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Lecture - 17
Finite Elements of C1 Continuity in 1-D-l

Hello friends. We have seen the finite elements of one-dimension using C0 continuity;

where  only  the  variable  of  the  governing  differential  equation  was  required  to  be

continuous across the entire element boundary. That variable was the primary variable.

This typically happens when the governing differential equation is of second order and

the highest derivative available in the weak form is first order.

We also have another class of problems in one-dimensional finite elements where not

only the variable of the governing differential equation, but also its first derivative needs

to  be  continuous  across  the  element  boundaries.  So,  not  only  the  variable,  but  its

derivative as well are the primary variables of the problem.

Therefore, the approximation has to be sufficiently smooth such that not only the basic

variable of the differential equation, but also its first derivative is continuous across the

element boundary. So, the first order derivative continuity is also required i.e. not just the

function value, but the slope of the function also needs to be continuous. 

So, a higher degree of smoothness is required in the approximation and that is covered

under what we call as C1 continuity finite elements. So, what we are referring to is the

beam bending problem. 

Just  to  rejig  the  memory  or  the  concepts,  it  is  based  on Euler-Bernoulli  hypothesis.

Although any beam is a three-dimensional system and deformation is of course in three-

dimensions, we can note that in the case of beam, the length is very large in comparison

to the cross-sectional dimensions of the member.
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So, a beam is typically a structural member whose length is large compared to its cross-

sectional dimensions and it supports loads and moments that produce deflection in the

transverse direction.
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So, consider the longitudinal axis of the beam along the axis of the pen as shown in

above figure.  The deformation would be either in vertical direction or in the direction

normal to plane of the figure. So, there are two different planes of bending. We can also

note that the cross-sectional  dimension are very small  compared to the length of the

beam and the loads are in the transverse direction. So, the deflections are transverse to

the axis.

Now, this has a complete three-dimensional  state of deformation.  It is of course,  too

complex and the problem becomes too unwieldy if we try to go into continuum-based 3D

modeling.  Instead very good results can be achieved by imposing certain kinematical

constraints  on  the  deformation  and  developing  simplified  expressions  and  those

kinematical constraints are what we refer to as the Euler-Bernoulli hypothesis.

Please mark the word hypothesis, it is an hypothesis because it is not a theory and why it

is not a theory? I will come to that after in a while. So, the first hypothesis is plane

sections normal to the neutral axis remain plane and normal to the neutral axis during

bending. This happens when the Hooke’s law is applicable.

So, linear Hooke’s law is applicable and Young’s modulus for tension and compression

is same. It does not make a difference whether it is tensile strain or compressive strain, as

Young’s modulus is same in both the directions. Moreover, Hooke’s law is for linear

elasticity so that obviously implies that we are looking at small deformation domain.

So, our frame of reference is small deformations and beam is initially straight and its

longitudinal fibers bend into concentric circles which are much larger compared to the

cross-section dimensions of the beam. This is the kinematic constraint that is imposed on

the  deformation  of  the  beam and  based  on this,  very  simplified  expressions  for  the

transverse  deflection  can  be  obtained.  This  deflection  can  be  related  to  the  bending

moment and shear force or stress resultant in the beam. Hence useful design quantities

such  as  maximum  bending  moment,  maximum  shear  force,  maximum  strain  and

maximum stress that will develop in the beam, can be calculated.



So,  why is  it  then a  hypothesis? First  thing  is  as  I  said that  beam itself  is  a  three-

dimensional body. Now, any three-dimensional state of deformation will have Poisson’s

effect. If I stretch the beam in one direction, it has to undergo compression in  other two

orthogonal directions.

Now, this Poisson’s effect is not captured by Euler-Bernoulli hypothesis and therefore,

the deformation field that is actually predicted by Euler-Bernoulli hypothesis is not really

the exact deformation field that will be satisfying the governing differential equation in

true elasticity problem.

But still it is a working approximation in the sense that we get the values of the stress

resultants, the bending moment and shear force, which are very close to what would be

there in a more rigorous analysis and they can be computed with very little effort. So, the

Euler-Bernoulli hypothesis still  provides a very good working approximation,  and we

continue with that. 

Consider case of a fixed cantilever beam subjected to uniform cantilever beam of length

L and uniform flexural rigidity EI subjected to uniform distributed load transverse to the

beam axis and the x is oriented along the longitudinal axis of the beam and transverse

deformation are along y direction as shown in the figure.

If we draw free body diagram of an infinitesimal element of the beam, that will establish

the  equilibrium  of  forces  and  using  these  equilibrium  of  forces,  we  can  derive  the

governing differential  equations  as  the  fourth  order  differential  equation.  Moment  is

proportional  to  second  derivative  -  the  curvature  -  and the  second derivative  of  the

moment i.e. the rate of change of shear force is related to the transverse applied load. So,

this is the governing differential equation 

d2

dx2 EI ( d
2 v
dx2 )= f ; 0<x<L



EI obviously,  greater  than 0 is  the flexural  rigidity  of  the beam and this  differential

equation is applicable over the domain 0 to L that is the length of the beam. 

Now,  this  is  the  governing differential  equation  and let  us  say I  am looking for  an

approximate solution 
v̂

 as an approximation of 
v

. 
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And if I substitute the approximate solution in the governing differential equation, I will

get the domain residual as 

RΩ=
d2

dx2 (EI d
2 v̂
dx2 )− f
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So, the statement of weak form of method of weighted residual would be the domain

integral of this domain residual should is equal to 0. So the statement can be written as

given in the figure.

After this, I have this weighting function unknown as yet. But it is a function of x,  so

integrate the whole term by parts in a sequence twice and that is what leads me to this

particular expression.

So,  this  is  the  weak  form of  the  weighted  residual  statement,  W  is  the  weighting

function. First two terms are the boundary terms, of which, second term is from second

application of the integration by parts. Third term is the symmetric operator term. And

the last term is due to applied loading.

Notice that there are two boundary terms here. Let’s identify the primary variables in

these  boundary  terms.  As  there  are  two boundary  terms,  there  are  going  to  be  two

primary variables and two secondary variables. First primary variable is the weighting

[W d
dx (EI d

v̂

dx2 )]
0

L

−[ dWdx EI d
2 v̂
dx 2 ]

0

L

+∫
0

L
d 2W
dx2 EI

d 2 v̂
dx2 dx−∫

0

L

W f dx=0



function  term,  what  is  the  form  of  the  weighting  function?  0th  derivative  in  this

particular boundary term. 

So,  replace  the  weighting  function  by  the  unknown  of  the  problem,  v -  transverse

displacement.  So,  the  first  primary  variable  becomes  transverse  displacement  v .

Associated  secondary  variable  is  the  third  derivative  of  displacement  which  is  shear

force. 

Now, looking at the second boundary term the weighting function appears as the first

derivative. So, the appropriate primary variable would be replacing W  by the primary

basic  unknown of the problem so,  that  is  the transverse displacement  v .  Hence the

primary variable becomes  
dv
dx , which is the slope of the transverse displacement. The

corresponding term which is secondary variable is obviously, the bending moment. Now,

you can have a look at it, the primary variable, secondary variable, they appear together,

and it is always like a work quantity. 

So, the weighting function can be interpreted as the virtual displacement. So, this is like

boundary shear force or the boundary force in moving through the virtual displacement

at the boundary points. So, the work done by the shear force at the end point in moving

through the virtual displacement at the end points. 

Similarly, second term, the bending moment at the end point in moving through the slope

at the end point, that is the work done. So, both of these boundary terms, they are always

work quantities. The last term is W f, if I am interpreting W as a virtual displacement so,

this  is  again  the  virtual  work  done  by the  external  force  in  moving  through  virtual

displacements.

When we interpret this weak form using the Galerkin approach, the  W  we use is the

same thing as the approximation function,  then this  becomes entirely identical to the

statement  of  principle  of  virtual  work  that  is  so  commonly  known  in  the  field  of

structural mechanics.



So, coming back to the problem of finite element approximation. Essentially, there are

two primary variables, the transverse displacement of the beam and its slope - the first

derivative of the transverse displacement. So, the approximation has to be chosen such

that continuity up to first derivative is ensured across the nodes.

We have already discussed  one such problem during  our  discussion  of  interpolation

theory and that is Hermite interpolation. Hermite interpolation, that interpolate not just

the function values, but also the required order of derivatives of the function values. 

So, in this case we require continuity in not just the value of the transverse displacement,

but we also want continuity with respect to the slope of that displacement function at the

nodes. So, there are two primary variables at the nodes.

(Refer Slide Time: 17:44)

So, this is what the elementary finite element model looks like. So, element e defined by

two nodes i and j, i left side node, j right-hand side node with two degrees of freedom at

each node. So, primary variables are the transverse displacement v i  at node i and  slope

θi
.



And similarly at the node j, transverse displacement v j  and the rotation θ j . Then there

are  associated  secondary  variable  which  are  the  shear  forces  Vi ,  V j  and  bending

moments  Mi
,  M j

,  at  the  respective  nodes.  So  we  have  2-nodes  with  2  primary

variables  at  each  node  to  define  the  polynomial  approximation.  Hence,  there  are  4

constraints.

The approximation has to satisfy the limiting conditions of these variables at these nodes.

So, whatever approximation we choose, when it is evaluated at node i, the displacement

should  evaluate  to  v i ,  its  derivative  should  evaluate  to  θi .  When  the  function

approximation for v  is evaluated at node j, it should evaluate to v j  and its derivative

should evaluate to θ j . So, these are the 4 conditions, 4 constraints that are required.

So, with 4 constraints available, we can fit a polynomial for v . So, with the 4 constraints

available,  we  can  have  a  4  term approximation  and  a  4  term complete  polynomial

starting from the constant term would be

v̂ ( x )= a 0+ a1 x+ a2 x
2
+a3 x

3

So, there are 4 unknown coefficients of the problem in this approximation. And these 4

unknown coefficients can be evaluated uniquely by imposing these constraints of the

approximation that has to satisfy at node i and node j. 

So the 4-term interpolation model can be written as :

v̂ (x )=N 1 v1+N 2θ1+N 3 v2+N 4 θ2

And similarly, derivative of this polynomial approximation can be written as :

d v̂ (x)
dx

=θ̂ = a1+2a2 x+3a3 x
2

=
dN 1

dx
v i+
dN 2

dx
θi+
dN 4

dx
v j+
dN 4

dx
θ j
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This  interpretation  will  have  correct  limiting  behaviour  if  it  reproduces  the  nodal

displacements and slopes when evaluated at nodes and therefore, assuming without any

loss of generality that the coordinate of node i is 0 and coordinate of node j is L.

So, then this a particular approximation that we have, which can be again written as 

v̂=[1 x x2 x3 ]{
a0

a1

a2

a3

}; and
d v̂
dx

=θ̂=[0 1 x x2 ]{
a0

a1

a2

a3

}
Upon substituting values of x i  and x j  and evaluating, it becomes, 



{
v i
θi
v j
θj

} = [
1 x i x i

2 xi
3

0 1 2 xi 3 xi
2

1 x j x j
2 x j

3

0 1 2x j 3 x j
2]{
a0

a1

a2

a3

}
= [

1 0 0 0
0 1 0 0
1 L L2 L3

0 1 2 L 3 L2]{
a0

a1

a2

a3

}
Hence coefficients a0 , a1 , a2 , a3 in terms of v i , θi , v j , θ j  can be obtained from the

above equation as : 

{
a0

a1

a2

a3

} =
1
L4 [

L4 0 0 0
0 L4 0 0

−3 L2
−2 L3 3L2

−L3

2L L2
−2 L L2 ]{

v i
θi
v j
θ j

}
Substituting the coefficients  into the expression for  v̂ and simplifying results  into an

expression given in the following slide. 
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This is the interpolation model for Euler-Bernoulli beam, which is the cubic Hermite

interpolation polynomials.

We derived this from the first principles, but as an exercise, you can possibly go back to

our  discussion  of  the  interpolation  theory  and  look  at  the  expression  for  Hermite

interpolation and there is a generic expression that is given there and you can straight

away derive the equations, interpolation functions from that generic expression and you

will get the same expression. So, this is the basic finite approximation.

How does this lead to our finite element equations? That is what we will discuss in our

next lecture.

Thank you.


