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Finite Elements of C0 Continuity in 1-D-I 

 

Hello, so today we start with formal introduction of Finite Elements per se using finite 

elements to solve problem of engineering analysis. And we begin with the simplest of all 

the finite elements of one-dimension, that is only one coordinate dimension is enough to 

describe the problem at hand. So, many problems of engineering in analysis can be 

adequately modelled with only one independent variable and that can be described by 

one coordinate direction. 
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Now there are so many problems; the simplest class of this problem is defined by a 

second order differential equation. Similar to what we had seen earlier regarding 

describing the axial deformation of a bar or heat conduction in a rod or it can also 

describe transverse deflection of a taut cable or it flow through porous media or even 

electrostatics and several other problems. 

The general structure of the problem is same and it is only the interpretation of various 

terms various elements of the equation that are; that keep on taking on new interpretation 



depending on the field of application. But mathematically the problem remains of same 

class, second order differential equation. 
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The domain is a straight line along one coordinate direction. And therefore, the domain 

decomposition as we discussed about the problem of finite element; the concept of finite 

element that we define the total domain of the problem as assembly or as union of 

several non-overlapping sub-domains or finite elements. 

So, when the domain itself is a straight line, then sub-domains are merely line segments 

of part of those, part of the given straight line. So, if the length of the bar that we need to 

model is of L with x coordinate ranging from 0 to L, then we can define we can divide 

this domain problem domain into several smaller sub-domains of different lengths as the 

need maybe. 

And the interpolation problem model, that we discussed earlier. The primary variable of 

the problem needs to be approximated and we adopt interpolation model and 

interpolation model for primary variable can be easily developed for one dimension and 

knowing the geometry. How that is done, we will see in a short while. 

Now, polynomial interpolation; obviously, it degree of polynomial depends on how 

many terms are there, how many independent terms are there. So, a linear polynomial 



requires two terms, constant term and first degree term and it requires there are two 

unknown coefficients.  

And obviously, for to know to define two unknown coefficients we need two constraints 

that can uniquely define this variation. And therefore, there are two nodes of 

interpolation that will be required to define a linear variation. 

Similarly, a quadratic polynomial will have three unknown coefficients constant term, 

linear term and a quadratic term. And these three unknown coefficients can be evaluated 

by using three constraints and those three constraints are provided by the function values 

for interpolation at the node. So, there will be three nodes for quadratic interpolation and 

similarly for cubic. 

So, these are the possibilities that we can have for one-dimensional interpolation. So, for 

a linear interpolation we will need two nodes for interpolating between these two values 

at the nodes; function values at the two nodes.  

For quadratic, we will need function values at three nodes and for cubic variation we will 

need the function values at four nodes. And a unique polynomial variation of a desired 

degree can be determined by imposing these constraints at these nodes of interpolation. 

So far so good. So, nothing better than introducing a concept through an example. 
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So, let us consider the solution of familiar differential equation; second order differential 

equation which can define as we said axial deformation in a bar or  transverse deflection 

of a cable under tension or heat conduction and so on. 

So, we have this second order differential equation the domain given by 0 to L total 

domain. And there are two boundary conditions one is at x is equal to 0, we have 

essential boundary condition, the function value is defined to be phiɸ0 and at x is equal to 

L we have boundary condition that is prescribed on the secondary variable of the 

problem. That we will see, and that is at the other end of the domain. So, the domain is 

defined by two-end point. So, it is a two point boundary value problem that we are 

looking at. Now if we have to find the approximate solutions of basic unknown function 

we need to find the solution for this unknown ɸ.  

So, if that is approximated by let us say , then obviously there is going to be some error 

in the differential equation and boundary condition. So, the weighted residual statement, 

the strong form of weighted residual statement that is we just substitute the 

approximation in the governing differential equation and the boundary condition and 

collect the terms. So, that is the strong form. So, this first term is the domain residual 

weighted statement of domain residual and this is the boundary residual term. I am not 

expanding on the boundary residual term at the moment, we will be concentrating on the 

domain residual term for development of finite element approximation. 

So, if we perform the develop the weak form, weak form of the weighted residual 

statement from this expression it is just one step of integration by parts of this first term. 

If we integrate by parts by this first term then we will have this boundary term and the 

transfer this derivative will get transferred on to the weighting function. Rest of the terms 

are exactly identical, just expanded it. So, we are not touching any of these. 

So, now, we look at this weak form. Now obviously, we discuss that the reason why this 

is called a weak form is the highest order derivative is decreased. While the strong form 

statement of the strong form had the second order derivative as the highest order of 

derivative on the approximation, approximating function approximate solution ,; the 

weak form, the highest order derivative on the approximation is only first order. 



So, the approximate solution need only be differentiable up to first order and it can still 

be considered as a valid approximation. So, obviously, that will have some implications 

on the smoothness and the derivative requirement etcetera, but we will see it can lead to 

very useful approximation and the approximations can be improved as progressively. 

Now, looking at the boundary term, we again take request to this boundary term and 

interpret or try to identify what are the secondary variables of the problem and what are 

the primary variables of the problem. Now primary variables of the problem the 

weighting function term that is W.  So W presents itself in its own form without any 

derivative on the boundary term, in the boundary term of weak form. And we replace W 

by the unknown of the problem that is ɸ. So, that ɸ becomes the primary variable. So, 

primary variable of the problem is the unknown function ɸ and this is the coefficient of 

weighting function in the boundary term that is the secondary variable.  And therefore, 

boundary condition on the secondary variable this is the natural boundary condition at x 

is equal to L. Boundary condition imposed on the primary variable that is ɸ at x is equal 

to 0, this is the essential boundary condition of the problem. Now, as we saw the primary 

variable is ɸ and the approximation  has to be developed as an interpolation between 

the values of phi, the values of primary variable at the nodes which define finite 

elements.  

So, finite element we will come in a little while. We just saw in the previous slide there 

are different types of finite elements, so one-dimensional finite element, which will have 

linear variation, quadratic variation and cubic variation. There will be for linear variation 

there will be two nodes which define the extremes nodes at the extremes of the element 

and that define the sub-domain which we refer to as finite elements. 

For quadratic variation, there will be one mid side node in addition to extreme nodes. 

And for cubic there will be two inter internal nodes in addition to two extreme nodes 

right. So, interpolation in terms of ɸ. So, if we interpolate in terms of primary variable, 

then the approximation  that we are developing over each of the sub-domains as we will 

see.  The continuity is ensured, continuity of ɸ is ensured because there is a node which 

is common, the elements adjacent elements they share common nodes, they share 

common boundaries. So, the variable of interpolation is common in that case. And at 

interpolation model of approximation as we know the function value is retained.  



So, for one element on the left hand side of a node we have some function value and the 

same function value is enforced for the element on the right hand side of the node, at the 

common node. And therefore, the function value is common and therefore the 

approximation remains continuous. 

So, the and that is what we call as 0 continuity, C 0 continuity. So, 0th order derivative is 

continuous, is guaranteed to be continuous across the element boundaries. And therefore, 

these elements that we will be discussing they are also referred to as finite elements for 

C0 continuity. C0 continuity refers to the case where the 0th order continuity on the 

function of approximation, the primary variable of approximation ɸ is guaranteed. 

(Refer Slide Time: 13:42) 

 

So, highest order of derivative in the weak form is 1 and that implies that approximation 

should be a complete polynomial at least up to first degree. So, this first order derivative 

should exist and the only way it can exist is that approximation should have at least one 

at least linear term, only then the first derivative will have some value.  But that said it is 

required that approximation should be complete up to required degree. So that means, it 

is not enough, it is not acceptable just to have one term approximation of linear first 

degree. Approximation should keep on building up from the lowest order degree. So, 

starting from the constant term. So, constant terms are 0th degree and then the linear 

term. So, that makes the complete approximation complete polynomial. So, all the lower 

order terms lower order terms in the approximation they should have a representation in 



the approximation that we develop. So, if the highest ordered requirement is first 

derivative then first derivative should exist and that means, the linear variation is 

indicated and that implies a constant term should be there and a linear term should be 

there, at least at the minimum. 

So, a first degree, polynomial interpolation within a sub-domain and that requires two 

nodes with one value of primary variable ɸ at each node. And then the interpolation 

model as we have seen becomes. So,  within that element the variation of the unknown 

function ɸ can be given as interpolation model. So, ɸ1 N1 + ɸ2 N2. So, where one and 

two these are the nodes which represent the extreme nodes of the element; defining the 

element sub-domain. And N 1, N 2, they satisfy the basic interpolation requirement. That 

is N 1 evaluates to 1 at node 1 and it vanishes at node 2.  Similarly, N 2 evaluates to 0 at 

node 1 and it evaluates to unity at node 2. So, that the function approximation when it is 

developed as this interpolation model, this function of this approximation evaluates to ɸ1 

at node 1 and it evaluates to ɸ2 at node 2 and in between it is an interpolation linear 

variation between ɸ1 and ɸ2. 

So, this linear variation can be general polynomial, it can be a general polynomial 

expression it can be represented as a two term polynomial that is one a constant term and 

a linear term So, that is the basic representation. So, these are two alternate 

representation of the same variation. A polynomial, first degree polynomial is a first 

degree polynomial, there can be various ways of representing it, but essentially the 

polynomial variation is unique once it is defined. So, the first degree polynomial is 

unique between two points. 

So, continuity of 0th order derivative is preserved across the element boundaries. So, for 

one element we have this approximation and for the next element we will have similar 

kind of approximation. Those are independent approximation except that they will have 

adjacent elements will share node in common and once the node is shared the function 

value is preserved at that point. So, the continuity of 0th order derivative in this 

particular model of approximation is preserved across the element boundaries and this is 

referred to as C0 continuity. And approximation  is piece wise continuous. So, it is 

continuous over in element, it is continuous over the next element in between the 

boundary between these two elements the function value is continuous.  Function value 



is compatibility of the function, compatibility of the approximation phi, primary variable 

is retained, but the gradient may not be; there is no constraint on the gradient. So, the 

gradients may differ. 

So, the derivative of the function approximation at for one element might be something 

and for some other element just to the right of the node might be something else. So that 

is fine. So, that is why we call it piece wise continuous over the whole domain. So, total 

domain it is continuous over each element and it looks like an assembly of piece wise 

continuity and making up the whole domain. So, this is what the problem what we were 

hinting at.  

So, total problem is defined by this domain 0 to x ranging from 0 to L and boundary 

conditions defined ɸ is 0 at x is equal to 0. So, that is the fixed support constraint. And ɸ 

is equal to ɸ0, so it can be some constant at this point. And at of x is equal to L this is 

equal to this is the boundary condition imposed on the secondary variable of the 

problem. 

Now, this is the physical system that mathematical model which defines a physical 

system. This first needs to be translated into a finite element model and finite element 

model requires domain decomposition. The first step to development of finite element 

model is to find out how many domains do we need to divide it into.  And that is what 

we do here, we divide it into four elements so these are the in square boxes these referred 

to the element numbers. So, sub-domains or finite element numbers. So, this is finite 

element number 1. So, defined by nodes 1 and 2, these are the node numbers that they 

are numbered sequentially so that all nodes positions can be identified without any 

ambiguity. 

So, each node is defined by its coordinate. So, node one is defined by co-ordinate x1. So, 

that is x1 is equal to 0 in this case node 2 is defined by the coordinate x2, x2 can be some 

value let us say L / 4 and node 3 is defined by coordinate x 3, which will be some value 

let us say L / 2 and node 4 is defined by the coordinate x 4 which is maybe 3L/ 4 and 

node 5 is the end point. So, that is x is equal to x 5 is equal to L. So, element 1 is defined 

by these two nodes; node 1 and node 2 that is all. Element 2 is defined by node 2 and 

node 3. Element 3 is defined by node 3 and node 4. Element 4 is defined by node 4 and 

node 5. So, now it is you can possibly see a highly structured arrangement here. If I 



know that it is all I am decomposing or this domain into smaller sub-domains of similar 

type of elements let us say two node element. So, each of these 4 elements is a two node 

element. 

So, taken individually I only need to define two nodes which will uniquely define the 

element. So, and the nodes themselves are defined by the coordinates. So, it is a very 

structured system of information that makes it very convenient to computer 

programming and automatic computation.  

So, this finite element model eventually leads to what we call as connectivity array or 

finite element mesh. So, that data, that connectivity array or the mesh data involves 

specification of which element is defined by which nodes and nodes are defined by their 

coordinates. 

So, element 1 will be defined by x 1 and x 2. So, these are the coordinates of the nodes 1 

and 2. Element 2 will be defined by nodes 2 and 3 and which are defined by which are 

specified by their coordinates x 2 and x 3 and so on. And in a generic sense it is the same 

type of element. So, that is being repeated all over. 

So, the only thing that is changing here is the coordinate of the nodes, but otherwise the 

character of the element remains the same. It is two noded element and the variation is 

one degree first degree polynomial that is approximation. 
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So, the variation of the primary variable phi within an element e; generic element that is 

what we are looking at if we isolate this one element here which is let us say generic 

element e which is defined by two nodes. Then the approximation is within that element 

e is given by interpolation model ɸ1 N 1 + ɸ2 N 2. So, this is what the interpolation model 

is and if I arrange it in matrix form this is what it will look like.  

And this is of course, a complete linear polynomial a 0 +a 1 x. So, if I rearrange it into a 

matrix form and this is what that will look like. Now, this has to satisfy the interpolation 

condition. That is at x is equal to x1, that is the first node of the element the 

approximation has to agree with ɸ1, it has to yield I mean the approximation should 

evaluate to ɸ1. Similarly at x is equal to x 2 the approximation should evaluate to ɸ2. That 

is the condition of approximation as an interpolation model. 

So if we impose that, polynomial approximation should evaluate to function values at the 

nodes of interpolation. So, ɸ1 should be equal to a0 + a1 x1. So, this polynomial variation 

when evaluated at x1 I should get the value of function at node 1. Similarly ɸ 2 should be 

equal to a0 + a1 x2. And this gives us the basic condition for evaluating the unknown 

coefficients a 0 and a 1 for the polynomial approximation within the element. And 

because this matrix is known the coordinates of the nodes are known a priory that is how 

we decided the nodes. When we discretize the domain converted the physical problem 

into an assembly of finite element. So, nodes are defined by their coordinates. So, these 

coordinates x 1 and x 2 are known to us and therefore, this matrix can be inverted.  And as 

long as the points are distinct node 1 and node 2 there are distinct points then there is no 

way this will be singular, this inverse is guaranteed. And a 0 and a 1 can be identified by 

inverse of this coordinate matrix, and ɸ1 ɸ2 they are the function values. 

Now this a 0, a 1 what we have evaluated we can substitute here back, in this equation 

polynomial approximation and that give leads us to the basic approximation of the 

problem that is the polynomial variation 1 x. So, the constant term and linear term 

multiplied by these coefficients. So, this is what we get it. And then when we compare 

this with the first structure ɸ1 ɸ2 then we would realize that the interpolation function N 1 

and N 2 are essentially product of these two matrices. So, this is the polynomial term and 

this is the coordinate matrix; inverse of coordinate matrix. So, this is referred to as p c-1. 

So, matrix of interpolation functions or shape functions as they are called they can be 



derived as a product of polynomial terms p and c inverse that is the matrix of 

coordinates. 

So, this is how we can generate the interpolation model. Now these interpolation 

functions N 1 and N 2 they are evaluated, we know the functions given the coordinates 

x1 and x 2. So now, all that we need to know is, what are the coordinates, what are the 

two points which define the element, what are the coordinates of those points and once I 

have the coordinates I am immediately can work out what is the interpolation function 

for each of these two nodes. And once I work out this interpolation function for each of 

these two nodes I can work out what is the approximation within that node. 

So, how this works in individual elements, I mean this exercise we need to do it in 

individual elements and how this works out in the case of weak formulation. I mean we 

saw that in development of the weak formulation. Now we will work out this over each 

element we will take up this. In our last lecture we saw that the whole idea that this entire 

weighted residual statement which is defined over the entire domain. Now, we will 

consider it to be sum of residual statements over each of sub-domains. So, we will look 

at this weak form over each of the sub-domain. So, instead of talking about 0 to L maybe 

we will talk about x 1 to x 2 that is all.  

So, the domain the boundaries of the individual elements and that is it. And from there 

we will develop the basic finite element level equations and we will see how it looks 

like. And then we will see how we can use these element level equations and assemble 

them to build the complete whole domain equations. So, that is what we will discuss in 

our next lecture. 

Thank you. 


