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Finite Elements of C1 Continuity in 1-D-II

Hello friends.  We were discussing about  the Finite  Element  approximation  for Euler

Bernoulli beams.  We discussed about the necessity to ensure continuity of not just the

transverse displacement, but also it’s derivative across the inter element boundaries.

So, the primary variables are transverse displacement as well as the slope or the first

derivative of the transverse displacement. Now, the interpolation function for that higher

degree of smoothness is given by Hermite interpolation. And, we have already discussed

Hermite interpolation in our discussion of interpolation theory.

(Refer Slide Time: 01:15)

But, in this case we derived this from the basic requirement of the interpolation theory,

that approximation has to be consistent, has to yield the primary variable at the nodes or

the specified function values at the nodes. And, this is what we get as the interpolation

functions.

Four interpolation functions or four primary variables in the element - two at each node -

also referred to as the degrees of freedom. So, 2 degrees of freedom at each node -



transverse displacement and slope and collectively they are referred to us Nv . So, that is

shape function matrix or interpolation function matrix N  and the vector of nodal values

of primary variables that is referred to as v .

(Refer Slide Time: 02:07)

Properties  of  the  Cubic  Hermitian  Interpolation  polynomials  functions  -  N1  when

evaluated at x i  is 1, but it’s derivative when evaluated at x i  is 0. Similarly, N1  when

evaluated at x j  is 0 and it’s derivative also vanishes at x j . N2  vanishes at x i , but it’s

derivative  is  unity.  Slope  of  N2  is  unity  at  x i .  And,  it  vanishes  at  x j  and  it’s

derivative also vanishes at  x j .  N3  vanishes at  x i  and it’s derivative also vanishes at

x i , but it takes unit value at  x j  and it’s derivative is 0 at  x j . Finally,  N4  has unit

derivative  at  x j  and  the  function  value  and  it’s  derivative  at  x i  is  0  and  it  also

evaluates to 0 at x j . So, this property is encapsulated in this plot of  these interpolation

functions. So, N1  starts at 1 and the slope is of course, 0 and it gradually goes to 0 at

node j  and with 0 slope.

This is of course, a cubic polynomial. N3  is the compliment of N1 . So, it is 1 minus

N1 . And, similarly for N2 , it starts with 0, but with unit slope. So, the tangent angle is



π
4

 and it goes to 0 at N j  with 0 slope. N4  starts with 0, with 0 slope at i th node and

it has 0 value at node j  with unit slope.

So, finite elements based on these interpolation models, based on the use of these cubic

Hermite  shape  functions,  ensure  inter  element  continuity  of  the  function  being

approximated as well as  it’s first derivative that is  
dv
dx

 or  θ , slope of the deflected

shape.

And,  therefore,  these  elements  are  known  as  C1 continuous  elements,  C  stands  for

Continuity  and 1 superscript  denotes  the derivative  order.  So,  the function  with first

order derivative is continuous. 
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So, with these development,  we now have our  weighting functions in the weak form

available with us.
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This is weak form of the weighted residual statement. All that we do now is replace W

with respective interpolation functions N1 , N2 , N 3  and N4  four weighting functions

one after the other. so, substituting finite element approximation for  v̂  into the weak

form that is Nv  and choosing the element shape functions N i , i  ranging from 1 to 4

as  weighting functions.  So,  in  sequence  we  use  weighting function  as

W=N1 , W=N 2 , W=N3 , W=N 4  and these will be the 4 equations that we will have.

 (Refer Slide Time: 06:00)



So, these are the 4 equations that we have once we substitute it in the weak form. In each

equation we have 4 boundary terms. Two each at x=0  and x=L . Now, because of this

particular variation of the interpolation function, you can see that the weighting functions

will vanish for three of the four terms and only one term would exist at that time at any

point. 

The first term is symmetric  term and we transfer remaining terms to the other side. So

first term on RHS is the weighting function multiplied by external force. And remaining

two are the boundary terms.

So, for any choice of N i , N1  would exist only at x=0 , derivative of N2  would exist

at x=0  all other terms would vanish. N3  would exist only at x=L  and all other three

terms would vanish,  derivative  of  N4  will  exist  only at  x=L and all  other  3 terms

would vanish.

And,  that  is  what  leads  to  after  substituting  for  these  interpolation  functions,  and

evaluating these integral eventually as it is just a 1 dimensional integrals in  x . So we

get this particular element level equilibrium equations, which are very familiar, this is

12EI

L3
, 

6 EI

L2
 terms and this is 

−12 EI

L3
, and this is 

6 EI

L2
 again. So, these are standard

stiffness coefficients for the fixed fixed rigid moment transfer moment connections. 



And, similarly the RHS. So, 
fL
2

,  fL
2

12
,  
fL
2

and −fL
2

12
.  Plus, these are the  secondary

variables. Shear force bending moment vector at node i  shear force bending moment at

node j  from the boundary terms that we evaluate.
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So, collectively we can refer to these equations as  K (e ) v (e )  is equal to  f (e )  plus  Q(e) .

So,  K (e )  is the element stiffness matrix for Euler Bernoulli beam element, whose  ij th

element is given by the expression

K ij=∫
0

L d2N i

dx2
EI
d2N j

dx2
dx ; ∀ i,j=1,2,3,4

So, ij th element would involve product of second derivatives of i th shape function and

j th shape functions. And, of course, the structural rigidity, which is quite often uniform.

And, for all  i,j  varying from 1 to 4 and this is of course, symmetric operator. So, that

leads to symmetric stiffness matrix as you can see. And, this is of course, by virtue of

using Galerkin approach.

If waiting functions were chosen anything other than the interpolation functions,  this

symmetry  would  not  have  been  there.  But  for  structural  mechanics  problem,  this

symmetry is not only desirable it is essential to be consistent with the mechanics of the

problem to satisfy the Maxwell Betti Reciprocal Theorem.



So,  v (e )  is  the  vector  of  nodal  displacements  -  nodal  primary  variables.  So,

v i , θi , v j , θ j  are the primary variables,  f i  is the  i th element of nodal equivalent

force So, the entire distributed load f  is being converted into the nodal loads.

So, f i  is the nodal equivalent of that distributed load f . And, that is done by using the

work equivalent, it is the same amount of work f i  - the forces, which will do in moving

through displacement v i  as would be done by distributed force f . So, that is the work

equivalence of this nodal force.

(Refer Slide Time: 11:54)

V i , M i , V j , M j  are the shear force and bending moments at node i  and j  and are

related to transverse displacement of the beam by the boundary term expressions. So,

V i  is proportional to third derivative of the transverse displacement at x i , V j  is called

proportional to third derivative of displacement at  j th node. And,  M i  proportional to

second derivative of displacement at x i  at i th node and M j  is proportional to second

derivative of the transverse displacement at j th node.



(Refer Slide Time: 12:39)

So, as I said the elements of the load vector  f (e )  are the nodal work equivalent forces

doing the same amount of work in moving through the nodal degrees of freedom. As the

work done by external force; external impose loads in moving through the transverse

displacement  v̂ . Now,  v̂  is a continuous function of  x , external distributed load is

distributed over the domain. So, whatever is the work done by the external force, we

impose equality.

So, the nodal equivalent  loads,  do the same amount of work in moving through that

particular respective degree of freedom. And we add it up all of them and that will be the

total work done by the force in moving through transverse displacement.

So, once we have this the element level equations, which is K (e ) v (e )=f (e )+Q (e )  for each

of the elements, we can discretize the domain into several smaller elements and for each

element we can have similar kind of element level equations.

And, these element level equations would be assembled into global system of equations,

comprising of all the degrees of freedom of all the nodes in the structure of the finite

element  mesh. And, that  global  system of equations would be accruing contributions

from different elements.

So, by accumulating contributions  from L elements,  all  elements  sharing a node and

degree of freedom, in the same manner as done in the case of assembly of C0 elements.



The only difference being in case of C0 elements particularly when we are looking at all

the  elements  aligned  in  1  line,  1  coordinate  frame,  so,  there  are  only  1  degrees  of

freedom at each node. But for arbitrary orientation there are 2 degrees of freedom and it

becomes similar kind of an exercise. So, the accumulation from all contribution from all

elements at sharing a node and degrees of freedom happens in the same way as in done

in the case of assembly of C0 elements. Just have to be consistent with the degrees of

freedom  and  the  common  degrees  of  freedom  and  common  nodes,  and  accumulate

respective contributions from different elements.

And,  then  the  essential  boundary  conditions  of  the  problem  can  be  incorporated  as

outlined in the context of C0 elements  using stiff spring approach or penalty approach.

And, any imposed point loads etc in the problem can be defined by using secondary

variables.

If  there  is  any discontinuity,  we place  a  node there  and then  we take  care  of  those

discontinuous point loads or point moments applied and include them in  term. 

If,  there is any secondary variable  that has been prescribed,  we place a node at  that

particular point where the point loads are prescribed. Hence the secondary variables are

defined appropriately  in  the element  level  equations,  and then  it  is  taken up for  the

assembly.

And, after the assembly of the global system of equations, essential boundary conditions

of  the  problem  can  be  incorporated.  And,  the  resulting  global  system  of  equations

properly constrained with respect to imposition of essential boundary conditions can be

solved for nodal degrees of freedom i.e. the unknown primary variables at the nodes of

finite element mesh.

Subsequently  stress  resultants  which  are  the  secondary  variables  of  the  problem  in

different  points  of  the  domain,  can  be  computed  from  element  level  equilibrium

equations, during the post-processing stage. Because element level equilibrium equation,

we  will  have  once  we  have  this  complete  displacement,  then  we  can  compute  the

moment and shear force by the appropriate derivative.

So, we get the displacements as a function of x  in terms of interpolation of the primary

variables, which we will get from the solution of global system of equations. And, once



we have this  displacement  within an element,  we can find  it’s second derivative  for

finding out the moment, and third derivative for finding out the shear force in the beam

evaluated at different points.

That is what we call as post processing stage. So, for finite element solution the main

processing stops with the computation of primary variables.  After that,  whatever any

secondary  results  are  required;  those  are  referred  to  as  the  post  processing  of  finite

element analysis. 

Now, as in the case of bar element,  even the beam elements can be of any arbitrary

orientation. For example, moment resistant frame structures.

So,  there  are  columns,  beams  and  inclined  members  also  possible.  So,  there  is  no

guarantee that all beams in a structure would be at the same orientation. For example, the

skeletal  structure,  frame structure,  or the staging of elevated water  tanks.  So,  framed

staging of the elevated water tanks, you can see beams interconnecting each other and at

different elevation at different orientation. So, we can do the same thing with the similar

operation as in the case of arbitrary orientation.

(Refer Slide Time: 20:17)

And, of course the Euler Bernoulli Beam element can only deal with transverse bending.

So, axial  deformation will have to be accounted for by using the  truss elements.  So,



beam elements  of  C1 continuity,  can  be  combined  with  truss  or  bar  elements  of  C0

continuity, for finite element modeling of the frame structures.

So, in this particular stiffness matrix that we computed for the Euler Bernoulli Beam

element, we will have two more rows and columns corresponding to v i  and v j . 

And, respective elements would be decoupled from these fractional degrees of freedom,

and there would be appropriate AE /L diagonal terms and −AE /L off diagonal terms in

the respective rows and columns,  of the stiffness matrix. So, that becomes the element

level stiffness matrix for the frame element.

So, combining C0 bar element and C1 Euler Bernoulli beam element, we can get a frame

element and that can be used for modeling of frame structure, with elements oriented in

different direction. Now, in the same way as we did for the case of truss problem, these

need to be transferred from local frame of reference to global frame of reference.

So,  these  degrees  of  freedom the equations  are  derived in  terms  of  x̄− ȳ  frame of

reference for each element. And, these equations need to be transformed to x− y  frame

of  reference  that  is  global  common  frame  of  reference,  before  the  element  level

equations are assembled into global system of equations. 

And, once that is done then of course, the boundary conditions could be imposed and

equilibrium equations in local coordinate system are transformed to a global coordinate

frame, before assembly to build global model for entire structural system. 

And, once this global structural system model is ready  then, we impose the essential

boundary  conditions  of  the  problem  wherever  there  are  constraints  on  the  primary

variable and remaining system of equations is then solved for remaining unknowns of the

problem.

And, then subsequently going back to individual element level, we can find out the stress

resultants bending moment and shear force at any point at in any element of the structure

and that is how it works. This completes our discussion of C1 continuous element.

Now, C1 continuous elements as I have been emphasizing, ensures a higher degree of

continuity,  not  just  the  unknown  function  of  the  differential  equation,  but  also  it’s

derivative is required to be continuous across the element boundaries.



Now, section rotations are same as the slope. That is the fallout of natural consequence

of Euler Bernoulli hypothesis - plane section remain plane, but they can rotate after the

bending. So, this rotation of the plane is same as the slope of the deflected shape. And,

that happens because of neglecting the shear deformations, it is pure flexure.

So, if there are shear deformations present, which is the case in case the beam depth is

much larger than width and not very small  in comparison with the length - the deep

beams.  So,  for  deep  beams  shear  deformations  are  not  negligible  and  we  cannot

completely  ignore  them,  they  may  not  be  as  large  as  flexural  component  of  the

deformation, but they are not negligible either.

So, in that case the section rotation is not really same as the slope of the deflected shape,

because the deflection transverse deflection is not just contributed by flexure, it is also

contributed by the shear deformation. So, one to one relationship is lost. So, in that case

we need to look at decoupling the two fields.

So, the slope or the deflected shape of the transverse deflection and the slope of the

transverse deflection, they are different, they are treated differently. So, they are taken as

independent variables. So, they are interpolated separately. So, in that case there is no

need for the interpolation for transverse displacement to ensure continuity of the first

order derivative. 

Because slope is entirely different, it is being interpolated independently, which will be

independent in case there are significant shear deformations.

So, they are interpolated independently and then the beam problem can be modeled using

C0 elements, the transverse displacement is interpolated independently and the slope is

interpolated  independently.  And,  we  work  accordingly  and  there  will  be  two  set  of

differential equations, second order each.

So, we will again have first order as the highest order derivative in the weak form. So, C 0

continuous element  will  do the job.  Hence,  C0 continuous elements  can be used for

approximation of those shear flexible beams. Such theories are also known by the name

of Timoshenko Beam Theory and it is possible to derive beam equations using just C0

model.  But, the problem becomes that is where the consistency requirement of finite

element equations come into picture.



This is fine as long as the beam being modeled is deep and there are significant shear

deformation,  but if this  model is used for modeling thin beams; I mean where Euler

Bernoulli hypothesis works beautifully as shear deformations are negligible. In that case

there would be inconsistency, if we use the same order of interpolation for displacement

and the slope.

Because, the mechanics of the problem required that the slope has to be like the first

derivative of the transverse displacement. And, if I use the first degree approximation,

first degree interpolation for both the slope and the transverse displacement, then there is

mutual inconsistency and that leads to locking problem. That leads to very very absurd

results.

The solution here is to have consistent interpolation. So, the displacements have to be

interpolated at 1 degree higher than, the slope interpolation. And, once we do that all the

problems  are  sorted  out  and  this  consistent  interpolation  leads  to  very  good  results

actually consistent with what is observed experimentally.

So, that completes our discussion on 1 dimensional finite elements.  We will start with

discussion of continuum finite elements i.e. 2 dimensional and 3 dimensional continuum

problems and we will see how that is done. Again the basic process remains the same the

only thing that needs to be looked at is the kind of elements that are used and how the

interpolation functions are developed. Rest of the things is exactly identical; it is very

mechanical and automated process.

Thank you.


