be distortion from 2 sides,  ϵ xy=
∂u
∂ y

+
∂v
∂ x

. So,

that is the distortion in xy  plane. Similarly γ yz=
∂v
∂ z

+
∂w
∂ y

. So, that is the distortion in

the yz  plane and then the distortion along in the zx plane γ zx=
∂w
∂ x

+
∂ u
∂ z

. Now this can

be encapsulated in the operator notation that we had seen earlier in our discussion in one

dimensional problems.



So, the ϵ  is given as a differential operator times u . So, u  is the vector [uvw ]
T

. So,

these three components we are representing as a single vector notation u . And this L  is

the differential operator which operates on this displacement components to provide us

the respective strain components.

So, this is the strain displacement relationship.  We started with governing differential

equation  of  motion  in  terms  of  stresses.  Now  after  we  defined  the  stress  strain

relationship,  we  can  formulate  the  governing  differential  equation  or  recast  the

differential equation in terms of strains. We just have to substitute for stresses with strain

components using stress strain relationship.

Now, strains are in turn related to the deformation and the displacement relationship for

strain can be substituted into that differential equation. Now if you look at it very closely

the governing differential equation (in stress components form) can also be written in the

form of an operator equation. So, you can see the operators here. First derivative with

respect  to  x ,  with  respect  to  y ,  with  respect  to  z  and  they  operate  on  different

components and so its a similar operator.

So, if you look at the arrangement of these differentials you will find that this operator is

going to be exactly similar. If I write  it in terms of some operator times the vector of

stresses, then the operator that I will need is exactly same as the transpose of operator

L  because I will have 6 stress components and there are 3 equations.

So, this L  operator is of course, 6 by 3 size. So, I will have transpose of that and that

would be 3 by 6 operator size. So, let us look at this.
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So, the governing differential equation can be written as shown in figure. So, we will see

if we rearrange this equation then we can expand this into LT  the differential operator

that we have here and multiply it with the stress components that we have and that will

lead us to the basic same equations as this.

(Refer Slide Time: 21:57)

So L is given as :



L= [
∂
∂ x

0 0

0 ∂
∂ y

0

0 0 ∂
∂ z

∂
∂ y

∂
∂ x

0

0 ∂
∂ z

∂
∂ y

∂
∂ z

0 ∂
∂ x

]
So,  this  is  the  basic  differential  operator  and  the  stress  components  are of  course,

σ xx ,σ yy ,σ zz ,τxy ,τ yz and τ zx .  So,  if  I  pre-multiply  the  σ  with  differential  equation

operator LT , we will get governing differential equation. So, L  is 6 x 3 dimension, σ

is 6 x 1. So, LT  is going to be 3 x 6 and 6 x 1. So, multiplication is going to be 3 x 1.

So, these are three different equations in orthogonal directions. So, let us look at the first

equation.

∂σ xx
∂ x

+
∂ γ xy
∂ y

+
∂γ zx
∂ z

+f x=ρ ü

And similarly by operating on second row and third row we will obtain other rows of the

governing differential equation. So, the point is that whatever differential operator we

have, which relates deformations to strain, transpose of that operator is used for deriving

the governing differential equation of motion in terms of stress components.

LT σ+ f=ρ ü ,  that is the governing differential equation and we already discussed that

stress is proportional to strain and strain is proportional to deformation. So, σ=D ϵ  and

ϵ=Lu . So, substituting that, the governing differential equation becomes in terms of

deformation components.

LTDLu+ f=ρ ü        in Ω

So, once we make use of stress strain relationship and strain displacement relationship

and  substitute  in  the  governing  differential  equation  we  will  get  the  governing

differential equation in terms of deformation. Now what to do with these deformations?



How does this help us in formulating finite element equation? We will discuss that in our

next lecture.

Thank you.


